

FCC SAR Compliance Test Report

Project Name: HUAWEI MediaPad 10 Link

Model : S10-202u

FCC ID : QISS10-202U

Report No. : SYBH(Z-SAR)029122012-2

	APPROVED (Manager)	CHECKED	PREPARED
BY	Liu Chunlin	Alvinway	xu Ruiging
DATE	2013-03-08	2013-03-08	2013-03-08

The test results of this test report relate exclusively to the item(s) tested, The HUAWEI does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of HUAWEI.

Reliability Laboratory of Huawei Technologies Co., Ltd.

Tel: +86 755 28780808 Fax: +86 755 89652518

Table of Contents

	RF exposure limits	4
	EUT Description	
1.3.1	General Description	6
1.4	Test specification(s)	7
1.6	Applicant and Manufacturer	7
	·	
_		
_		
7.3.4		
	endix C. Calibration Certificate	
	endix D. Photo documentation	
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 SAR 2.2 2.3 2.4 2.5 2.7 SAR 3.2 2.3 3.3 Syste 4.1 4.2 4.3 Meas 5.1 5.2 SAR 6.2 6.3 SAR 7.1.1.1.5 7.1.5 7.2.2.1 7.2.2.3 7.2.3 7.3.3 7.3.4 7.3.5 7.3.3 7.3.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	1.1 Statement of Compliance 1.2 RF exposure limits 1.3.1 EUT Description 1.3.1 General Description 1.3.1 General Description 1.4 Test specification(s). 1.5 Testing laboratory. 1.6 Applicant and Manufacturer 1.7 Application details. 1.8 Ambient Condition SAR Measurement System 2.1 SAR Measurement System 2.2 Test environment. 2.2 Data Acquisition Electronics description 2.4 Probe description. 2.5 Phantom description. 2.6 Device holder description 2.7 Test Equipment List SAR Measurement Procedure 3.1 Scanning procedure 3.2 Spatial Peak SAR Evaluation 3.3 Data Storage and Evaluation 3.3 Data Storage and Evaluation 3.4 System Verification Procedure 4.1 Tissue Verification Procedure 4.2 System Check 4.3 System Check 4.3 System Check Procedure. 4.4 System Check Incending Evaluation for SAR test 5.4 Measurement uncertainty Evaluation for SAR test 6.5 Measurement uncertainty evaluation for system system 6.1 GSM Test Configuration 6.2 UMTS Test Configuration 6.3 WFi Test Configuration 6.4 GSM Test Configuration 6.5 AR Measurement Result SMR50 7.1.1 Conducted power measurements GSM850 7.1.2 Conducted power measurements GSM900 7.1.3 Conducted power measurements UMTS Band V. 7.1.1 Conducted power measurements UMTS Band V. 7.1.2 SAR measurement Result of GSM850 7.2.2 SAR measurement Result of GSM850 7.2.3 SAR measurement Result of UMTS Band II. 7.1.5 Conducted power measurements BT. 7.2 SAR measurement Result of UMTS Band II. 7.2.5 SAR measurement Result of UMTS Band II. 7.3.5 Simultaneous Transmission Possibilities 7.3.3 SAR Summation Scenario 7.3.4 SPLSR Evaluation Scenario 7.3.5 Simultaneous Transmission Possibilities

% % Modified History % %

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	2013-02-22	Xu Ruiqing
Rev.1.1	1) Add the DC-HSDPA information on Page 5, 26-27; 2) Add the DC-HSDPA power measurements on Page 30-31; 3) Add the Note for DC-HSDPA SAR test exclusion on Page 34-35;	2013-03-08	Xu Ruiqing

2013-03-08 Page 3 of 44

1 General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for S10-202u are as below in Table 1.

Band	Position	MAX Reported SAR _{1g} (W/kg)
GSM850	Body 0mm	1.366
GSM1900	Body 0mm	0.726
UMTS Band V	Body 0mm	1.122
UMTS Band II	Body 0mm	1.266
WiFi	Body 0mm	1.061
The highest simultaneous SAR is 1.576W/kg per KDB690783 D01		

Table 1:Summary of test result

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1992, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2003& IEEE Std 1528a-2005 and FCC OET Bulletin 65 Supplement C Edition 01-01.

1.2 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

2013-03-08 Page 4 of 44

1.3 EUT Description

Device Information:			
DUT Name:	HUAWEI MediaPad 10	Link	
Type Identification: S10-202u			
FCC ID:	QISS10-202U		
SN No.:	F2L01A9311200137		
Device Type :	portable device		
Exposure Category:	uncontrolled environme	ent / general popul	ation
Device Phase:	Identical Prototype		
Sample Dimension:	257.44mm× 175.9mm×	« 9.9mm	
Hardware Version :	SH1201UM		
Software Version:	S10-202u V100R001C	001	
Antenna Type :	internal antenna		
Device Operating Configurations:			
Supporting Mode(s)	GSM850/1900,UMTS E	Band V/II,WiFi(test	ed);
Test Modulation	GSM(GMSK), UMTS(C	PSK),WiFi(BPSK))
Device Class	В		
	Band	Tx (MHz)	Rx (MHz)
	GSM850	824-849	869-894
0(GSM1900	1850-1910	1930-1990
Operating Frequency Range(s)	UMTS Band V	824-849	869-894
	UMTS Band II	1850-1910	1930-1990
	WiFi	2412-2462	2412-2462
	Max Number of Timesl	ots in Uplink:	4
GPRS Multislot Class(12)	Max Number of Timesl	ots in Downlink:	4
	Max Total Timeslot:		5
	Max Number of Timesl	ots in Uplink:	4
EGPRS Multislot Class(12)	Max Number of Timesl	ots in Downlink:	4
	Max Total Timeslot:		5
HSDPA UE Category	14		
HSUPA UE category	6		
DC-HSDPA UE Category	24		
	4,tested with power level 5(GSM850)		
Power Class:	1,tested with power level 0(GSM1900)		
Fower Class.	3, tested with power control "all 1"(UMTS Band V)		
	3, tested with power co	ontrol "all 1"(UMTS	Band II)
	128-190-251(GSM850)		
	512-661-810 (GSM190		
Test Channels (low-mid-high):	4133-4182-4232(UMTS Band V)		
	9263-9400-9537 (UMTS Band II)		
	1-6-11(WiFi 2450)		

Table 3:Device information and operating configuration

2013-03-08 Page 5 of 44

1.3.1 General Description

FCC general description HUAWEI MediaPad 10 Link (MediaPad 10 Link for short) is a 10.1-inch tablet that incorporates Hislicon processor With support for 3G and WI-FI and BT data connections, MediaPad 10 Link provides users with unprecedented access to high-speed internet services. With an aluminum-alloy housing and ultra-thin 9.9 mm design, MediaPad 10 Link is stylish,slim,and easy to carry.MediaPad 10 Link has a IPS screen with a resolution of up to 1280 × 800 pixels. It comes with a front camera,and a rear camera.The front camera can be used in video calls,while the rear camera can record video.This video capability,combined with MediaPad 10 Link's Dolby surround sound technology,delivers superb audiovisual quality,when users are taking photos,playing game,watching movies,or listening to music.

Battery

Name	Manufacture	Description
Rechargeable Li-ion	Huawei Technologies Co., Ltd.	Battery Model: HB3X1 Rated capacity: 6400 mAh Nominal Voltage: === +3.7V Charging Voltage: === +4.2V

2013-03-08 Page 6 of 44

1.4 Test specification(s)

ANSI Std C95.1 – 1992 Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz. (IEEE Std C95.1 – 1991) Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Amendment 1: CAD File for Human Head Model (SAM Phantom) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic FieldsAdditional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions RSS-102 RSS-102 RAGIO Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010) KDB248227 D01 SAR Measurement Procedures for 802.11 a,b,g Transmitters v01 KDB941225 D03 SAR test for 3G devices v02 KDB941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01 KDB447498 D01 General RF Exposure Guidance v05 KDB865664 D02 SAR measurement 100 MHz to 6 GHz v01 KDB865664 D02 SAR Reporting v01 KDB450824 D01 SAR Probe Calibration and System Verification v01 KDB450824 D02 Dipole SAR System check Verification v01 KDB450824 D02 SAR for laptop and tablets v01		
Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques IEEE Std 1528a-2005 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques OET Bulletin No. 65, Supplement C Edition 01-01- 2001 RSS-102 RSS-102 RSS-102 RAGIO Frequency Electromagnetic FieldsAdditional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010) KDB248227 D01 KDB941225 D01 SAR Measurement Procedures for 802.11 a,b,g Transmitters v01 KDB941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01 KDB447498 D01 General RF Exposure Guidance v05 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01 KDB865664 D02 SAR Reporting v01 KDB450824 D01 Dipole SAR System check Verification v01	ANSI Std C95.1 – 1992	
Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Amendment 1: CAD File for Human Head Model (SAM Phantom) OET Bulletin No. 65, Supplement C Edition 01-01- 2001 RSS-102 RSS-102 RAGIO Frequency Electromagnetic FieldsAdditional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions RAGIO Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010) KDB248227 D01 KDB941225 D01 KDB941225 D03 SAR Measurement Procedures for 802.11 a,b,g Transmitters v01 KDB941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01 KDB447498 D01 General RF Exposure Guidance v05 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01 KDB865664 D02 SAR Probe Calibration and System Verification v01 KDB450824 D02 Dipole SAR System check Verification v01	IEEE Std 1528-2003	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless
Radiofrequency Electromagnetic FieldsAdditional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010) KDB248227 D01 KDB941225 D01 KDB941225 D03 SAR test for 3G devices v02 KDB941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01 KDB447498 D01 General RF Exposure Guidance v05 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01 KDB865664 D02 SAR Reporting v01 KDB450824 D01 SAR Probe Calibration and System Verification v01 KDB450824 D02 Dipole SAR System check Verification v01	IEEE Std 1528a-2005	Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
Apparatus (All Frequency Bands (Issue 4 of March 2010) KDB248227 D01 SAR Measurement Procedures for 802.11 a,b,g Transmitters v01 KDB941225 D01 SAR test for 3G devices v02 KDB941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01 KDB447498 D01 General RF Exposure Guidance v05 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01 KDB865664 D02 SAR Reporting v01 KDB450824 D01 SAR Probe Calibration and System Verification v01 KDB450824 D02 Dipole SAR System check Verification v01	Supplement C Edition	Radiofrequency Electromagnetic FieldsAdditional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits
KDB941225 D01 SAR test for 3G devices v02 KDB941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01 KDB447498 D01 General RF Exposure Guidance v05 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01 KDB865664 D02 SAR Reporting v01 KDB450824 D01 SAR Probe Calibration and System Verification v01 KDB450824 D02 Dipole SAR System check Verification v01	RSS-102	
KDB941225 D03SAR Test Reduction GSM/GPRS/EDGE v01KDB447498 D01General RF Exposure Guidance v05KDB865664 D01SAR measurement 100 MHz to 6 GHz v01KDB865664 D02SAR Reporting v01KDB450824 D01SAR Probe Calibration and System Verification v01KDB450824 D02Dipole SAR System check Verification v01	KDB248227 D01	SAR Measurement Procedures for 802.11 a,b,g Transmitters v01
KDB447498 D01General RF Exposure Guidance v05KDB865664 D01SAR measurement 100 MHz to 6 GHz v01KDB865664 D02SAR Reporting v01KDB450824 D01SAR Probe Calibration and System Verification v01KDB450824 D02Dipole SAR System check Verification v01	KDB941225 D01	SAR test for 3G devices v02
KDB865664 D01SAR measurement 100 MHz to 6 GHz v01KDB865664 D02SAR Reporting v01KDB450824 D01SAR Probe Calibration and System Verification v01KDB450824 D02Dipole SAR System check Verification v01	KDB941225 D03	SAR Test Reduction GSM/GPRS/EDGE v01
KDB865664 D02SAR Reporting v01KDB450824 D01SAR Probe Calibration and System Verification v01KDB450824 D02Dipole SAR System check Verification v01	KDB447498 D01	General RF Exposure Guidance v05
KDB450824 D01 SAR Probe Calibration and System Verification v01 KDB450824 D02 Dipole SAR System check Verification v01	KDB865664 D01	SAR measurement 100 MHz to 6 GHz v01
KDB450824 D02 Dipole SAR System check Verification v01	KDB865664 D02	SAR Reporting v01
	KDB450824 D01	SAR Probe Calibration and System Verification v01
KDB616217 D04 SAR for laptop and tablets v01	KDB450824 D02	Dipole SAR System check Verification v01
	KDB616217 D04	SAR for laptop and tablets v01

1.5 Testing laboratory

Test Site	The Reliability Laboratory of Huawei Technologies Co., Ltd.
Test Location	Zone K3, Huawei Industrial Base, Bantian Industry Area, Longgang District, Shenzhen, Guangdong, China
Telephone	+86 755 28780808
Fax	+86 755 89652518
State of accreditation	The Test laboratory (area of testing) is accredited according to ISO/IEC 17025. CNAS Registration number: L0310; A2LA Registration number: 2174.01

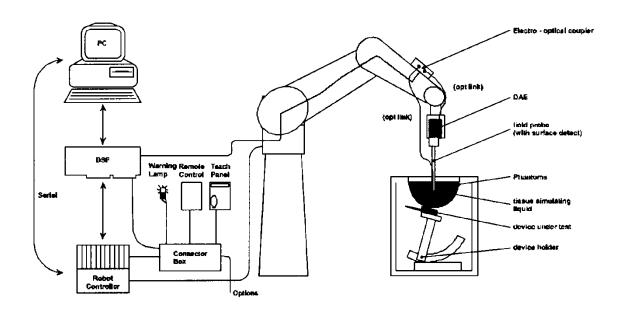
1.6 Applicant and Manufacturer

Company Name	HUAWEI TECHNOLOGIES CO., LTD
Address	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.7 Application details

Start Date of test	2013-02-03
End Date of test	2013-02-09

1.8 Ambient Condition


Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2013-03-08 Page 7 of 44

2 SAR Measurement System

2.1 SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows XP.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System check dipoles allowing to validate the proper functioning of the system.

2013-03-08 Page 8 of 44

2.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions:

 $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.3 Data Acquisition Electronics description

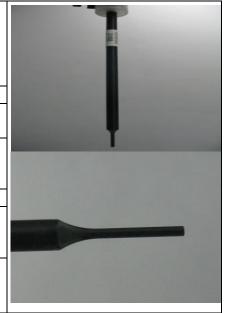
The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm	Entered & Parkets Englancing 60
The Inputs	symmetrical and floating	PART N.: SD 000 Dob BJ SERIAL Nr.: 851
Common mode rejection	above 80 dB	DATE: 03/08

2013-03-08 Page 9 of 44



2.4 Probe description

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements

solropic E-Field Frobe ESSDVS for Dosiniethic Measurements				
	Symmetrical design with triangular core			
	Interleaved sensors			
Construction	Built-in shielding against static charges			
	PEEK enclosure material (resistant to organic			
	solvents, e.g., DGBE)			
Calibration	ISO/IEC 17025 calibration service available.			
Fraguency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4			
Frequency	GHz)			
	± 0.2 dB in HSL (rotation around probe axis)			
Directivity	± 0.3 dB in tissue material (rotation normal to			
	probe axis)			
Dynamic range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB			
	Overall length: 337 mm (Tip: 20 mm)			
Dimensions	Tip diameter: 3.9 mm (Body: 12 mm)			
	Distance from probe tip to dipole centers: 2.0 mm			
	General dosimetry up to 4 GHz			
Application	Dosimetry in strong gradient fields			
	Compliance tests of mobile phones			

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in HSL (rotation normal to probe axis)
Dynamic range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm Tip length: 20 mm Body diameter: 12 mm Tip diameter:2.5 mm Distance from probe tip to dipole centers: 1.0 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2013-03-08 Page 10 of 44

2.5 Phantom description

SAM Twin Phantom

Shell Thickness	2mm +/- 0.2 mm; The ear region: 6mm	
Filling Volume	Approximately 30 liters	
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	
Measurement Areas	Left hand Right hand Flat phantom	

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

ELI4 Phantom

Shell Thickness	2mm +/- 0.2 mm
Filling Volume	Approximately 30 liters
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet
Measurement Areas	Flat phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

2.6 Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2013-03-08 Page 11 of 44

2.7 Test Equipment List

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described are marked ⊠

	Manufacturer	Device	Туре	Serial number	Date of last calibration)*	Valid period
	SPEAG	Dosimetric E-Field Probe	EX3DV4	3736	2012-04-26	One year
	SPEAG	Dosimetric E-Field Probe	ES3DV3	3168	2012-10-02	One year
	SPEAG	835 MHz Dipole	D835V2	4d126	2011-11-07	Three years
	SPEAG	1800 MHz Dipole	D1800V2	2d184	2011-03-08	Three years
	SPEAG	1900 MHz Dipole	D1900V2	5d143	2011-09-26	Three years
	SPEAG	2000 MHz Dipole	D2000V2	1052	2011-03-10	Three years
	SPEAG	2300 MHz Dipole	D2300V2	1016	2011-11-22	Three years
	SPEAG	2450 MHz Dipole	D2450V2	860	2011-03-08	Three years
	SPEAG	2600 MHz Dipole	D2600V2	1021	2011-11-21	Three years
	SPEAG	Data acquisition electronics	DAE4	851	2012-07-25	One year
	SPEAG	Software	DASY 5	N/A	N/A	N/A
	SPEAG	Twin Phantom	SAM1	TP-1475	N/A	N/A
	SPEAG	Twin Phantom	SAM2	TP-1474	N/A	N/A
	SPEAG	Twin Phantom	SAM3	TP-1597	N/A	N/A
	SPEAG	Twin Phantom	SAM4	TP-1620	N/A	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1038	N/A	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1111	N/A	N/A
\boxtimes	R&S	Universal Radio Communication Tester	CMU 200	113989	2012-06-07	One year
	R&S	WideBand Radio Communication Tester	CMW 500	392718	2012-08-06	One year
	Agilent)*	Network Analyser	E5071B	MY42404956	2012-02-14	One year
	Agilent	Dielectric Probe Kit	85070E	2484	N/A	N/A
	Agilent	Signal Generator	N5181A	MY47420989	2012-02-14	One year
	MINI-CIRCUITS	Amplifier	ZHL-42W	QA0746001	N/A	N/A
	Agilent	Power Meter	E4417A	MY45101339	2012-02-14	One year
	Agilent	Power Meter Sensor	E9321A	MY44420359	2012-02-14	One year

Note: All the test equipments are calibrated once a year, except the dipoles, which are calibrated every three years. Moreover, we have self-calibration every year to the dipoles.

- 1) Per KDB 450824 D02 requirements for dipole calibration, Huawei SAR lab has adopted three years calibration interval. But each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement:
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2013-03-08 Page 12 of 44

3 SAR Measurement Procedure

3.1 Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension(≤2GHz), 12 mm in x- and y- dimension(2-4GHz) and 10mm in x- and y- dimension(4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in Appendix B.
- A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: Δ x_{zoom}, Δ y_{zoom} \leq 4GHz \leq 5 mm and 4-6 GHz- \leq 4 mm; Δ z_{zoom} \leq 3GHz \leq 5 mm, 3-4 GHz- \leq 4 mm and 4-6GHz- \leq 2mm where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.)are shown in table form form in chapter 7.2.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2 mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in Appendix B.

2013-03-08 Page 13 of 44

3.2 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 7 x 7 x 7 points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated.
 This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe
 and the distance between the surface and the lowest measuring point is about 1 mm (see probe
 calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting
 Graph Evaluated.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum
 the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline
 interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the
 boundary of the measurement area) the evaluation will be started on the corners of the bottom plane
 of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

2013-03-08 Page 14 of 44

Data Storage and Evaluation 3.3

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension DAE4. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

dcp_i

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
•	- Conversion factor	ConvF _i
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
•	- Crest factor	cf
Modia parameters:	Conductivity	-

 Conductivity Media parameters: σ - Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

 $V_i = U_i + U_i^2 \cdot cf/dcp_i$

(DASY parameter)

with
$$V_i$$
 = compensated signal of channel i $(i = x, y, z)$
 U_i = input signal of channel i $(i = x, y, z)$
cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY paramete

From the compensated input signals the primary field data for each channel can be evaluated:

2013-03-08 Page 15 of 44

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^{2} \circ \sigma) / (\rho \circ 1000)$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{tot}^2 / 3770$$
 or $P_{\text{pwe}} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

2013-03-08 Page 16 of 44

4 System Verification Procedure

4.1 Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Ingredients (% of weight)	Body Tissue					
Frequency Band (MHz)	450	835	1800	1900	2450	2600
Water	51.16	52.4	69.91	71.88	73.2	70.04
Salt (NaCl)	1.49	1.40	0.13	0.39	0.04	0.1
Sugar	46.78	45.0	0.0	0.0	0.0	0.0
HEC	0.52	1.0	0.0	0.0	0.0	0.0
Bactericide	0.05	0.1	0.0	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	29.96	29.44	26.7	29.5

Table 4: Tissue Dielectric Properties

Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Tissue	Measured	Target	Tissue	Measured Tissue		Liquid	
Type	Frequency (MHz)	εr (+/-5%)	σ (S/m) (+/-5%)	٤r	σ (S/m)	Temp.	Test Date
	825	55.20 (52.44~57.96)	0.97 (0.92~1.02)	56.30	0.992		
835B	835	55.20 (52.44~57.96)	0.97 (0.92~1.02)	56.18	0.989	21.4°C	2013/2/7
	850	55.20 (52.44~57.96)	0.99 (0.94~1.04)	55.97	1.013		
	1850	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.85	1.482		
1900B	1880	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.95	1.522	21.4°C	2013/2/3
19006	1900	53.30 (50.64~55.97)	1.52 (1.44~1.60)	53.07	1.559	21.4 C	2013/2/3
	1910	53.30 (50.64~55.97)	1.52 (1.44~1.60)	53.13	1.573		
	2410	52.8 (50.16~55.44)	1.91 (1.81~2.00)	52.49	1.942		
2450B	2435	52.7 (50.07~55.34)	1.94 (1.84~2.04)	52.36	1.968	21.4°C	2013/2/9
2400b	2450	52.7 (50.07~55.34)	1.95 (1.85~2.05)	52.27	1.982	21.4 C	2013/2/9
	2460	52.7 (50.07~55.34)	1.96 (1.86~2.06)	52.23	1.995		
		ε _r = Relat	ive permittivity, σ=	Conductiv	vity		

Table 5:Measured Tissue Parameter

2013-03-08 Page 17 of 44

- Note: 1) The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.
- 2) KDB 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.
- 3) The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

4.2 System Check

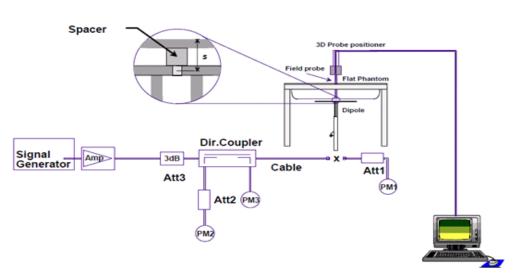
The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows system check results for all frequency bands

and tissue liquids used during the tests (Graphic Plot(s) see Appendix A).

System	Target S (+/-1	•		Liquid	Test Date	
Check	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	Test Date
D835V2 Body	9.54 (8.59~10.49)	6.29 (5.66~6.92)	10.24	6.88	21.4°C	2013/2/7
D1900V2 Body	41.40 (37.26~45.54)	21.80 (19.62~23.98)	39.60	21.04	21.4°C	2013/2/3
D2450V2 Body	52.8 (47.52~58.08)	24.5 (22.05~26.95)	52.00	24.12	21.4°C	2013/2/9

Table 6:System Check Results

2013-03-08 Page 18 of 44



4.3 System check Procedure

The system check is performed by using a system check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system check to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

system check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

2013-03-08 Page 19 of 44

5 Measurement Uncertainty Evaluation

5.1 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is \pm 10.9% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 21.9%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

v_i² or **Error Sources** Uncert Probability Divi Standard Standard ainty Distribution Uncertai Uncertai -sor V_{eff} 1g 10a Value nty 1g nty10g **Measurement System** Probe calibration ± 6.0% Normal 1 1 1 ± 6.0% ± 6.0% √3 Axial isotropy ± 4.7% Rectangular 0.7 0.7 ± 1.9% ± 1.9% Hemispherical isotropy ± 9.6% Rectangular √3 0.7 0.7 ± 3.9% ± 3.9% ∞ √3 1 1 Spatial resolution $\pm 0.0\%$ Rectangular $\pm 0.0\%$ $\pm 0.0\%$ √3 Boundary effects ± 1.0% $\pm 0.6\%$ $\pm 0.6\%$ Rectangular 1 1 ∞ ± 4.7% √3 1 1 ± 2.7% ± 2.7% Probe linearity Rectangular ∞ √3 1 1 System detection limits ± 1.0% Rectangular $\pm 0.6\%$ $\pm 0.6\%$ ∞ Readout electronics $\pm 0.3\%$ Normal 1 1 1 $\pm 0.3\%$ $\pm 0.3\%$ ∞ √3 Response time $\pm 0.8\%$ Rectangular 1 1 $\pm 0.5\%$ $\pm 0.5\%$ √3 Integration time + 2.6% Rectangular 1 1 $\pm 1.5\%$ $\pm 1.5\%$ RF ambient conditions ± 3.0% √3 1 1 ± 1.7% ± 1.7% Rectangular ∞ √3 $\pm 0.4\%$ 1 $\pm 0.2\%$ $\pm 0.2\%$ Probe positioner Rectangular 1 ∞ √3 ± 2.9% 1 1 ± 1.7% ± 1.7% Probe positioning Rectangular √3 Max. SAR evaluation ± 1.0% 1 1 Rectangular $\pm 0.6\%$ $\pm 0.6\%$ **Test Sample Related** Device positioning ± 2.9% Normal 1 1 1 ± 2.9% ± 2.9% 145 Device holder uncertainty $\pm 3.6\%$ Normal 1 1 1 $\pm 3.6\%$ $\pm 3.6\%$ 5 √3 Power drift ± 5.0% 1 1 ± 2.9% ± 2.9% Rectangular ∞ **Phantom and Set-up** √3 Phantom uncertainty ± 4.0% Rectangular 1 1 ± 2.3% ± 2.3% √3 Liquid conductivity (target) ± 5.0% Rectangular 0.64 0.43 ± 1.8% ± 1.2% ∞ Liquid conductivity (meas.) ± 2.5% 1 0.64 0.43 Normal ± 1.6% $\pm 1.1\%$ ∞ √3 Liquid permittivity (target) ± 5.0% Rectangular 0.6 0.49 ± 1.7% ± 1.4% ∞ Liquid permittivity (meas.) ± 2.5% Normal 1 0.6 0.49 ± 1.5% ± 1.2% **Combined Uncertainty** $\pm 10.9\%$ ± 10.7% 387 $\mathbf{u}_{c} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$ **Expanded Std.** K=2 Normal ± 21.9% ± 21.4% $u_a = 2u_a$ Uncertainty

Table 7:Measurement uncertainties

2013-03-08 Page 20 of 44

5.2 Measurement uncertainty evaluation for system system

The overall combined measurement uncertainty of the measurement system is \pm 9.5% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 18.9%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid &

Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncerta inty Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertainty 1g	Standar d Uncertai nty10g	v _i ² or v _{eff}
Measurement System								
Probe calibration	± 6.0%	Normal	1	1	1	± 6.0%	± 6.0%	8
Axial isotropy	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 0.0%	± 0.0%	8
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Readout electronics	± 0.3%	Normal	1	1	1	± 0.3%	± 0.3%	8
Response time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
Integration time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
RF ambient conditions	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	8
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Dipole								
Deviation of experimental dipole	± 5.5%	Rectangular	√3	1	1	± 3.2%	± 3.2%	∞
Dipole axis to liquid distance	± 2.0%	Rectangular	1	1	1	± 1.2%	± 1.2%	∞
Power drift	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	8
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	8
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	8
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	∞
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	∞
Combined Uncertainty	$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					± 9.5%	± 9.2%	
Expanded Std. Uncertainty	$u_e = 2u_c$	Normal		K=2		± 18.9%	± 18.4%	

Table 8:Measurement uncertainties

2013-03-08 Page 21 of 44

6 SAR Test Configuration

6.1 **GSM** Test Configuration

SAR tests for GSM850/1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM850 and GSM1900. The tests in the band of GSM850/1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot.

The allowed power reduction in the multi-slot configuration is as following:

Number of timeslots in uplink assignment		Reduction of maximum output power, (dB)					
Band	Time Slots	GPRS (GMSK)	EGPRS (GMSK)	EGPRS (8PSK)			
	1 TX slot	0	0	0			
GSM850	2 TX slots	2	2	2			
GSIVIOSU	3 TX slots	4	4	4			
	4 TX slots	6	6	6			
	1 TX slot	0	0	0			
GSM1900	2 TX slots	2	2	2			
G3W1900	3 TX slots	4	4	4			
	4 TX slots	6	6	6			

Table 9: The allowed power reduction in the multi-slot configuration of GSM

2013-03-08 Page 22 of 44

6.2 UMTS Test Configuration

1) RMC

As the SAR body tests for UMTS Band V/II, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to 'all 1'.
- 2) Test loop Mode 1.

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

	2 - 1 - 2 - 11)				
	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
DPDCH₁	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640
DPDCH _n	960	960	4	1, 2, 3	640

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCHn, when supported by the EUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCHn configuration, are less than ¼ dB higher than those measured in 12.2 kbps RMC.

2) HSDPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HAPRQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the below table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ ACK, Δ NACK, Δ CQI = 8. The variation of the β_c / β_d ratio causes a power reduction at sub-tests 2 - 4.

2013-03-08 Page 23 of 44

•	Sub-	βc₽	βa⊷	βd (SF)₽	βc / βd₽	βhs	CM(dB)(2	MPR (dB)₽
	test₽		·			(1)₽)₽	
	1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
	2₽	12/15(3	15/15(3	64₽	12/15(3)	24/15₽	1.0₽	0.
)⊕)₽					
	3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
	4.₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 \triangle A_{hs} = β _{hs}/ β _c = 30/15 \triangle β _{hs} = 30/15 \triangle β _c \leftarrow

Note 2 : CM=1 for $\beta_c/\beta_{d=}$ 12/15, β_{bs}/β_c = 24/15. For all other combinations of DPDCH,DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the <u>signalled</u> gain factors for the reference TFC (TF1,TF1) to β_c = 11/15 and β_d = 15/15 ρ

Table 10: Sub-tests for UMTS Release 5 HSDPA

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 11:settings of required H-Set 1 QPSK acc. to 3GPP 34.121

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum HS-DSCH Transport Block Bits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400

2013-03-08 Page 24 of 44

12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 12:HSDPA UE category

3) HSUPA

Body SAR is also measured for HSPA when the maximum average outputs of each RF channel with HSPA active is at ¼ dB higher than that measured without HSPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Subtest 5, using H-set 1 and QPSK for FRC and 12.2kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA should be configured according to the values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSPA Data Device' sections of 3G device.

Sub - test	βοσ	βd₽	βα (SF)-	βc / β de	β _{hs} (1)∉	βес₽	βed₽	βe c+ (S F)+	βed≁ (cod e)₽	CM(2)+ (dB)+	MP R⊬ (dB	AG(4)+ Inde X+	E- TFC I₽
1₽	11/15 ⁽	15/15 ⁽	64₽	11/15 ⁽	22/15	209/2 25 <i>₀</i>	1039/22 5 <i>₀</i>	4₽	1₽	1.0₽	0.0₽	20₽	75₽
2₊□	6/15₽	15/15₽	64₽	6/15₽	12/15₽	12/15₽	94/75₽	4.□	1₽	3.0₽	2.0₽	12₽	67∉
3₽	15/15₽	9/15₽	64₽	15/9₽	30/15₽	30/15₽	β _{ed1} :47/1 5 ₄ β _{ed2:} 47/1 5 ₄	4₽	2₽	2.0₽	1.0₽	15₽	92.
4.₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	2/15₽	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71∉
5₽	15/15 ⁽ 4)₽	15/15 ⁽ ⁴)₽	64₽	15/15 ⁽ ⁴)₽	30/15₽	24/15₽	134/15₽	4₽	1₄	1.0₽	0.0₽	21₽	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15$ $\beta_{c} = 30/15$

Note 2: CM = 1 for β_c/β_d = 12/15, β_{bs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HSDPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 10/15 and β_d = 15/15.

Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 14/15 and β_d = 15/15.

Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g₁

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Table 13:Subtests for UMTS Release 6 HSUPA

2013-03-08 Page 25 of 44

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4592
2	2	4	10	4	14484	1.4392
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	10	2SF2&2SF	11484	5.76
(No DPDCH)	4	4	2	4	20000	2.00
7	4	8	2	2SF2&2SF	22996	?
(No DPDCH)	4	4	10	4	20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only.UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 14:HSUPA UE category

4) DC-HSDPA

In DC-HSDPA implementation of this device, the uplink parameters are the same as HSDPA. No additional channels and modulations (16 QAM, and 64 QAM) are supported in uplink. The difference is only in the downlink parameters, where two carriers are supported. HSDPA settings were used on uplink.

For Rel. 8 DC-HSDPA apply the four subtests from HSDPA Release 5 except use fixed reference channel H-Set 12 for DC-HSDPA. And we can apply the same SAR test exclusion criteria used for Rel. 6 HSPA for Rel. 7 HSPA+ and Rel. 8 DC-HSDPA. That is, if the HSPA, HSPA+, or the DC-HSDPA maximum output is not more than 0.25 dB higher than WCDMA, SAR measurement for those modes is not required.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter	Unit	Value
During Connection setup		
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13

2013-03-08 Page 26 of 44

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK

Parameter	Value
Nominal average inf. bit rate	60 kbit/s
Inter-TTI Distance	1 TTI's
Number of HARQ Processes	6 Processes
Information Bit Payload	120 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	960 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	3200 SMLs
Coding Rate	0.15
Number of Physical Channel Codes	1

Table 15:settings of required H-Set 12 QPSK acc. to 3GPP 34.121

Note:

- 1.The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.
- 2.Maximum number of transmission is limited to 1,i.e.,retransmission is not allowed. The redundancy and constellation version 0 shall be used.

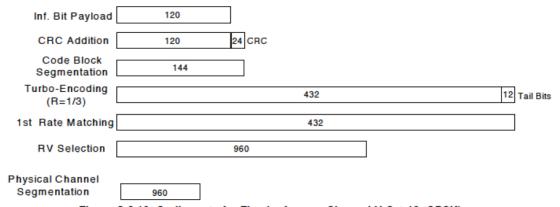


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

Sub-test₽	β _e ₽	$eta_{\mathbf{d}^{arphi}}$	β _d ·(SF)₽	$\beta_c \cdot / \beta_{d^{\omega}}$	β _{hs} ·(1) _Θ	CM(dB)(2)	MPR (dB)
1.₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2₽	12/15(3)₽	15/15(3)₽	64₽	12/15(3)	24/15₽	1.0₽	0.₽
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4.0	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c = 30/15$

Note 2:CM=1 for $\beta_c/\beta_{d=}12/15$, $\beta_{hs}/\beta_c=24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3:F or subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Up commands are set continuously to set the UE to Max power.

Note: 1. The Dual Carriers transmission only applies to HSDPA physical channels

- 2. The Dual Carriers belong to the same Node and are on adjacent carriers.
- 3. The Dual Carriers do not support MIMO to serve UEs configured for dual cell operation
- 4. The Dual Carriers operate in the same frequency band.

2013-03-08 Page 27 of 44

- 5. The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.
- 6. The device doesn't support carrier aggregation for its release version is Release 8.

6.3 WiFi Test Configuration

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1 ,6 and 11 respectively in the case of 2450 MHz.During the test,at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however,if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Mode	Band	CU-7	Channal	"Default Test Channels"		
Ivioue	Dariu	GHz Channel		802.11b	802.11g/n	
802.11b/g/n		2.412	1#	√	Δ	
	2.4 GHz	2.437	6	√	Δ	
		2.462	11#	√	Δ	

Notes:

√ = "default test channels"

 \triangle = possible 802.11g/n channels with maximum average output ½ dB the "default test channels"

= when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

802.11 Test Channels per FCC Requirements

2013-03-08 Page 28 of 44

7 SAR Measurement Results

7.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used.

SAR drift measured at the same position in liquid before and after each SAR test as below 7.2 chapter.

Note: CMU200 measures GSM peak and average output power for active timeslots.For SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.1	1:2.77	1:2.08
timebased avg. power compared to slotted avg. power	-9.19dB	-6.13dB	-4.42dB	-3.18dB

The signalling modes differ as follows:

mode	coding scheme	modulation
GPRS	CS1 to CS4	GMSK
EDGE	MCS1 to MCS4	GMSK
EDGE	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

7.1.1 Conducted power measurements GSM850

GSM850		Burst-Ave	eraged outp (dBm)	out Power	Division	Frame-Averaged output Power (dBm)			
		128CH	190CH	251CH	Factors	128CH	190CH	251CH	
	1 Tx Slot	32.71	32.82	32.87	-9.19	23.52	23.63	23.68	
GPRS	2 Tx Slots	32.27	32.43	32.49	-6.13	26.14	26.30	26.36	
(GMSK)	3 Tx Slots	29.33	29.42	29.51	-4.42	24.91	25.00	25.09	
	4 Tx Slots	27.27	27.42	27.54	-3.18	24.09	24.24	24.36	
	1 Tx Slot	32.70	32.86	32.86	-9.19	23.51	23.67	23.67	
EDGE	2 Tx Slots	32.25	32.39	32.52	-6.13	26.12	26.26	26.39	
(GMSK)	3 Tx Slots	29.33	29.43	29.48	-4.42	24.91	25.01	25.06	
	4 Tx Slots	27.30	27.46	27.52	-3.18	24.12	24.28	24.34	
	1 Tx Slot	26.83	26.70	26.49	-9.19	17.64	17.51	17.30	
EDGE	2 Tx Slots	25.00	24.86	24.75	-6.13	18.87	18.73	18.62	
(8PSK)	3 Tx Slots	22.81	22.61	22.50	-4.42	18.39	18.19	18.08	
	4 Tx Slots	20.81	20.75	20.52	-3.18	17.63	17.57	17.34	

Table 16:Test results conducted power measurement GSM850

Note: 1. The conducted power of GSM850 is measured with RMS detector.

2. Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timesolts.

2013-03-08 Page 29 of 44

7.1.2 Conducted power measurements GSM1900

GSM1900		Burst-Ave	eraged outp (dBm)	out Power	Division	Frame-Averaged output Power (dBm)			
		512CH	661CH	810CH	Factors	512CH	661CH	810CH	
	1 Tx Slot	29.98	29.86	29.75	-9.19	20.79	20.67	20.56	
GPRS	2 Tx Slots	28.40	28.32	28.23	-6.13	22.27	22.19	22.10	
(GMSK)	3 Tx Slots	26.39	26.30	26.23	-4.42	21.97	21.88	21.81	
	4 Tx Slots	24.43	24.41	24.35	-3.18	21.25	21.23	21.17	
	1 Tx Slot	30.00	29.87	29.70	-9.19	20.81	20.68	20.51	
EDGE	2 Tx Slots	28.41	28.29	28.22	-6.13	22.28	22.16	22.09	
(GMSK)	3 Tx Slots	26.39	26.34	26.24	-4.42	21.97	21.92	21.82	
	4 Tx Slots	24.44	24.39	24.33	-3.18	21.26	21.21	21.15	
	1 Tx Slot	25.72	25.50	25.26	-9.19	16.53	16.31	16.07	
EDGE	2 Tx Slots	24.06	23.87	23.66	-6.13	17.93	17.74	17.53	
(8PSK)	3 Tx Slots	22.01	21.91	21.69	-4.42	17.59	17.49	17.27	
	4 Tx Slots	19.80	19.65	19.48	-3.18	16.62	16.47	16.30	

Table 17:Test results conducted power measurement GSM1900

Note: 1. The conducted power of GSM1900 is measured with RMS detector.

2. Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timesolts.

7.1.3 Conducted power measurements UMTS Band V

LIMTC	Dand V	А	verage Power (dBn	n)
UNITS	Band V	4133CH	4182CH	4232CH
	12.2kbps RMC	22.99	22.79	22.88
WCDMA	64kbps RMC	22.98	22.77	22.94
VVCDIVIA	144kbps RMC	22.93	22.82	23.00
	384kbps RMC	23.02	22.75	23.05
	Subtest 1	23.01	22.71	23.00
HSDPA	Subtest 2	22.58	22.24	22.41
HODEA	Subtest 3	21.87	21.58	21.78
	Subtest 4	21.84	21.58	21.78
	Subtest 1	21.19	20.85	21.13
	Subtest 2	20.20	19.91	20.15
HSUPA	Subtest 3	20.11	19.81	20.05
	Subtest 4	19.89	19.70	19.95
	Subtest 5	21.17	20.90	21.11
	Subtest 1	22.71	22.50	22.19
DC-HSDPA	Subtest 2	22.43	22.10	21.83
DO-HODEA	Subtest 3	21.59	21.41	21.23
	Subtest 4	21.45	21.38	21.41

Table 18:Test results conducted power measurement UMTS Band V

Note: The conducted power of UMTS Band V is measured with RMS detector.

2013-03-08 Page 30 of 44

7.1.4 Conducted power measurements UMTS Band II

LIMTO	Band II	А	verage Power (dBr	n)
UIVITS	Dallu II	9263CH	9400CH	9537CH
	12.2kbps RMC	22.79	22.63	22.78
WCDMA	64kbps RMC	22.77	22.71	22.82
VVCDIVIA	144kbps RMC	22.77	22.67	22.75
	384kbps RMC	22.74	22.74	22.72
	Subtest 1	22.77	22.70	22.79
HSDPA	Subtest 2	22.67	22.72	22.78
ПОДРА	Subtest 3	22.34	22.40	22.58
	Subtest 4	22.41	22.54	22.61
	Subtest 1	20.93	20.93	20.96
	Subtest 2	19.96	20.11	20.02
HSUPA	Subtest 3	19.86	19.90	19.92
	Subtest 4	19.82	19.84	19.84
	Subtest 5	20.90	20.94	20.94
	Subtest 1	22.51	22.44	22.08
DC-HSDPA	Subtest 2	22.35	22.29	22.05
DO-HODPA	Subtest 3	21.92	21.95	21.53
	Subtest 4	21.95	21.65	21.63

Table 19:Test results conducted power measurement UMTS Band II

Note: The conducted power of UMTS and II is measured with RMS detector.

2013-03-08 Page 31 of 44

7.1.5 Conducted power measurements WiFi

Wi-Fi	Channel		Average Power (dBm) for Data Rates (Mbps)									
2450MHz	Charmer	1	2	5.5	11	/	/	/	/			
	1	14.92	14.73	14.65	14.69							
802.11b	6	14.89	14.84	14.76	14.91							
	11	14.64	14.60	14.46	14.50							
	Channel	6.00	9.00	12.00	18.00	24.00	36.00	48.00	54.00			
802.11g	1	13.42	13.22	13.28	13.32	13.23	13.23	13.40	13.20			
602.11g	6	13.30	13.35	13.39	13.44	13.22	13.29	13.51	13.22			
	11	13.14	13.70	13.45	13.14	13.57	13.46	13.08	13.17			
	Channel	6.50	13.00	19.50	26.00	39.00	52.00	58.50	65.00			
802.11n	1	13.60	13.61	13.28	13.15	13.26	13.29	13.20	13.69			
HT20	6	13.75	13.60	13.33	13.12	13.70	13.40	13.30	13.13			
	11	13.67	13.35	13.39	13.65	13.45	13.10	13.45	13.27			

Table 20:Test results conducted power measurement WiFi.

Note: The Average conducted power of WiFi is measured with RMS detector.

7.1.6 Conducted power measurements BT

The output power of BT antenna is as following:

	•							
	Average Conducted Power (dBm)							
BT 2450	0CH	39CH	78CH					
	4.13	6.25	5.56					

Table 21:Test results conducted power measurement BT.

Note: The conducted power of BT is measured with RMS detector.

2013-03-08 Page 32 of 44

7.2 SAR measurement Result

- 1) Per KDB447498 D01v05,testing of other required channels within the operating mode of a frequency band is not required when the reported(Scaled) SAR for the middle channel or highest output power channels is \leq 0.8W/kg. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.
- 2) Per KDB 865664 D01v01,for each frequency band,repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg; if the deviation among the repeated measurement is \leq 20%,and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 3) All measurement SAR result is scaled-up to account for tune-up tolerance is compliant.

7.2.1 SAR measurement Result of GSM850

Test Position of	Channel/	Mode		ed SAR (kg)	Power Drift	Conducted Power	Tune-up Limit	Scaled SAR _{1-q}	Liquid
Body with 0mm	Frequency	in out	1-g	10-g	(dB)	(dBm)	(dBm)	(W/kg)	Temp.
Rear Side	251/848.8	GPRS 1TS	1.050	0.543	-0.150	32.87	33.50	1.214	
Rear Side	190/836.6	GPRS 1TS	1.030	0.535	-0.070	32.82	33.50	1.205	
Rear Side	128/824.2	GPRS 1TS	1.000	0.519	-0.120	32.71	33.50	1.199	
Rear Side	251/848.8	GPRS 2TS	1.120	0.579	-0.090	32.49	32.50	1.123	
Rear Side	190/836.6	GPRS 2TS	1.090	0.564	-0.140	32.43	32.50	1.108	
Rear Side	128/824.2	GPRS 2TS	1.050	0.543	-0.110	32.27	32.50	1.107	
Rear Side	251/848.8	GPRS 3TS	1.160	0.607	-0.130	29.51	30.00	1.299	
Rear Side*	251/848.8	GPRS 3TS	1.220	0.694	-0.090	29.51	30.00	1.366	
Rear Side	190/836.6	GPRS 3TS	1.130	0.590	-0.150	29.42	30.00	1.291	
Rear Side	128/824.2	GPRS 3TS	1.080	0.565	-0.090	29.33	30.00	1.260	
Rear Side	251/848.8	GPRS 4TS	1.010	0.524	-0.070	27.54	28.00	1.123	
Rear Side	190/836.6	GPRS 4TS	0.963	0.505	-0.130	27.42	28.00	1.101	
Rear Side	128/824.2	GPRS 4TS	0.914	0.480	-0.130	27.27	28.00	1.081	
Right Side	190/836.6	GPRS 3TS	0.107	0.066	-0.040	29.42	30.00	0.122	21.4°C
Top Side	190/836.6	GPRS 3TS	0.560	0.245	0.170	29.42	30.00	0.640	
Rear Side	251/848.8	EDGE 1TS	0.978	0.508	0.110	32.86	33.50	1.133	
Rear Side	190/836.6	EDGE 1TS	0.954	0.500	-0.180	32.86	33.50	1.105	
Rear Side	128/824.2	EDGE 1TS	0.922	0.484	-0.150	32.70	33.50	1.108	
Rear Side	251/848.8	EDGE 2TS	1.010	0.527	-0.190	32.52	32.50	1.005	
Rear Side	190/836.6	EDGE 2TS	0.983	0.516	-0.150	32.39	32.50	1.008	
Rear Side	128/824.2	EDGE 2TS	0.889	0.467	-0.070	32.25	32.50	0.942	
Rear Side	251/848.8	EDGE 3TS	1.110	0.585	-0.080	29.48	30.00	1.251	
Rear Side	190/836.6	EDGE 3TS	1.080	0.568	-0.040	29.43	30.00	1.231	
Rear Side	128/824.2	EDGE 3TS	1.020	0.540	-0.040	29.33	30.00	1.190	
Rear Side	251/848.8	EDGE 4TS	0.957	0.503	-0.100	27.52	28.00	1.069	
Rear Side	190/836.6	EDGE 4TS	0.922	0.485	-0.030	27.46	28.00	1.044	
Rear Side	128/824.2	EDGE 4TS	0.864	0.454	-0.100	27.30	28.00	1.015	

Table 22: Test results Body SAR GSM850

Note: 1)The antenna-to-edge distance is greater than 5 cm,so the Left and Bottom side do not need to be tested.

2) * - repeated at the highest SAR measurement according to the FCC KDB 865664.

2013-03-08 Page 33 of 44

7.2.2 SAR measurement Result of GSM1900

Test Position of	Channel/	Mode		ed SAR (kg)	Power Drift	Conducted Power	Tune-up Limit	Scaled SAR _{1-q}	Liquid
Body with 0mm	Frequency	Mode	1-g	10-g	(dB)	(dBm)	(dBm)	(W/kg)	Temp.
Rear Side	661/1880	GPRS 1TS	0.507	0.272	-0.040	29.86	30.50	0.588	
Rear Side	661/1880	GPRS 2TS	0.530	0.284	-0.100	28.32	29.00	0.620	
Rear Side	661/1880	GPRS 3TS	0.618	0.330	-0.040	26.30	27.00	0.726	
Rear Side	661/1880	GPRS 4TS	0.516	0.276	0.010	24.41	25.00	0.591	
Right Side	661/1880	GPRS 3TS	0.082	0.043	-0.060	26.30	27.00	0.096	
Top Side	661/1880	GPRS 3TS	0.369	0.193	0.050	26.30	27.00	0.434	21.4°C
Rear Side	661/1880	EDGE 1TS	0.505	0.271	-0.100	29.87	30.50	0.584	
Rear Side	661/1880	EDGE 2TS	0.541	0.290	-0.090	28.29	29.00	0.637	
Rear Side	661/1880	EDGE 3TS	0.618	0.332	-0.090	26.34	27.00	0.719	
Rear Side*	661/1880	EDGE 3TS	0.587	0.319	-0.010	26.34	27.00	0.683	
Rear Side	661/1880	EDGE 4TS	0.511	0.274	-0.130	24.39	25.00	0.588	

Table 23: Test results Body SAR GSM1900

Note: 1)The antenna-to-edge distance is greater than 5 cm,so the Left and Bottom side do not need to be tested.

2) * - repeated at the highest SAR measurement according to the FCC KDB 865664.

7.2.3 SAR measurement Result of UMTS Band V

Test Position of	Channel/	Mode	Measured SAR (W/kg)		Power Drift	Conducted Power	Tune-up Limit	Scaled SAR _{1-q}	Liquid
Body with 0mm	Frequency	WOUG	1-g	10-g	(dB)	(dBm)	(dBm)	(W/kg)	Temp.
Rear Side	4232/846.4	RMC	0.737	0.386	-0.050	22.88	24.00	0.95	
Rear Side	4182/836.4	RMC	0.849	0.447	-0.170	22.79	24.00	1.12	
Rear Side	4133/826.6	RMC	0.729	0.383	-0.070	22.99	24.00	0.92	
Right Side	4182/836.4	RMC	0.114	0.071	-0.070	22.79	24.00	0.15	21.4°C
Top Side	4182/836.4	RMC	0.476	0.219	0.000	22.79	24.00	0.63	21.4 C
Rear Side	4182/836.4	HSDPA	0.913	0.481	-0.150	22.71	23.50	1.10	
Rear Side*	4182/836.4	HSDPA	0.822	0.473	-0.040	22.71	23.50	0.99	
Rear Side	4182/836.4	HSUPA	0.764	0.400	-0.180	20.90	21.50	0.88	

Table 24:Test results Body SAR UMTS Band V

Note:

- 1) The antenna-to-edge distance is greater than 5 cm, so the Left and Bottom side do not need to be tested.
- 2) * repeated at the highest SAR measurement according to the FCC KDB 865664.
- 3) For the the DC-HSDPA maximum output is not more than 0.25 dB higher than WCDMA, SAR measurement for DC-HSDPA is not required.

2013-03-08 Page 34 of 44

7.2.4	SAR	measuremen	t Result	of UMTS	Band II
-------	-----	------------	----------	---------	---------

Test Position of Body with	Channel/	Mode		ed SAR /kg)	Power Drift	Conducted Power	Tune-up Limit	Scaled SAR _{1-q}	Liquid
0mm	Frequency		1-g	10-g	(dB)	(dBm)	(dBm)	(W/kg)	Temp.
Rear Side	9537/1907.4	RMC	0.769	0.395	-0.080	22.78	24.00	1.018	
Rear Side	9400/1880	RMC	0.717	0.386	-0.170	22.63	24.00	0.983	
Rear Side	9263/1852.6	RMC	0.875	0.483	-0.080	22.79	24.00	1.156	
Right Side	9400/1880	RMC	0.079	0.041	-0.140	22.63	24.00	0.109	21.4°C
Top Side	9400/1880	RMC	0.294	0.152	-0.060	22.63	24.00	0.403	21.4 C
Rear Side	9263/1852.6	HSDPA	1.070	0.572	-0.100	22.77	23.50	1.266	
Rear Side*	9263/1852.6	HSDPA	1.060	0.565	-0.160	22.77	23.50	1.254	
Rear Side	9263/1852.6	HSUPA	0.947	0.506	-0.030	20.90	22.00	1.220	

Table 25:Test results Body SAR UMTS Band II

Note:

- 1) The antenna-to-edge distance is greater than 5 cm, so the Left and Bottom side do not need to be tested.
- 2) * repeated at the highest SAR measurement according to the FCC KDB 865664.
- 3) For the the DC-HSDPA maximum output is not more than 0.25 dB higher than WCDMA, SAR measurement for DC-HSDPA is not required.

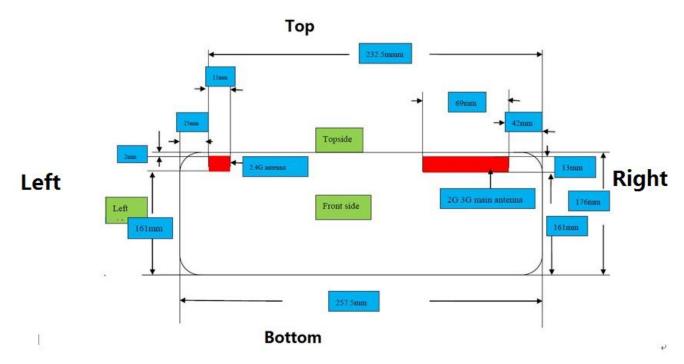
7.2.5 SAR measurement Result of WiFi

Test Position of	Channel/ Mode			Measured SAR (W/kg)		Power Conducted Drift Power		Scaled SAR _{1-q}	Liquid
Body with 0mm	Frequency	Wode	1-g			(dBm)	Limit SAR _{1-g} (dBm) (W/kg)		Temp.
Rear Side	1/2412	802.11 b	0.783	0.304	0.080	14.92	15.50	0.895	
Rear Side	11/2462	802.11 b	0.814	0.315	-0.050	14.64	15.50	0.992	
Rear Side	6/2437	802.11 b	0.819	0.316	-0.030	14.89	15.50	0.943	21.4°C
Rear Side*	6/2437	802.11 b	0.922	0.353	-0.070	14.89	15.50	1.061	21.4 0
Left Side	1/2412	802.11 b	0.121	0.056	-0.090	14.92	15.50	0.138	
Top Side	1/2412	802.11 b	0.195	0.086	-0.160	14.92	15.50	0.223	

Table 26:Test results Body SAR WiFi

Note

- 1) When the antenna-to-edge distance is greater than 5 cm, the Right and Bottom side do not need to be tested.
- 2) According to KDB248227 and the October 2012 TCB workshop RF exposure slides , testing at higher data rates and higher order modulations in 802.11g/n modes is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rates and lowest order modulation mode.
- 3) * repeated at the highest SAR measurement according to the FCC KDB 865664.


2013-03-08 Page 35 of 44

7.3 Multiple Transmitter Evaluation

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB 447498D01 General RF Exposure Guidance v05.

The closest distance between BT/WiFi antenna and main antenna is 11.05cm, and The location of the antennas inside the device is shown as below:

The SAR measurement positions of each band are as below

Mode	Front Side	Rear Side	Left Side	Right Side	Top Side	Bottom Side
GSM850	No	Yes	No	Yes	Yes	No
GSM1900	No	Yes	No	Yes	Yes	No
UMTS Band V	No	Yes	No	Yes	Yes	No
UMTS Band II	No	Yes	No	Yes	Yes	No
WiFi	No	Yes	Yes	No	Yes	No

Table 27: SAR measurement positions

Note: Per KDB616217 D04v01, SAR evaluation is required for the back surface and edges of the tablet when the diagonal dimension of the device is >20cm. When the antenna-to-edge distance is greater than 5 cm, the side does not need to be tested.

2013-03-08 Page 36 of 44

7.3.1 Stand-alone SAR test exclusion

The 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

The Stand-alone SAR test exclusion result is as below:

Mode	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	Calculation Result	Exclusion threshold	SAR test exclusion
GSM850	33.50	2238.72	5	0.850	412.80	3.00	No
GSM1900	30.50	1122.02	5	1.900	309.32	3.00	No
UMTS Band V	24.00	251.19	5	0.850	46.32	3.00	No
UMTS Band II	24.00	251.19	5	1.900	69.25	3.00	No
WiFi	15.50	35.48	5	2.450	11.11	3.00	No
BT	7.00	5.01	5	2.450	1.57	3.00	Yes

Table 28: Standalone SAR test exclusion in body position

Note: * - maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances ≤ 50 mm,where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Mode	Position	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	X	Estimated SAR (W/Kg)*
ВТ	Body	7.00	5.01	5	2.450	7.5	0.21

Table 29: Estimated SAR calculation for BT

Note: * - maximum possible output power declared by manufacturer

2013-03-08 Page 37 of 44

7.3.2 Simultaneous Transmission Possibilities

The closest distance between WiFi antenna and main antenna is 110.5mm, and the Simultaneous Transmission Possibilities are as below:

Simultaneous Tx Combination	Configuration	Body SAR
1	GPRS/EGPRS + WiFi	Yes
2	GPRS/EGPRS + BT	Yes
3	UMTS + WiFi	Yes
4	UMTS + BT	Yes

Table 30: Simultaneous Transmission Possibilities

Note: WiFi 2.4G and BT can't transmit simultaneously because they share the same antenna.

7.3.3 SAR Summation Scenario

Test Position		Reported S	SAR _{Max} (W/kg)	Σ1-g SAR	SPLSR	Remark
		GSM850	WiFi	(W/kg)	OI LOIK	Kemark
	Front side	0	0	0	NA	NA
	Rear side	1.366	1.061	See Note	0.023	See 7.3.4
Dody CAD	Left side	0	0.138	0.138	NA	NA
Body SAR	Right side	0.122	0	0.122	NA	NA
	Top side	0.640	0.223	0.863	NA	NA
	Bottom side	0	0	0	NA	NA

Table 31: Simultaneous Tx Combination of GSM850 and WiFi

Test Position		Reported S	Reported SAR _{Max} (W/kg)		SPLSR	Remark
		GSM1900	WiFi	(W/kg)	0. 20.x	- Roman
	Front side	0	0	0	NA	NA
	Rear side	0.726	1.061	See Note	0.014	See 7.3.4
Body SAR	Left side	0	0.138	0.138	NA	NA
Body SAR	Right side	0.096	0	0.096	NA	NA
	Top side	0.434	0.223	0.657	NA	NA
	Bottom side	0	0	0	NA	NA

Table 32: Simultaneous Tx Combination of GSM1900 and WiFi

2013-03-08 Page 38 of 44

Test Position		Reported SA	R _{Max} (W/kg)	Σ1-g SAR	SPLSR	Remark
		UMTS Band V	WiFi	(W/kg)	O. LOIX	Komark
	Front side	0	0	0	NA	NA
	Rear side	1.122	1.061	See Note	0.02	See 7.3.4
Pody SAD	Left side	0	0.138	0.138	NA	NA
Body SAR	Right side	0.151	0	0.151	NA	NA
	Top side	0.629	0.223	0.852	NA	NA
	Bottom side	0	0	0	NA	NA

Table 33: Simultaneous Tx Combination of UMTS Band V and WiFi

Test Position		Reported SA	R _{Max} (W/kg)	Σ1-g SAR	SPLSR	Remark
		UMTS Band II	WiFi	(W/kg)	0. 20.	Romark
	Front side	0	0	0	NA	NA
	Rear side	1.266	1.061	See Note	0.021	See 7.3.4
Body SAR	Left side	0	0.138	0.138	NA	NA
Body SAR	Right side	0.109	0	0.109	NA	NA
	Top side	0.403	0.223	0.626	NA	NA
	Bottom side	0	0	0	NA	NA

Table 34: Simultaneous Tx Combination of UMTS Band II and WiFi

Test Position		Reported S	SAR _{Max} (W/kg)	Σ1-g SAR	SPLSR	Remark	
1000	Test i esition		BT	(W/kg)	or zon	i toman	
	Front side	0	0.210	0.210	NA	NA	
	Rear side	1.366	0.210	1.576	NA	NA	
Pody SAP	Left side	0	0.210	0.210	NA	NA	
Body SAR	Right side	0.122	0.210	0.332	NA	NA	
	Top side	0.640	0.210	0.850	NA	NA	
	Bottom side	0	0.210	0.210	NA	NA	

Table 35: Simultaneous Tx Combination of GSM850 and BT

Test Position		Reported S	SAR _{Max} (W/kg)	Σ1-g SAR	SPLSR	Remark	
1030	rest i osition		BT	(W/kg)	OI LOIK	Kemark	
	Front side	0	0.210	0.210	NA	NA	
	Rear side	0.726	0.210	0.936	NA	NA	
Dody CAD	Left side	0	0.210	0.210	NA	NA	
Body SAR	Right side	0.096	0.210	0.306	NA	NA	
	Top side	0.434	0.210	0.644	NA	NA	
	Bottom side	0	0.210	0.210	NA	NA	

Table 36: Simultaneous Tx Combination of GSM1900 and BT

2013-03-08 Page 39 of 44

Test Position		Reported S	SAR _{Max} (W/kg)	Σ1-g SAR	001.00	Remark
		UMTS Band V	ВТ	(W/kg)	SPLSR	
	Front side	0	0.210	0.210	NA	NA
	Rear side	1.122	0.210	1.332	NA	NA
Pady SAP	Left side	0	0.210	0.210	NA	NA
Body SAR	Right side	0.151	0.210	0.361	NA	NA
	Top side	0.629	0.210	0.839	NA	NA
	Bottom side	0	0.210	0.210	NA	NA

Table 37: Simultaneous Tx Combination of UMTS Band V and BT

Test Position		Reported S	SAR _{Max} (W/kg)	Σ1-g SAR		Remark
		UMTS Band II	ВТ	(W/kg)	SPLSR	
Body SAR	Front side	0	0.210	0.210	NA	NA
	Rear side	1.266	0.210	1.476	NA	NA
	Left side	0	0.210	0.210	NA	NA
	Right side	0.109	0.210	0.319	NA	NA
	Top side	0.403	0.210	0.613	NA	NA
	Bottom side	0	0.210	0.210	NA	NA

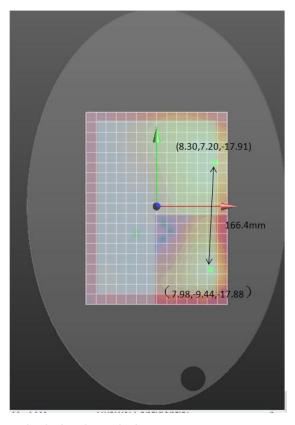
Table 38: Simultaneous Tx Combination of UMTS Band II and BT Note:

- 1) No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SAR to peak location separation ratio(SPLSR) between the antenna pairs was below 0.04 per FCC KDB447498 D01v05.See Section 7.3.4 for detailed SPLS ratio analysis.
- 2) When SAR to peak location separation ratio is applied to determine simultaneous transmission SAR test exclusion, the highest of the reported stand-alone SAR and estimated SAR is used per KDB690783D01.

2013-03-08 Page 40 of 44

7.3.4 SPLSR Evaluation Analysis

According to KDB447498 D01v05, When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio(SPLSR). When the SAR to peak location ratio for each pair of antennas is ≤0.04, simultaneous SAR evaluation is not required.


When SAR is measured for both antennas in the pair, the peak location separation distance is computed by the following fomula:

Distance_{Tx1-Tx2} =
$$R_i = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

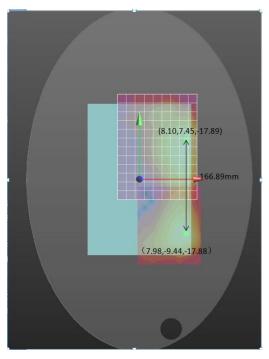
SPLS Ratio = $(SAR_1 + SAR_2)^{1.5}/R_i$

When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna.

1) The sum of aggregate 1g SAR was above 1.6W/Kg for Rear side configuration with GSM850 and WiFi.

The Peak SAR location plot is as below:

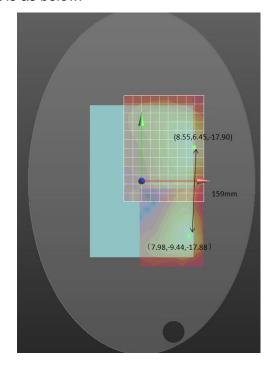
The SAR to peak location ratio calculation is as below:


Test Position	GSM850 (W/kg)	WiFi (W/kg)	Ri(mm)	SPLSR	Ratio Limit	Simultaneous SAR
Rear Side	1.366	1.061	166.4	0.023	0.04	Not required

2013-03-08 Page 41 of 44

2) The sum of aggregate 1g SAR was above 1.6W/Kg for Rear side configuration with GSM1900 and WiFi.

The Peak SAR location plot is as below:



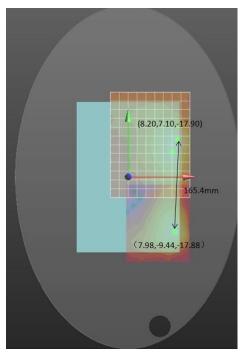
The SAR to peak location ratio calculation is as below:

Test Position	GSM1900 (W/kg)	WiFi (W/kg)	Ri(mm)	SPLSR	Ratio Limit	Simultaneous SAR
Rear Side	0.726	1.061	166.89	0.014	0.04	Not required

3) The sum of aggregate 1g SAR was above 1.6W/Kg for Rear side configuration with UMTS Band V and WiFi.

The Peak SAR location plot is as below:

2013-03-08 Page 42 of 44



The SAR to peak location ratio calculation is as below:

Test Position	UMTS Band V (W/kg)	WiFi (W/kg)	Ri(mm)	SPLSR	Ratio Limit	Simultaneous SAR
Rear Side	1.122	1.061	159	0.02	0.04	Not required

4) The sum of aggregate 1g SAR was above 1.6W/Kg for Rear side configuration with UMTS Band II and WiFi.

The Peak SAR location plot is as below:

The SAR to peak location ratio calculation is as below:

Test Position	UMTS Band II (W/kg)	WiFi (W/kg)	Ri(mm)	SPLSR	Ratio Limit	Simultaneous SAR
Rear Side	1.266	1.061	165.4	0.021	0.04	Not required

7.3.5 Simultaneous Transmission Conlcusion

The above numeral summed SAR results and SPLSR analysis is sufficient to determin that simultaneous transmission cases will not exceed the SAR limit and therefore simultaneous transmission SAR with Volume Scans is not required per KDB 447498 D01v05

2013-03-08 Page 43 of 44

Appendix A. System Check Plots (Pls See Appendix A.)

Appendix B. SAR Measurement Plots (Pls See Appendix B.)

Appendix C. Calibration Certificate (Pls See Appendix C.)

Appendix D. Photo documentation (Pls See Appendix D.)

End

2013-03-08 Page 44 of 44