

OET 65 TEST REPORT

Product Name Vodafone Mobile Wi-Fi

Model R206

FCC ID QISR206

Client Huawei Technologies Co., Ltd.

Manufacturer Huawei Technologies Co., Ltd.

Date of issue March 19, 2013

TA Technology (Shanghai) Co., Ltd.

GENERAL SUMMARY

	FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991) SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio frequency Emissions.
Reference Standard(s)	RSS-102 Issue 4 March 2010: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands). KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01 SAR
	Measurement Requirements for 100 MHz to 6 GHz
	KDB 447498 D01 Mobile Portable RF Exposure v05: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
	KDB 941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA
	KDB 941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE
	KDB 941225 D06 Hot Spot SAR v01 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only.
	General Judgment: Pass
Comment	The test result only responds to the measured sample.

Approved by 粘体	Revised by_	凌备定	Performed by Performed by
Director		SAR Manager	SAR Engineer

TABLE OF CONTENT

1. General information	
1.1. Notes of the Test Report	5
1.2. Testing Laboratory	5
1.3. Applicant Information	6
1.4. Manufacturer Information	6
1.5. Information of EUT	7
1.6. The Maximum Reported SAR _{1g}	g
	Mode9
1.8. Test Date	g
2. SAR Measurements System Configuration	
2.1. SAR Measurement Set-up	
•	11
	11
•	
2.3. Other Test Equipment	12
···	
2.3.2. Phantom	13
2.4. Scanning Procedure	13
•	
_	
5	
3. Laboratory Environment	
4. Tissue-equivalent Liquid	
	18
	19
5. System Check	20
•	20
	21
Operational Conditions during Test	
	22
	22
_	22
	24
_	25
•	26
7. Test Results	
7.1. Conducted Power Results	27
	ns30
	31
	31
· · · · · · · · · · · · · · · · · · ·	
,	34
7.4. Simultaneous Transmission Conditions	

Report No. RHA1301-0013SAR02R1	Page 4 of 119
8. 700MHz to 3GHz Measurement Uncertainty	37
9. Main Test Instruments	39
ANNEX A: Test Layout	40
ANNEX B: System Check Results	43
ANNEX C: Graph Results	46
ANNEX D: Probe Calibration Certificate	75
ANNEX E: D835V2 Dipole Calibration Certificate	86
ANNEX F: D1900V2 Dipole Calibration Certificate	94
ANNEX G: D2450V2 Dipole Calibration Certificate	102
ANNEX H: DAE4 Calibration Certificate	110
ANNEX I: The ELIT Appearances and Test Configuration	115

Report No. RHA1301-0013SAR02R1

Page 5 of 119

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No. RHA1301-0013SAR02R1

Page 6 of 119

1.3. Applicant Information

Company: Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Techologies Co., Ltd., Bantian,

Longgang District

City: Shenzhen

Postal Code: 518129

Country: P.R. China

1.4. Manufacturer Information

Company: Huawei Technologies Co., Ltd.

Address: Administration Building, Headquarters of Huawei Techologies Co., Ltd., Bantian,

Longgang District

City: Shenzhen

Postal Code: 518129

Country: P.R.China

1.5. Information of EUT

General Information

Device Type:	Portable Device			
Exposure Category:	Uncontrolled Environr	ment / General Popula	ation	
State of Sample:	Prototype Unit			
IMEI:	860566020000607			
Hardware Version:	CH1E5220SM			
Software Version:	21.143.05.00.11			
Antenna Type:	Internal Antenna			
Device Operating Configurations:				
	GSM 850/ GSM 1900	; (tested)		
Operating Mode(s):	WIFI(802.11b/g/n HT2	20) (tested)		
operating Mode(3).	GSM 900/ GSM 1800	; (untested)		
	UMTS Band I/VIII; (ur	ntested)		
Test Modulation:	(GSM)GMSK, (802.11	1b) DSSS,OFDM		
Device Class:	В			
	Max Number of Timeslots in Uplink		4	
GPRS Multislot Class(12):	Max Number of Timeslots in Downlink		4	
	Max Total Timeslot		5	
	Max Number of Times	slots in Uplink	4	
EGPRS Multislot Class(12):	Max Number of Timeslots in Downlink		4	
	Max Total Timeslot		5	
Power Class:	GSM 850: 4			
Power Class.	GSM 1900: 1			
Device Level	GSM 850: tested with power level 5			
Power Level: GSM 1900: tested with power level 0				
Test Channel	128 -190 - 251	(GSM 850) (tested)		
Test Channel:	512 - 661 - 810	(GSM 1900) (tested)	
(Low - Middle - High)	1-6-11	(802.11b) (tested)		
	Mode	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s):	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8	
Operating Frequency Range(s):	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8	
	WIFI	2412 ~ 2462	2412 ~ 2462	

Report No. RHA1301-0013SAR02R1

Page 8 of 119

Auxiliary Equipment Details

AE1: Battery 1

Model: HB5A2H

Manufacturer: Huawei Technologies Co., Ltd.

S/N: UNDCC04X15700423

AE2: Battery 2

Model: HB5A2H

Manufacturer: Huawei Technologies Co., Ltd.

S/N: YACCC02215716392

Equipment under Test (EUT) has a GSM antenna that is used for Tx/Rx, the second is a WIFI antenna that is used for Tx/Rx, and the third is a diversity antenna that is used for Rx only. The detail about EUT and Lithium Battery is in chapter 1.5 of this report.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum Reported SAR_{1g}

Hotspots Configuration

	Test		Limit SAR _{1g} 1.6 W/kg	
Mode	Position	Channel /Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
2Txslots EGPRS850	Front Side	128/824.2	1.050	1.310
2Txslots GPRS1900	Front Side	810/1909.8	0.719	0.943
802.11b	Front Side	1/2412	0.220	0.237

1.7. Maximum Conducted Power of Each Tested Mode

Mode		Maximum Burst Conducted Power (dBm)	Maximum Average Power (dBm)
GSM 850	GPRS(GMSK), 2 Txslots	31.31	25.29
GSIVI 650	EGPRS(GMSK), 2 Txslots	31.26	25.24
GSM 1900	GPRS(GMSK), 2 Txslots	28.16	22.14
G3W 1900	EGPRS(GMSK), 2 Txslots	28.11	22.09

Mode	Maximum Average Power (dBm)
802.11b	14.87

Note: The detail Power refers to Table 6 (Conducted Power Measurement Results).

1.8. Test Date

The test performed from February 27, 2013 to February 28, 2013.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

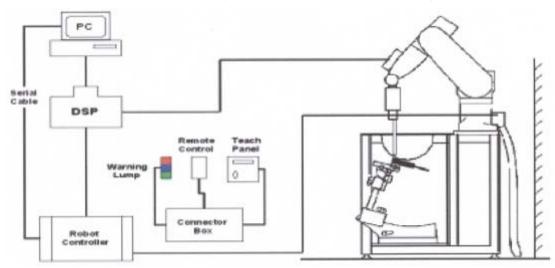


Figure 1. SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. ES3DV3 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service

available

Frequency 10 MHz to 4 GHz

Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe

axis) ± 0.3 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g Linearity:

± 0.2dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole

centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Figure 2.ES3DV3 E-field Probe

Figure 3. ES3DV3 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

Report No. RHA1301-0013SAR02R1

Page 13 of 119

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W) Aailable Special

Figure 4 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values

Report No. RHA1301-0013SAR02R1

Page 14 of 119

before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

Frequency	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Maximum Zoom Scan Spatial Resolution (mm)	Minimum Zoom Scan Volume (mm)
	$(\Delta \mathbf{x}_{area}, \Delta \mathbf{y}_{area})$	$(\Delta \mathbf{x}_{zoom}, \Delta \mathbf{y}_{zoom})$	$\Delta z_{zoom}(n)$	(x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point Dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 \mathbf{E}_{i} = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

$$\boldsymbol{E_{tot}}$$
 = total field strength in V/m

- = conductivity in [mho/m] or [Siemens/m]
- = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. Table 3 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 3: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97

MIXTURE%	FREQUENCY (Body) 1900MHz
Water	69.91
Glycol monobutyl	29.96
Salt	0.13
Dielectric Parameters	f=4000MH=
Target Value	f=1900MHz ε=53.3 σ=1.52

MIXTURE%	FREQUENCY(Body) 2450MHz	
Water	73.2	
Glycol	26.7	
Salt	0.1	
Dielectric Parameters Target Value	f=2450MHz ε=52.70 σ=1.95	

Report No. RHA1301-0013SAR02R1

Page 19 of 119

4.2. Tissue-equivalent Liquid Properties

Table 4: Dielectric Performance of Tissue Simulating Liquid

Fraguency	Test Date	Temp Parameters			Target Dielectric Parameters		Limit (Within ±5%)	
Frequency	Test Date	°C	٤r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)
835MHz (body)	2013-2-27	21.5	55.89	0.99	55.20	0.97	1.25	2.06
1900MHz (body)	2013-2-28	21.5	52.56	1.52	53.30	1.52	-1.39	0
2450MHz (body)	2013-2-28	21.5	51.69	1.90	52.70	1.95	-1.92	-2.56

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 5.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

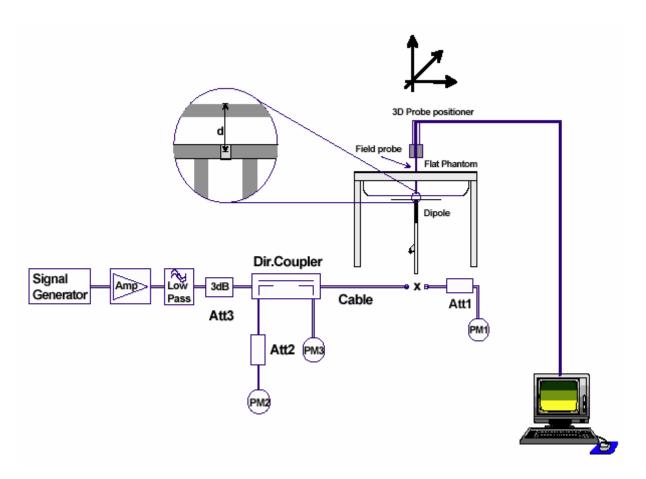


Figure 5. System Check Set-up

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

Dipole D835V2 SN: 4d020					
Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
8/26/2011	-25.1	1	48.7	1	
8/25/2012	-24.3	3.2%	50.6	1.9Ω	

Dipole D1900V2 SN: 5d060					
Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
8/31/2011	-21.3	1	47.3	/	
8/30/2012	-20.9	1.9%	45.9	1.4Ω	

Dipole D2450V2 SN: 786					
Body Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ	
8/29/2011	-29.0	/	50.4	/	
8/28/2012	-29.9	3.1%	52.1	1.7Ω	

5.2. System Check Results

Table 5: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10%
		ε _r	σ(s/m)	(℃)		(W/kg)		Deviation)
835MHz	2013-2-27	55.89	0.99	21.5	2.50	10.00	9.46	5.7%
1900MHz	2013-2-28	52.56	1.52	21.5	10.50	42.00	41.70	0.7%
2450MHz	2013-2-28	51.69	1.90	21.5	12.90	51.60	51.70	-0.2%

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate

6. Operational Conditions during Test

6.1. General Description of Test Procedures

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Configuration

6.2.1. GSM Test Configuration

For the body SAR tests, a communication link is set up with a System Simulator (SS) by air link. The EUT is commanded to operate at maximum transmitting power.

Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. Since the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

GSM 850

GPRS (GMSK):

OF TO COMORY.	
Number of timeslots in	reduction of maximum
uplink assignment	output power, (dB)
1	0
2	1
3	3
4	4.5

EGPRS(8PSK):

Number of timeslots in	reduction of maximum		
uplink assignment	output power, (dB)		
1	0		
2	1		
3	3		
4	5		

Report No. RHA1301-0013SAR02R1

Page 23 of 119

EGPRS(GMSK):

Number of timeslots in	reduction of maximum		
uplink assignment	output power, (dB)		
1	0		
2	1		
3	3		
4	4.5		

GSM 1900

GPRS (GMSK):

Number of timeslots in	reduction of maximum		
uplink assignment	output power, (dB)		
1	0		
2	1.5		
3	3.5		
4	5.5		

EGPRS(8PSK):

Number of timeslots in	reduction of maximum		
uplink assignment	output power, (dB)		
1	0		
2	0.5		
3	3		
4	5		

EGPRS(GMSK):

reduction of maximum
output power, (dB)
0
1.5
3.5
5.5

Report No. RHA1301-0013SAR02R1

Page 24 of 119

6.2.2. WIFI Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 1400 for 802.11 b mode, set to 1100 for 802.11 g mode, set to 900 for 802.11 n mode by software. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

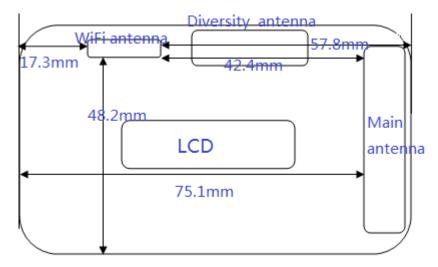
SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Report No. RHA1301-0013SAR02R1

Page 25 of 119

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.


SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

6.4. Test Positions

Based upon KDB941225 D06 V01 with a form factor 9.05 cm \times 5.6 cm \geq 9 cm \times 5 cm. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

The location of the antennas inside EUT is shown in ANNEX I:

The EUT is tested at the following 6 test positions:

- Test Position 1: The back side of the EUT towards the bottom of the flat phantom. The
 distance between the back side of the EUT and the bottom of the flat phantom is 10mm.
 (ANNEX I Picture 6)
- Test Position 2: The front side of the EUT towards the bottom of the flat phantom. The distance between the front side of the EUT and the bottom of the flat phantom is 10mm. (ANNEX I Picture 7)
- Test Position 3: The left edge of the EUT towards the bottom of the flat phantom. The distance between the left edge of the EUT and the bottom of the flat phantom is 10mm. (ANNEX I Picture 8)
- Test Position 4: The right edge of the EUT towards the bottom of the flat phantom. The distance between the right edge of the EUT and the bottom of the flat phantom is 10mm. (ANNEX I Picture 9)
- Test Position 5: The top edge of the EUT towards the bottom of the flat phantom. The distance between the top edge of the EUT and the bottom of the flat phantom is 10mm. (ANNEX I Picture 10)
- Test Position 6: The bottom edge of the EUT towards the bottom of the flat phantom. The
 distance between the bottom edge of the EUT and the bottom of the flat phantom is 10mm.
 (ANNEX I Picture 11)

7. Test Results

7.1. Conducted Power Results

Table 6: Conducted Power Measurement Results

		Burst Cor	nducted Pov	ver(dBm)		Ave	rage power(dBm)
GSN	1 850	Channel	Channel	Channel	-	Channel	Channel	Channel
		128	190	251		128	190	251
	1Txslot	32.1	32.19	32.27	-9.03dB	23.07	23.16	23.24
GPRS	2Txslots	31.13	31.23	31.31	-6.02dB	25.11	25.21	25.29
(GMSK)	3Txslots	29.14	29.25	29.34	-4.26dB	24.88	24.99	25.08
	4Txslots	27.18	27.28	27.37	-3.01dB	24.17	24.27	24.36
	1Txslot	32.07	32.22	32.25	-9.03dB	23.04	23.19	23.22
EGPRS	2Txslots	31.04	31.16	31.26	-6.02dB	25.02	25.14	25.24
(GMSK)	3Txslots	29.03	29.17	29.29	-4.26dB	24.77	24.91	25.03
	4Txslots	27.22	27.32	27.25	-3.01dB	24.21	24.31	24.24
	1Txslot	25.19	25.34	25.18	9.03	16.16	16.31	16.15
EGPRS	2Txslots	24.66	24.64	24.56	6.02	18.64	18.62	18.54
(8PSK)	3Txslots	22.56	22.49	22.43	4.26	18.30	18.23	18.17
	4Txslots	20.45	20.38	20.35	3.01	17.44	17.37	17.34
-								
		Burst Cor	nducted Pov	ver(dBm)		Ave	rage power(dBm)
GSM	1900	Channel	Channel	Channel		Channel	Channel	Channel
GSM	T		ı	. ,				,
GSM	1900 1Txslot	Channel	Channel	Channel	-9.03dB	Channel	Channel	Channel
GPRS	T	Channel 512	Channel 661	Channel 810	-9.03dB -6.02dB	Channel 512	Channel 661	Channel 810
	1Txslot	Channel 512 29.66	Channel 661 29.42	Channel 810 29.3		Channel 512 20.63	Channel 661 20.39	Channel 810 20.27
GPRS	1Txslot 2Txslots	Channel 512 29.66 28.16	Channel 661 29.42 27.98	Channel 810 29.3 27.82	-6.02dB	Channel 512 20.63 22.14	Channel 661 20.39 21.96	Channel 810 20.27 21.8
GPRS	1Txslot 2Txslots 3Txslots	Channel 512 29.66 28.16 26.2	Channel 661 29.42 27.98 26.04	Channel 810 29.3 27.82 25.88	-6.02dB -4.26dB	Channel 512 20.63 22.14 21.94	Channel 661 20.39 21.96 21.78	Channel 810 20.27 21.8 21.62
GPRS	1Txslot 2Txslots 3Txslots 4Txslots	Channel 512 29.66 28.16 26.2 24.16	Channel 661 29.42 27.98 26.04 24.02	Channel 810 29.3 27.82 25.88 23.89	-6.02dB -4.26dB -3.01dB	Channel 512 20.63 22.14 21.94 21.15	Channel 661 20.39 21.96 21.78 21.01	Channel 810 20.27 21.8 21.62 20.88
GPRS (GMSK)	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot	Channel 512 29.66 28.16 26.2 24.16 29.69	Channel 661 29.42 27.98 26.04 24.02 29.37	Channel 810 29.3 27.82 25.88 23.89 29.36	-6.02dB -4.26dB -3.01dB -9.03dB	Channel 512 20.63 22.14 21.94 21.15 20.66	Channel 661 20.39 21.96 21.78 21.01 20.34	Channel 810 20.27 21.8 21.62 20.88 20.33
GPRS (GMSK) EGPRS	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots	Channel 512 29.66 28.16 26.2 24.16 29.69 28.11	Channel 661 29.42 27.98 26.04 24.02 29.37 28.06	Channel 810 29.3 27.82 25.88 23.89 29.36 27.91	-6.02dB -4.26dB -3.01dB -9.03dB -6.02dB	Channel 512 20.63 22.14 21.94 21.15 20.66 22.09	Channel 661 20.39 21.96 21.78 21.01 20.34 22.04	Channel 810 20.27 21.8 21.62 20.88 20.33 21.89
GPRS (GMSK) EGPRS	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots	Channel 512 29.66 28.16 26.2 24.16 29.69 28.11 26.23	Channel 661 29.42 27.98 26.04 24.02 29.37 28.06 26.09	Channel 810 29.3 27.82 25.88 23.89 29.36 27.91 25.95	-6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB	Channel 512 20.63 22.14 21.94 21.15 20.66 22.09 21.97	Channel 661 20.39 21.96 21.78 21.01 20.34 22.04 21.83	Channel 810 20.27 21.8 21.62 20.88 20.33 21.89 21.69
GPRS (GMSK) EGPRS	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots 4Txslots	Channel 512 29.66 28.16 26.2 24.16 29.69 28.11 26.23 24.19	Channel 661 29.42 27.98 26.04 24.02 29.37 28.06 26.09 24.08	Channel 810 29.3 27.82 25.88 23.89 29.36 27.91 25.95 23.87	-6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB -3.01dB	Channel 512 20.63 22.14 21.94 21.15 20.66 22.09 21.97 21.18	Channel 661 20.39 21.96 21.78 21.01 20.34 22.04 21.83 21.07	Channel 810 20.27 21.8 21.62 20.88 20.33 21.89 21.69 20.86
GPRS (GMSK) EGPRS (GMSK)	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots 4Txslots 4Txslots	Channel 512 29.66 28.16 26.2 24.16 29.69 28.11 26.23 24.19 24.51	Channel 661 29.42 27.98 26.04 24.02 29.37 28.06 26.09 24.08 24.58	Channel 810 29.3 27.82 25.88 23.89 29.36 27.91 25.95 23.87 24.19	-6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB -3.01dB 9.03	Channel 512 20.63 22.14 21.94 21.15 20.66 22.09 21.97 21.18 15.48	Channel 661 20.39 21.96 21.78 21.01 20.34 22.04 21.83 21.07 15.55	Channel 810 20.27 21.8 21.62 20.88 20.33 21.89 21.69 20.86 15.16

Note:

To average the power, the division factor is as follows:

¹⁾ Division Factors

Report No. RHA1301-0013SAR02R1

Page 28 of 119

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

2) Average power numbers

The maximum power numbers are marks in bold.

WIFI Mode	Channel	Data rate (Mbps)	AV Power (dBm)	Peak Power (dBm)
		1	14.67	18.13
	4	2	14.82	18.46
	1	5.5	14.81	18.17
		11	14.87	21.73
		1	14.26	17.82
11h	6	2	14.52	18.23
11b	6	5.5	14.52	17.79
		11	14.55	21.37
		1	13.92	17.89
	44	2	14.14	18.21
	11	5.5	14.15	17.85
		11	14.16	21.24
11g		6	11.97	20.53
		9	11.97	20.48
	1	12	11.89	21.05
		18	11.87	20.86
		24	11.97	21.29
		36	11.9	21.25
		48	11.95	21.23
		54	11.88	21.38
	6	6	11.62	20.44
		9	11.63	20.55
		12	11.59	20.83
		18	11.62	20.66
		24	11.58	21.15

Report No. RHA1301-0013SAR02R1

Page 29 of 119

		1		
		36	11.61	21.21
		48	11.55	21.04
		54	11.53	21.26
		6	11.31	20.83
		9	11.28	20.42
		12	11.25	21.01
	11	18	11.18	20.79
	11	24	11.26	21.27
		36	11.27	21.19
		48	11.19	21.16
		54	11.24	21.33
		6.5	10.01	18.44
		13	9.92	18.88
		19.5	9.94	18.83
	4	26	10.05	19.01
	1	39	9.92	19.12
		52	9.91	19.05
		58.5	10.02	19.22
		65	10.04	19.26
	6	6.5	9.52	18.28
		13	9.55	18.82
		19.5	9.54	18.71
44 ~ LITO0		26	9.48	18.95
11n HT20		39	9.54	18.89
		52	9.47	18.99
		58.5	9.45	19.08
		65	9.46	19.14
		6.5	9.25	18.31
		13	9.17	18.79
		19.5	9.21	18.82
		26	9.19	18.99
	11	39	9.18	19.05
		52	9.19	18.93
		58.5	9.21	19.06
		65	9.19	19.13

Report No. RHA1301-0013SAR02R1

Page 30 of 119

7.2. Standalone SAR Test Exclusion Considerations

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances <50mm is defined by the following equation:

(max. power of channel, including tune-up tolerance, mW) $*\sqrt{\text{Frequency (GHz)}} \le 3.0$ (min. test separation distance, mm)

Based on the above equation, WiFi SAR was required; Body Evaluation = $[10^{(15/10)}/10]$ * (2.437^{1/2)} = 4.9 > 3.0 Report No. RHA1301-0013SAR02R1

Page 31 of 119

7.3. SAR Test Results

7.3.1. GSM 850 (GPRS/EGPRS)

Table 7: SAR Values [GSM 850 (GPRS/EGPRS)]

Toot	Channel/	Channel/	Time Duty slot Cycle		Conducted Power (dBm)	Drift ± 0.21dB	Limit SAR _{1g} 1.6 W/kg				
Test Position	Frequency (MHz)					Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
		Test P	osition	of Body wit	th GPRS (Ba	ttery 1, Dist	tance 10mm)				
	251/848.8	2Txslots	1:4.15	32	31.31	-0.075	0.633	1.17	0.742	Figure 9	
Test Position 1	190/836.6	2Txslots	1:4.15	32	31.23	-0.090	0.732	1.19	0.874	Figure 10	
	128/824.2	2Txslots	1:4.15	32	31.13	-0.047	0.81	1.22	0.990	Figure 11	
	251/848.8	2Txslots	1:4.15	32	31.31	-0.147	0.824	1.17	0.966	Figure 12	
Test Position 2	190/836.6	2Txslots	1:4.15	32	31.23	-0.032	0.935	1.19	1.116	Figure 13	
	128/824.2	2Txslots	1:4.15	32	31.13	-0.036	1.06	1.22	1.295	Figure 14	
Test Position 3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 4	190/836.6	2Txslots	1:4.15	32	31.23	-0.148	0.092	1.19	0.109	Figure 15	
Test Position 5	190/836.6	2Txslots	1:4.15	32	31.23	0.044	0.226	1.19	0.270	Figure 16	
Test Position 6	190/836.6	2Txslots	1:4.15	32	31.23	-0.055	0.273	1.19	0.326	Figure 17	
	Wors	t Case Po	sition o	f GPRS wit	h EGPRS (G	MSK, Batte	ry 1, Distance	10mm)			
Test Position 2	128/824.2	2Txslots	1:4.15	32	31.04	-0.167	1.05	1.25	1.310	Figure18	
		Te	st Posit	ion of Body	y with Batter	y 2(Distanc	e 10mm)	1	1		
Test Position 2	128/824.2	2Txslots	1:4.15	32	31.04	-0.124	1.04	1.25	1.297	Figure 19	
		SAI	R Meas	urement Va	riability Res	ults(Distand	ce 10mm)	•			
Test Position 2	128/824.2	2Txslots	1:4.15	32	31.04	-0.100	1.03	1.25	1.285	Figure 20	

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. WWAN antenna is located at Right edge; antenna-to- Left edge distance is more than 2.5 cm (see ANNEX I). Based upon KDB941225 D06, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.
- 4. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
- 5. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

Report No. RHA1301-0013SAR02R1

Page 32 of 119

Test Position	Timeslots	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 2	2Txslots	128/824.2	1.06	1.03	1.03	NA	NA

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

7.3.2. GSM 1900 (GPRS/EGPRS)

Table 9: SAR Values [GSM 1900 (GPRS/EGPRS)]

Toot	Channel/ Frequency (MHz)	Time	Duty		Conducted Power (dBm)	Drift ± 0.21dB	Limit SAR _{1g} 1.6 W/kg				
Test Position			Duty Cycle			Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
		Test P	osition	of Body wi	th GPRS (Ba	ttery 1, Dis	tance 10mm)				
Test Position 1	661/1880	2Txslots	1:4.15	29	27.98	0.123	0.621	1.26	0.785	Figure 21	
	810/1909.8	2Txslots	1:4.15	29	27.82	0.070	0.719	1.31	0.943	Figure 22	
Test Position 2	661/1880	2Txslots	1:4.15	29	27.98	0.088	0.697	1.26	0.882	Figure 23	
	512/1850.2	2Txslots	1:4.15	29	28.16	-0.011	0.68	1.21	0.825	Figure 24	
Test Position 3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 4	661/1880	2Txslots	1:4.15	29	27.98	-0.062	0.2	1.26	0.253	Figure 25	
Test Position 5	661/1880	2Txslots	1:4.15	29	27.98	0.076	0.234	1.26	0.296	Figure 26	
Test Position 6	661/1880	2Txslots	1:4.15	29	27.98	-0.116	0.134	1.26	0.169	Figure 27	
	Worst Case Position of GPRS with EGPRS (GMSK, Battery 1, Distance 10mm)										
Test Position 2	810/1909.8	2Txslots	1:4.15	29	27.91	0.017	0.714	1.29	0.918	Figure 28	
		Те	st Posi	tion of Bod	y with Batter	y 2(Distand	ce 10mm)				
Test Position 2	810/1909.8	2Txslots	1:4.15	29	27.82	0.027	0.715	1.31	0.938	Figure 29	

Note: 1.The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. WWAN antenna is located at Right edge; antenna-to- Left edge distance is more than 2.5 cm (see ANNEX I). Based upon KDB941225 D06, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.
- 4. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
- 5. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

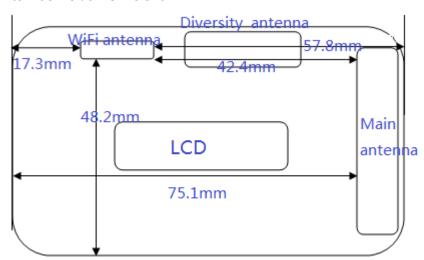
Report No. RHA1301-0013SAR02R1

Page 34 of 119

7.3.3. WIFI

Table 10: SAR Values [WIFI (802.11b/g/n HT20)]

Test Position	Channel/ Frequency (MHz)	Channel/	Channel/	Channel/		Dete	Maximum Allowed	Conducted	Drift \pm 0.21dB	L	Limit of SAR 1.6 W/kg		
		Mode	Duty Cycle		Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results			
		1	est Po	sition of 80	2.11b (Batter	y 1, Distance	10mm)						
Test Position 1	1/2412	DSS	1:1	15	14.67	-0.038	0.125	1.08	0.135	Figure 30			
Test Position 2	1/2412	DSS	1:1	15	14.67	-0.046	0.220	1.08	0.237	Figure 31			
Test Position 3	1/2412	DSS	1:1	15	14.67	-0.024	0.071	1.08	0.076	Figure 32			
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Test Position 5	1/2412	DSS	1:1	15	14.67	0.125	0.107	1.08	0.115	Figure 33			
Test Position 6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
		Т	est Pos	sition of Bo	dy with Batte	ery 2(Distance	10mm)						
Test Position 2	1/2412	DSS	1:1	15	14.67	-0.043	0.215	1.08	0.232	Figure 34			


Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. WLAN antenna is located at Top edge near to Left edge; antenna-to- Bottom/Right edge distance is more than 2.5 cm (see ANNEX I). Based upon KDB941225 D06, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.
- 4. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

7.4. Simultaneous Transmission Conditions

Air- Interface	Band (MHz)	Туре	SimultaneousTransmissions	Voice Over Digital Transport (Data)	
GSM	850	DT	Yes	NA	
GGIVI	1900	DT	WIFI		
WIFI	2450	DT	Yes GPRS,EGPRS	NA	
Note: DT Digi	tal Transport	•			

The location of the antennas inside EUT is shown in ANNEX I:

Report No. RHA1301-0013SAR02R1

Page 36 of 119

Estimated SAR

(1) for test separation distances ≤ 50 mm

When standalone SAR is not required to be measured per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter for test separation distances \leq 50 mm.

Estimated SAR= $\frac{\text{(max. power of channel, including tune-up tolerance, mW)}}{\text{(min. test separation distance, mm)}} * \frac{\sqrt{f \text{ (GHz)}}}{7.5}$

(2) for test separation distances >50 mm

0.4 W/kg for 1-g SAR

Body Estimated SAR_{Max.WIFI. Test Position 4} ≤ 0.4W/kg

Body Estimated SAR_{Max.WIFI. Test Position 6} ≤ 0.4W/kg

Body Estimated SAR_{Max.GSM850. Test Position 3} ≤ 0.4W/kg

Body Estimated SAR_{Max.GSM1900. Test Position 3} ≤ 0.4W/kg

GSM &WIFI Mode

Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	WIFI	MAX. ΣSAR _{1g}
Test Position 1	0.990	0.785	0.135	1.125
Test Position 2	1.310	0.943	0.237	1.547
Test Position 3	≤0.400	≤0.400	0.076	0.476
Test Position 4	0.109	0.253	≤0.400	0.653
Test Position 5	0.270	0.296	0.115	0.411
Test Position 6	0.326	0.169	≤0.400	0.726

Note: 1.The value with blue color is the maximum ΣSAR_{1q} Value.

2. MAX. ΣSAR_{1g} = Reported $SAR_{Max,WIFI}$ + Reported $SAR_{Max,GSM}$

MAX. Σ SAR_{1g} = 1.547 W/kg <1.6 W/kg, So the Simultaneous SAR are not required for WIFI and GSM antenna.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1301-0013SAR02R1

Page 37 of 119

8. 700MHz to 3GHz Measurement Uncertainty

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom		
1	System repetivity	Α	0.5	N	1	1	0.5	9		
	Measurement system									
2	-probe calibration	В	6.0	N	1	1	6.0	∞		
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞		
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	80		
6	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞		
7	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞		
8	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞		
9	-readout Electronics	В	1.0	N	1	1	1.0	∞		
10	-response time	В	0	R	$\sqrt{3}$	1	0	80		
11	-integration time	В	4.32	R	$\sqrt{3}$	1	2.5	80		
12	-noise	В	0	R	$\sqrt{3}$	1	0	∞		
13	-RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞		
14	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞		
15	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	∞		
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞		
		Tes	st sample Relate	d						
17	-Test Sample Positioning	Α	2.9	N	1	1	2.9	71		
18	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5		
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞		
Physical parameter										
20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	80		
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0. 64	1.8	∞		

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1301-0013SAR02R1

Page 38 of 119

22	-liquid conductivity (measurement uncertainty)	В	2.5	N	1	0.64	1.6	9
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
24	-liquid permittivity (measurement uncertainty)	В	2.5	N	1	0.6	1.5	9
Comb	Combined standard uncertainty		$\sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.50	
Expan	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$	N	k=2		23.00	

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1301-0013SAR02R1

Page 39 of 119

9. Main Test Instruments

Table 11: List of Main Instruments


No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	Agilent 8753E	US37390326	September 11, 2012	One year	
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested		
03	Power meter	Agilent E4417A	GB41291714	March 11, 2012	One year	
04	Power sensor	Agilent N8481H	MY50350004	September 24, 2012	One year	
05	Power sensor	E9327A	US40441622	January 2, 2013	One year	
06	Signal Generator	HP 8341B	2730A00804	September 10, 2012	One year	
07	Dual directional coupler	778D-012	50519	March 26, 2012	One year	
08	Dual directional coupler	777D	50146	March 26, 2012	One year	
09	Amplifier	IXA-020	0401	No Calibration Re	equested	
10	BTS	E5515C	MY48360988	December 1, 2012	One year	
11	E-field Probe	ES3DV3	3189	June 22, 2012	One year	
12	DAE	DAE4	1317	January 25, 2013	One year	
13	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	Two years	
14	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	Two years	
15	Validation Kit 2450MHz	D2450V2	786	August 29, 2011	Two years	
16	Temperature Probe	JM222	AA1009129	March 15, 2012	One year	
17	Hygrothermograph	WS-1	64591	September 27, 2012	One year	

***END OF REPORT ***

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the Flat Phantom (835 MHz, 15.4cm depth)

Picture 3: Liquid depth in the Flat Phantom (1900 MHz, 15.2cm depth)

Picture 4: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date/Time: 2/27/2013 12:45:37 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ε_r = 55.89; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.61 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.09 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 3.48 W/kg

SAR(1 g) = 2.5 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 2.69 mW/g

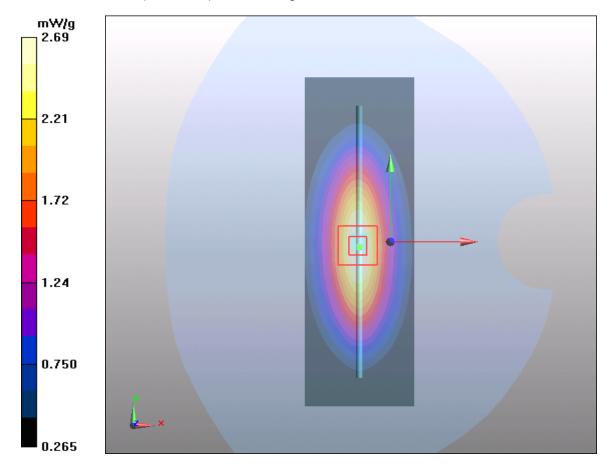


Figure 6 System Performance Check 835MHz 250mW

System Performance Check at 1900 MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date/Time: 2/28/2013 9:21:01 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ε_r = 52.56; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.8 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.1 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.48 mW/g Maximum value of SAR (measured) = 11.8 mW/g

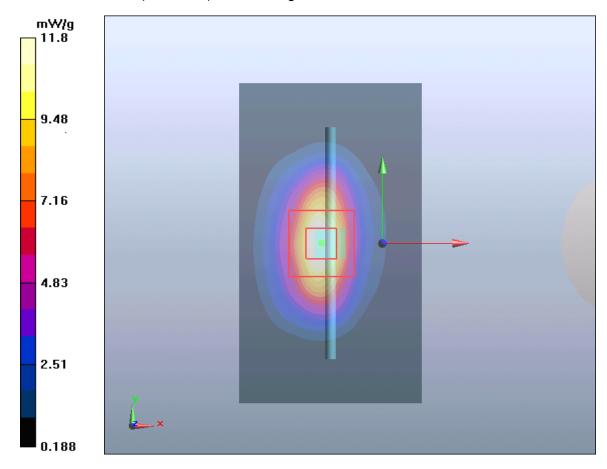


Figure 7 System Performance Check 1900MHz 250mW

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date/Time: 2/28/2013 2:02:59 PM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.90 \text{ mho/m}$; $\varepsilon_r = 51.69$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 16 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.076 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.9 mW/g; SAR(10 g) = 6.13 mW/g

Maximum value of SAR (measured) = 14.9 mW/g

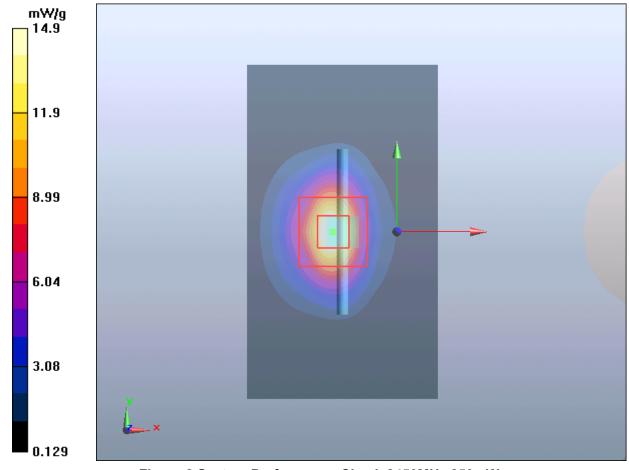


Figure 8 System Performance Check 2450MHz 250mW

ANNEX C: Graph Results

GSM 850 GPRS (2TXslots) Test Position 1 High(Battery 1)

Date/Time: 2/27/2013 5:09:12 PM

Communication System: GPRS 2TX ; Frequency: 848.8 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ϵ_r = 55.7; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.679 mW/g

Test Position 1 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.8 V/m; Power Drift = -0.075 dB

Peak SAR (extrapolated) = 0.883 W/kg

SAR(1 g) = 0.633 mW/g; SAR(10 g) = 0.432 mW/g

Maximum value of SAR (measured) = 0.675 mW/g

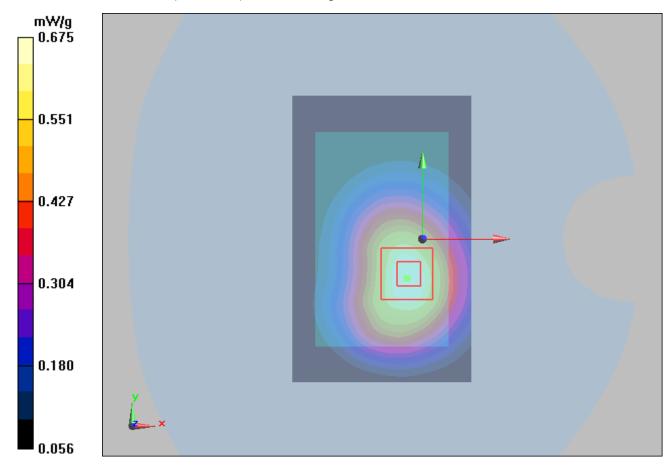


Figure 9 GSM 850 GPRS (2TXslots) Test Position 1 Channel 251

GSM 850 GPRS (2TXslots) Test Position 1 Middle(Battery 1)

Date/Time: 2/27/2013 4:48:26 PM

Communication System: GPRS 2TX ; Frequency: 836.6 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ mho/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.781 mW/g

Test Position 1 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.4 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.732 mW/g; SAR(10 g) = 0.498 mW/g

Maximum value of SAR (measured) = 0.781 mW/g

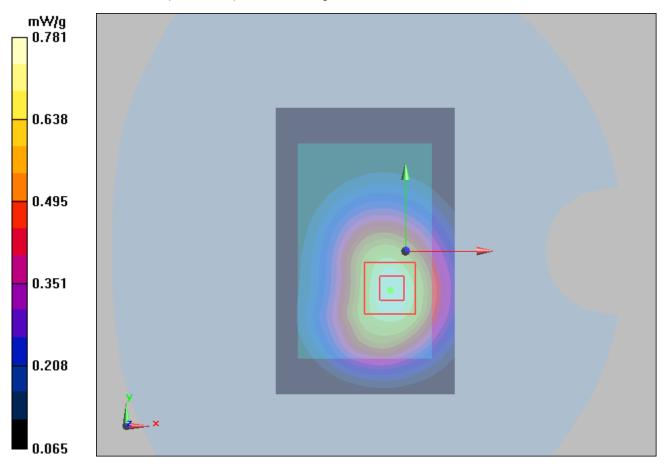


Figure 10 GSM 850 GPRS (2TXslots) Test Position 1 Channel 190

GSM 850 GPRS (2TXslots) Test Position 1 Low(Battery 1)

Date/Time: 2/27/2013 5:24:06 PM

Communication System: GPRS 2TX; Frequency: 824.2 MHz; Duty Cycle: 1:4.14954

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978 \text{ mho/m}$; $\epsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.865 mW/g

Test Position 1 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.8 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.810 mW/g; SAR(10 g) = 0.555 mW/g

Maximum value of SAR (measured) = 0.863 mW/g

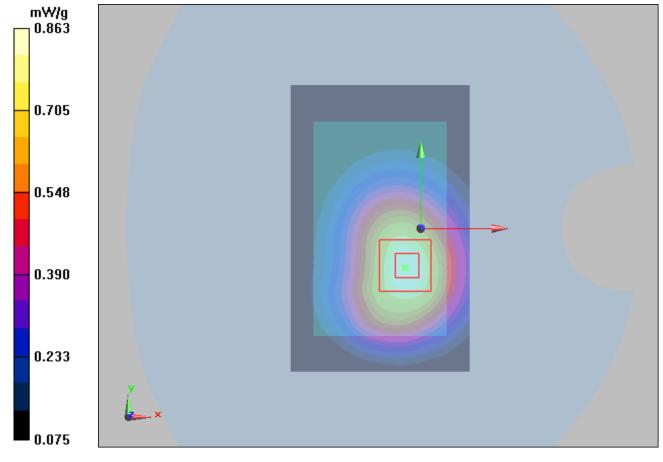


Figure 11 GSM 850 GPRS (2TXslots) Test Position 1 Channel 128

GSM 850 GPRS (2TXslots) Test Position 2 High(Battery 1)

Date/Time: 2/27/2013 2:56:49 PM

Communication System: GPRS 2TX ; Frequency: 848.8 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ϵ_r = 55.7; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 High/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.896 mW/g

Test Position 2 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.1 V/m; Power Drift = -0.147 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.824 mW/g; SAR(10 g) = 0.554 mW/g

Maximum value of SAR (measured) = 0.876 mW/g

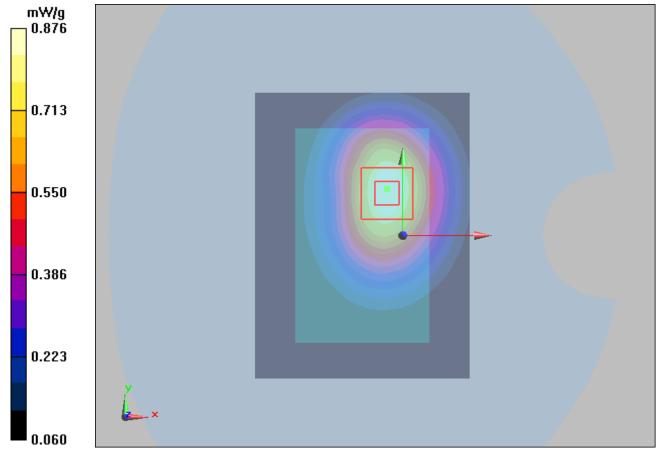


Figure 12 GSM 850 GPRS (2TXslots) Test Position 2 Channel 251

GSM 850 GPRS (2TXslots) Test Position 2 Middle(Battery 1)

Date/Time: 2/27/2013 2:40:55 PM

Communication System: GPRS 2TX ; Frequency: 836.6 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ mho/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Middle/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.01 mW/g

Test Position 2 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.1 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.935 mW/g; SAR(10 g) = 0.630 mW/g

Maximum value of SAR (measured) = 0.993 mW/g

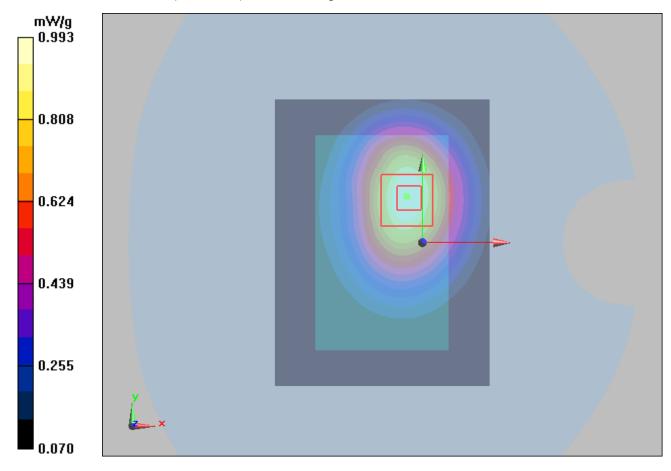


Figure 13 GSM 850 GPRS (2TXslots) Test Position 2 Channel 190

GSM 850 GPRS (2TXslots) Test Position 2 Low(Battery 1)

Date/Time: 2/27/2013 3:12:17 PM

Communication System: GPRS 2TX; Frequency: 824.2 MHz; Duty Cycle: 1:4.14954

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978 \text{ mho/m}$; $\epsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

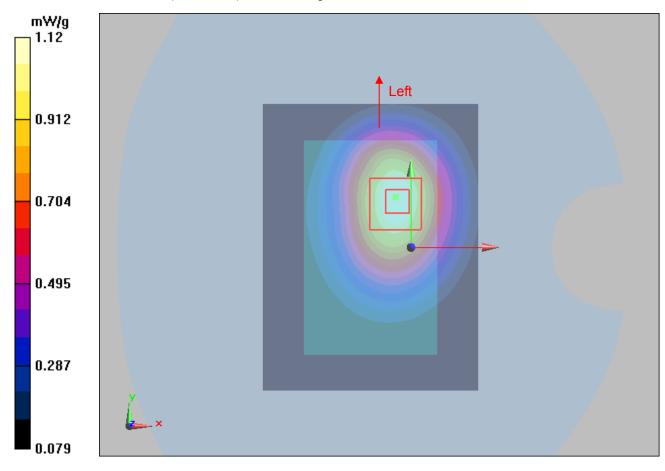
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Low/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.15 mW/g


Test Position 2 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.4 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.714 mW/g

Maximum value of SAR (measured) = 1.12 mW/g

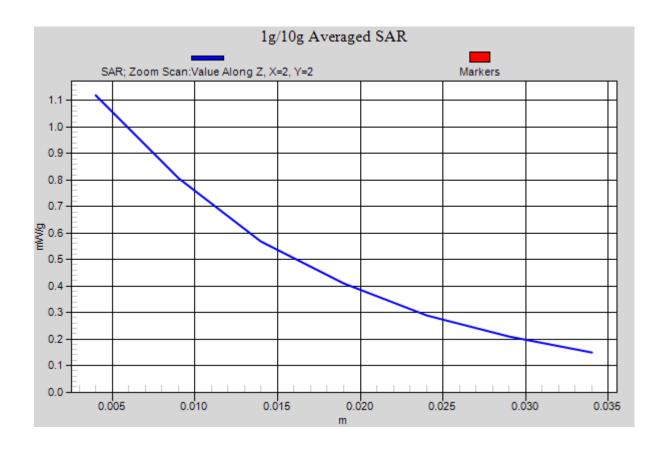


Figure 14 GSM 850 GPRS (2TXslots) Test Position 2 Channel 128

GSM 850 GPRS (2TXslots) Test Position 4 Middle(Battery 1)

Date/Time: 2/28/2013 9:49:11 AM

Communication System: GPRS 2TX ; Frequency: 836.6 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ mho/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 Middle/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.099 mW/g

Test Position 4 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.2 V/m; Power Drift = -0.148 dB

Peak SAR (extrapolated) = 0.155 W/kg

SAR(1 g) = 0.092 mW/g; SAR(10 g) = 0.057 mW/g

Maximum value of SAR (measured) = 0.099 mW/g

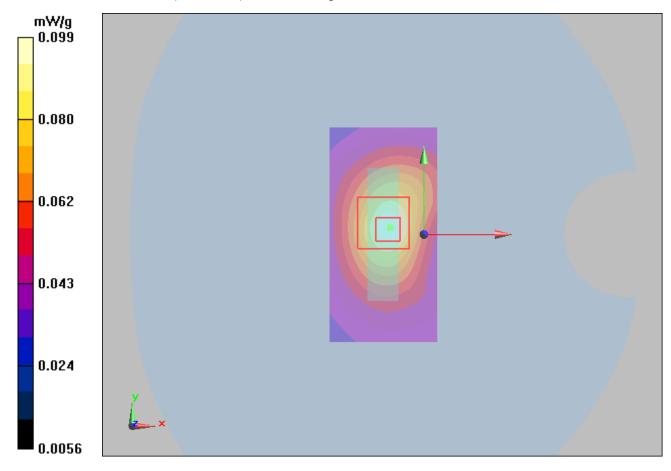


Figure 15 GSM 850 GPRS (2TXslots) Test Position 4 Channel 190

GSM 850 GPRS (2TXslots) Test Position 5 Middle(Battery 1)

Date/Time: 2/28/2013 10:04:15 AM

Communication System: GPRS 2TX ; Frequency: 836.6 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ mho/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5 Middle/Area Scan (31x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.244 mW/g

Test Position 5 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.302 W/kg

SAR(1 g) = 0.226 mW/g; SAR(10 g) = 0.160 mW/g

Maximum value of SAR (measured) = 0.240 mW/g

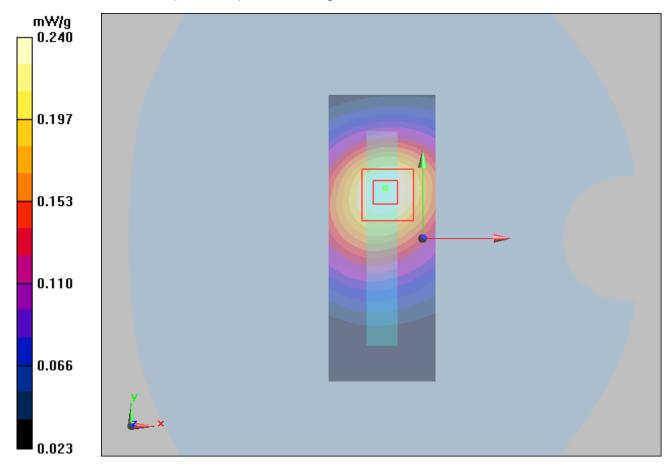


Figure 16 GSM 850 GPRS (2TXslots) Test Position 5 Channel 190

GSM 850 GPRS (2TXslots) Test Position 6 Middle(Battery 1)

Date/Time: 2/28/2013 10:17:56 AM

Communication System: GPRS 2TX ; Frequency: 836.6 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ mho/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 6 Middle/Area Scan (31x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.294 mW/g

Test Position 6 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.9 V/m; Power Drift = -0.055 dB

Peak SAR (extrapolated) = 0.390 W/kg

SAR(1 g) = 0.273 mW/g; SAR(10 g) = 0.183 mW/g

Maximum value of SAR (measured) = 0.291 mW/g

Figure 17 GSM 850 GPRS (2TXslots) Test Position 6 Channel 190

GSM 850 EGPRS (2TXslots) Test Position 2 Low(Battery 1)

Date/Time: 2/27/2013 4:14:32 PM

Communication System: EGPRS 2TX; Frequency: 824.2 MHz; Duty Cycle: 1:4.14954

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978 \text{ mho/m}$; $\epsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Low/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.14 mW/g

Test Position 2 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.4 V/m; Power Drift = -0.167 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.705 mW/g

Maximum value of SAR (measured) = 1.11 mW/g

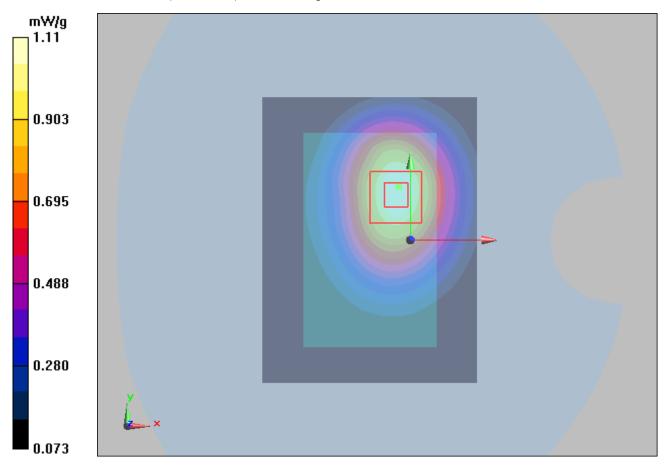


Figure 18 GSM 850 EGPRS (2TXslots) Test Position 2 Channel 128

GSM 850 GPRS (2TXslots) Test Position 2 Low(Battery 2)

Date/Time: 2/27/2013 4:31:32 PM

Communication System: GPRS 2TX; Frequency: 824.2 MHz; Duty Cycle: 1:4.14954

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978 \text{ mho/m}$; $\epsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.13 mW/g

Test Position 2 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.1 V/m; Power Drift = -0.124 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.705 mW/g

Maximum value of SAR (measured) = 1.12 mW/g

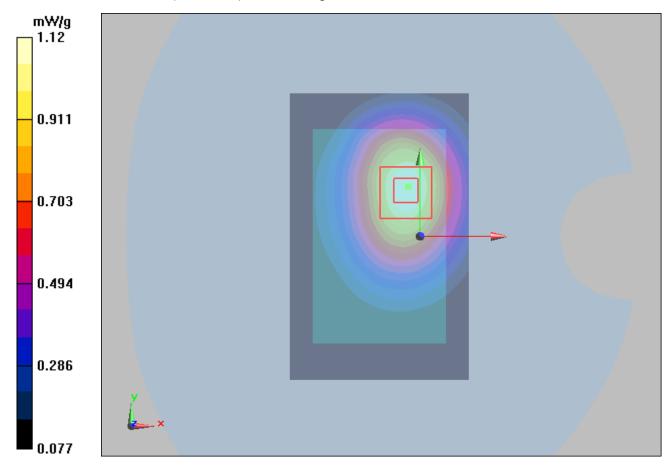


Figure 19 GSM 850 GPRS (2TXslots) Test Position 2 Channel 128

GSM 850 GPRS (2TXslots) Test Position 2 Low(Battery 1, 1st Repeated SAR)

Date/Time: 2/27/2013 3:29:30 PM

Communication System: GPRS 2TX; Frequency: 824.2 MHz; Duty Cycle: 1:4.14954

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978 \text{ mho/m}$; $\epsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.1 mW/g

Test Position 2 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.3 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.693 mW/g

Maximum value of SAR (measured) = 1.09 mW/g

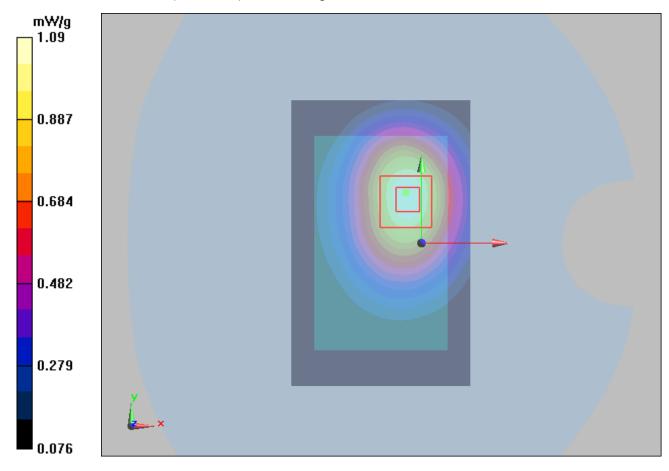


Figure 20 GSM 850 GPRS (2TXslots) Test Position 2 Channel 128

GSM 1900 GPRS (2TXslots) Test Position 1 Middle(Battery 1)

Date/Time: 2/28/2013 11:40:59 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.683 mW/g

Test Position 1 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = 0.123 dB

Peak SAR (extrapolated) = 0.926 W/kg

SAR(1 g) = 0.621 mW/g; SAR(10 g) = 0.395 mW/g

Maximum value of SAR (measured) = 0.669 mW/g

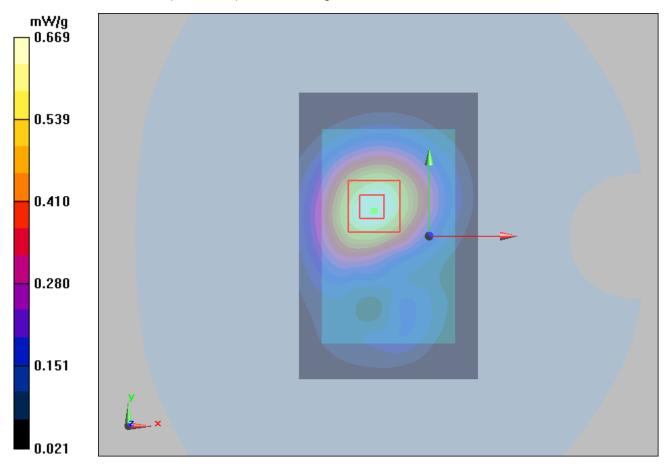


Figure 21 GSM 1900 GPRS (2TXslots) Test Position 1 Channel 661

GSM 1900 GPRS (2TXslots) Test Position 2 High(Battery 1)

Date/Time: 2/28/2013 12:11:02 PM

Communication System: GPRS 2TX ; Frequency: 1909.8 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 1910 MHz; σ = 1.53 mho/m; ϵ_r = 52.5; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

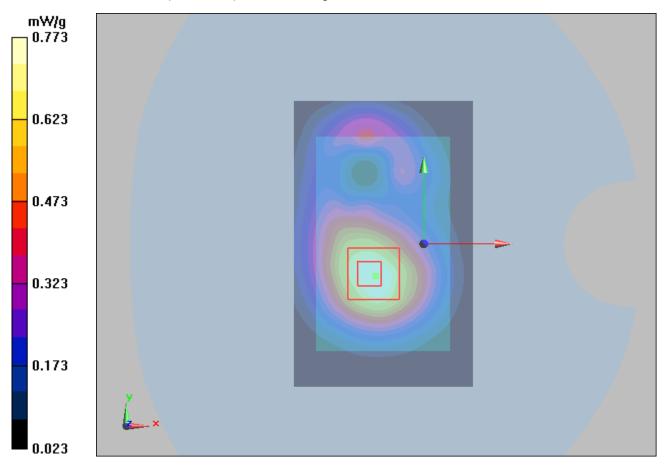
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.798 mW/g


Test Position 2 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.3 V/m; Power Drift = 0.070 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.719 mW/g; SAR(10 g) = 0.451 mW/g

Maximum value of SAR (measured) = 0.773 mW/g

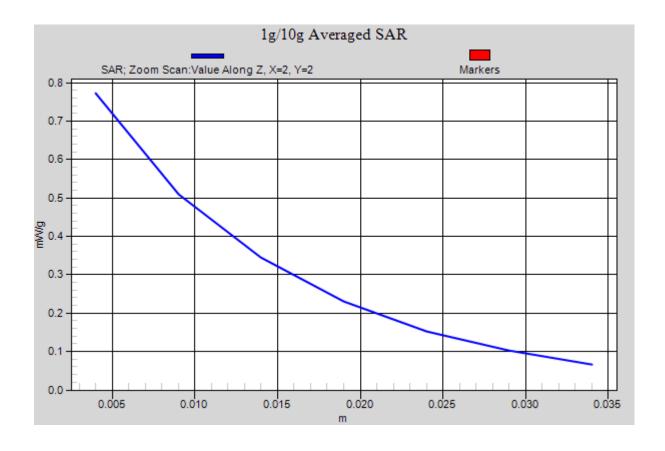


Figure 22 GSM 1900 GPRS (2TXslots) Test Position 2 Channel 810

GSM 1900 GPRS (2TXslots) Test Position 2 Middle(Battery 1)

Date/Time: 2/28/2013 11:56:28 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.779 mW/g

Test Position 2 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.9 V/m; Power Drift = 0.088 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.697 mW/g; SAR(10 g) = 0.446 mW/g

Maximum value of SAR (measured) = 0.746 mW/g

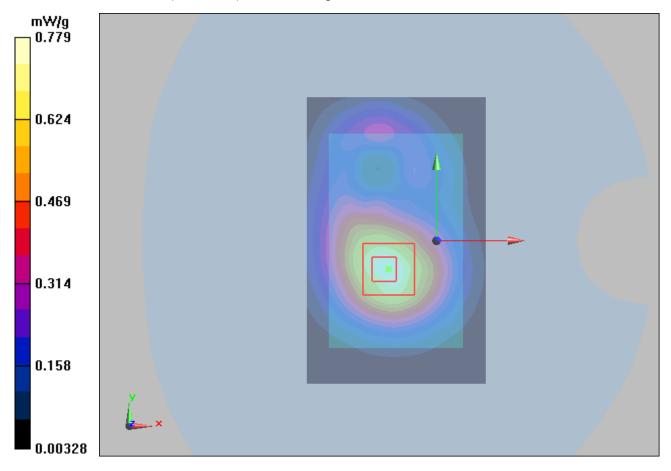


Figure 23 GSM 1900 GPRS (2TXslots) Test Position 2 Channel 661

GSM 1900 GPRS (2TXslots) Test Position 2 Low(Battery 1)

Date/Time: 2/28/2013 12:25:57 PM

Communication System: GPRS 2TX; Frequency: 1850.2 MHz; Duty Cycle: 1:4.14954

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.763 mW/g

Test Position 2 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.5 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.680 mW/g; SAR(10 g) = 0.441 mW/g

Maximum value of SAR (measured) = 0.729 mW/g

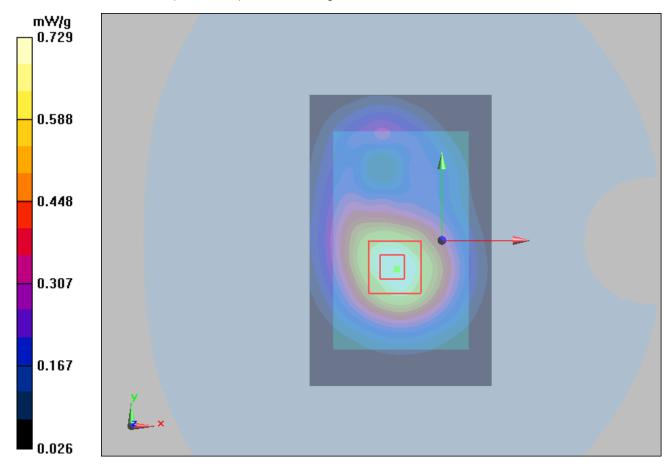


Figure 24 GSM 1900 GPRS (2TXslots) Test Position 2 Channel 512

GSM 1900 GPRS (2TXslots) Test Position 4 Middle(Battery 1)

Date/Time: 2/28/2013 11:27:37 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 Middle/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.208 mW/g

Test Position 4 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 0.371 W/kg

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.099 mW/g

Maximum value of SAR (measured) = 0.223 mW/g

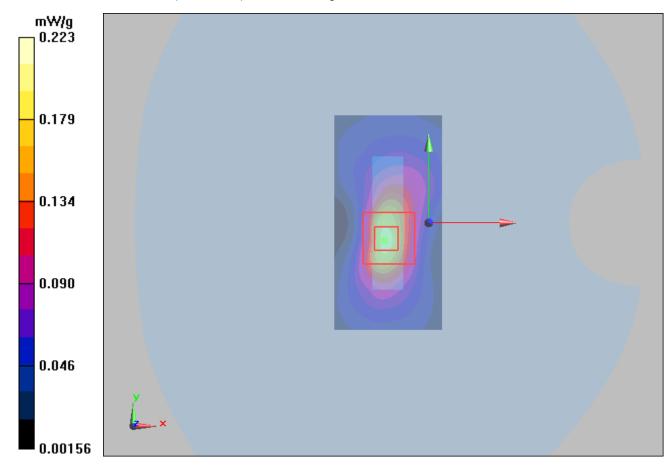


Figure 25 GSM 1900 GPRS (2TXslots) Test Position 4 Channel 661

GSM 1900 GPRS (2TXslots) Test Position 5 Middle(Battery 1)

Date/Time: 2/28/2013 11:13:47 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5 Middle/Area Scan (31x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.255 mW/g

Test Position 5 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13 V/m; Power Drift = 0.076 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.234 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.252 mW/g

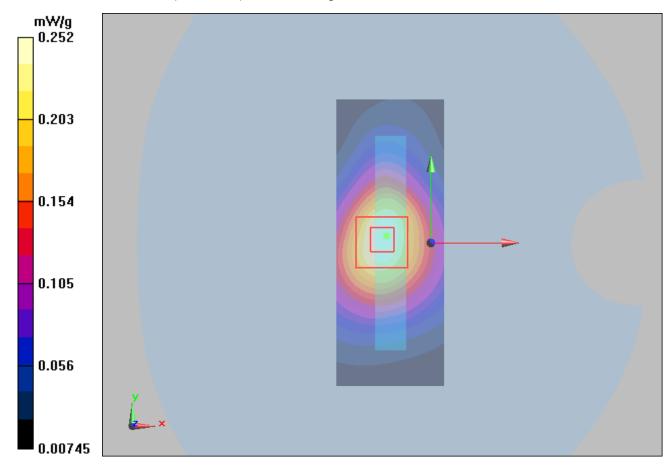


Figure 26 GSM 1900 GPRS (2TXslots) Test Position 5 Channel 661

GSM 1900 GPRS (2TXslots) Test Position 6 Middle(Battery 1)

Date/Time: 2/28/2013 10:59:00 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 6 Middle/Area Scan (31x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.150 mW/g

Test Position 6 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.89 V/m; Power Drift = -0.116 dB

Peak SAR (extrapolated) = 0.222 W/kg

SAR(1 g) = 0.134 mW/g; SAR(10 g) = 0.080 mW/g

Maximum value of SAR (measured) = 0.147 mW/g

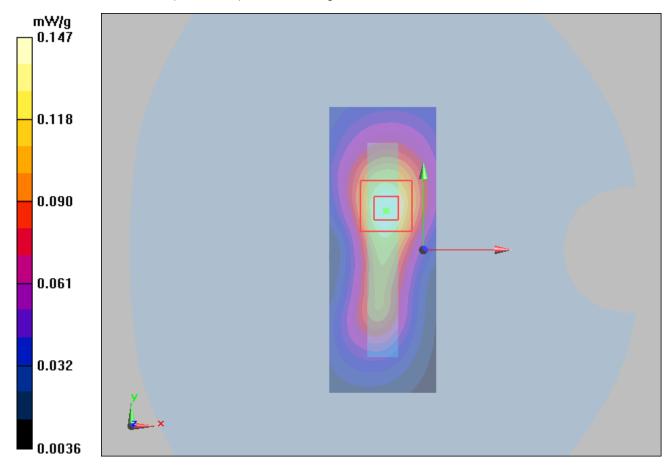


Figure 27 GSM 1900 GPRS (2TXslots) Test Position 6 Channel 661

GSM 1900 EGPRS (2TXslots) Test Position 2 High(Battery 1)

Date/Time: 2/28/2013 12:42:26 PM

Communication System: EGPRS 2TX; Frequency: 1909.8 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 1910 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.798 mW/g

Test Position 2 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.4 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.714 mW/g; SAR(10 g) = 0.450 mW/g

Maximum value of SAR (measured) = 0.763 mW/g

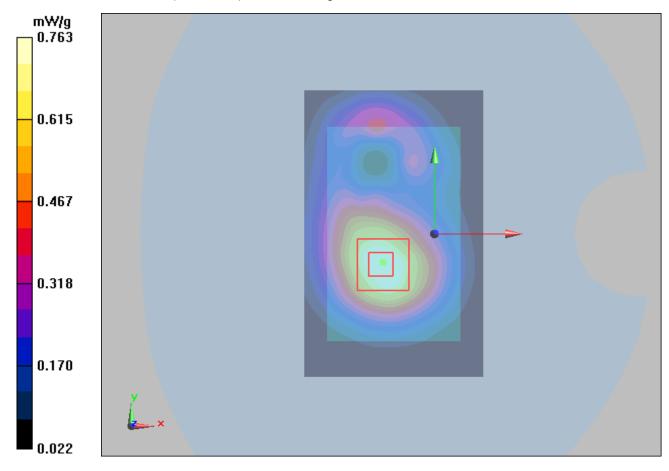


Figure 28 GSM 1900 EGPRS (2TXslots) Test Position 2 Channel 810

GSM 1900 GPRS (2TXslots) Test Position 2 High(Battery 2)

Date/Time: 2/28/2013 12:57:28 PM

Communication System: GPRS 2TX ; Frequency: 1909.8 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 1910 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.799 mW/g

Test Position 2 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.3 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.715 mW/g; SAR(10 g) = 0.452 mW/g

Maximum value of SAR (measured) = 0.767 mW/g

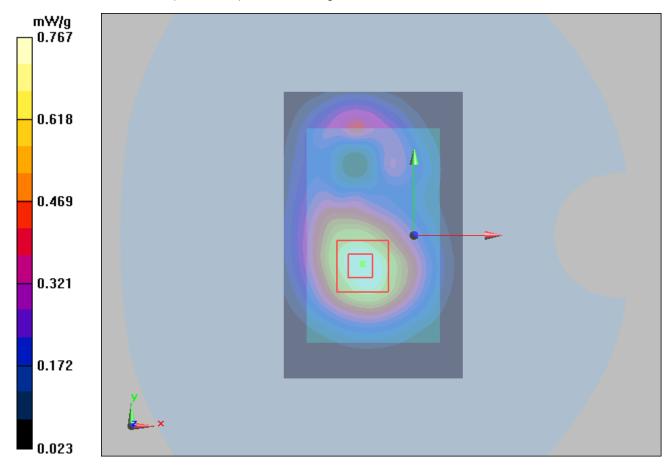


Figure 29 GSM 1900 GPRS (2TXslots) Test Position 2 Channel 810

802.11b Test Position 1 Low(Battery 1)

Date/Time: 2/28/2013 4:02:29 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Low/Area Scan (61x91x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.135 mW/g

Test Position 1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.74 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 0.257 W/kg

SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.068 mW/g

Maximum value of SAR (measured) = 0.134 mW/g

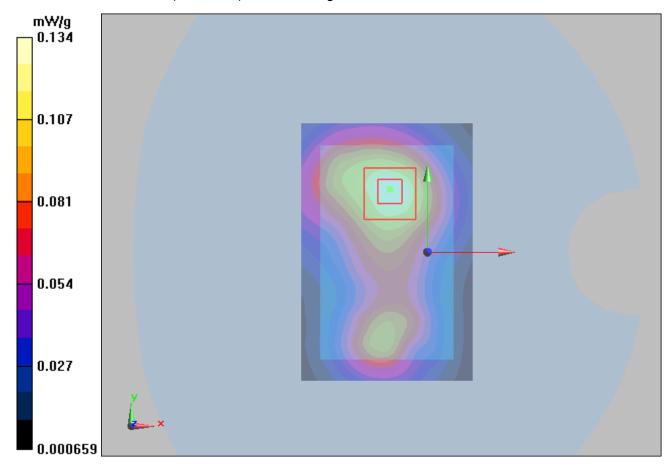


Figure 30 802.11b Test Position 1 Channel 1

802.11b Test Position 2 Low(Battery 1)

Date/Time: 2/28/2013 3:38:16 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

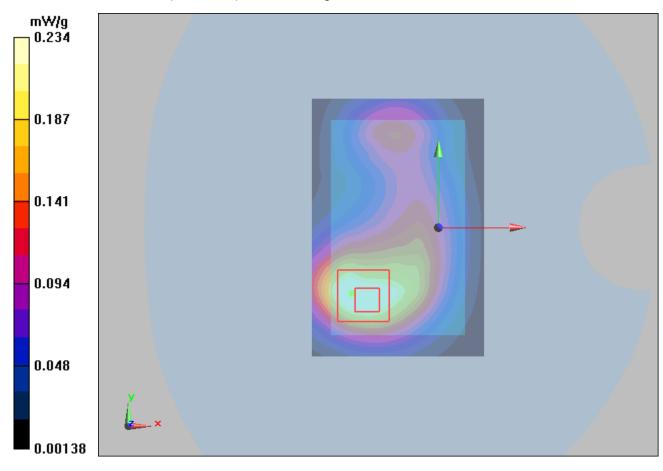
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Low /Area Scan (61x91x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.257 mW/g


Test Position 2 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.22 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 0.459 W/kg

SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.234 mW/g

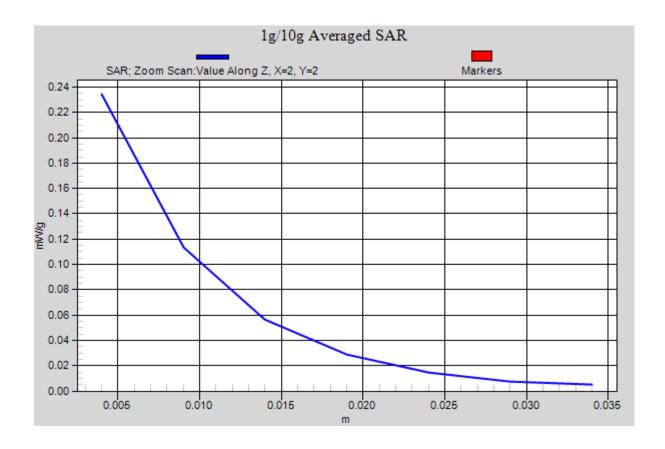


Figure 31 802.11b Test Position 2 Channel 1

802.11b Test Position 3 Low(Battery 1)

Date/Time: 2/28/2013 4:50:30 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 51.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Low/Area Scan (41x91x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.076 mW/g

Test Position 3 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.08 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.148 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.037 mW/g

Maximum value of SAR (measured) = 0.075 mW/g

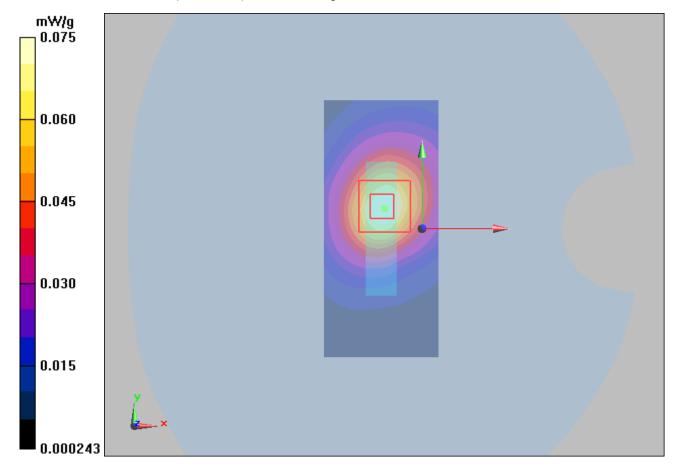


Figure 32 802.11b Test Position 3 Channel 1

802.11b Test Position 5 Low(Battery 1)

Date/Time: 2/28/2013 4:27:43 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5 Low/Area Scan (41x91x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.113 mW/g

Test Position 5 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.78 V/m; Power Drift = 0.125 dB

Peak SAR (extrapolated) = 0.232 W/kg

SAR(1 g) = 0.107 mW/g; SAR(10 g) = 0.054 mW/g

Maximum value of SAR (measured) = 0.117 mW/g

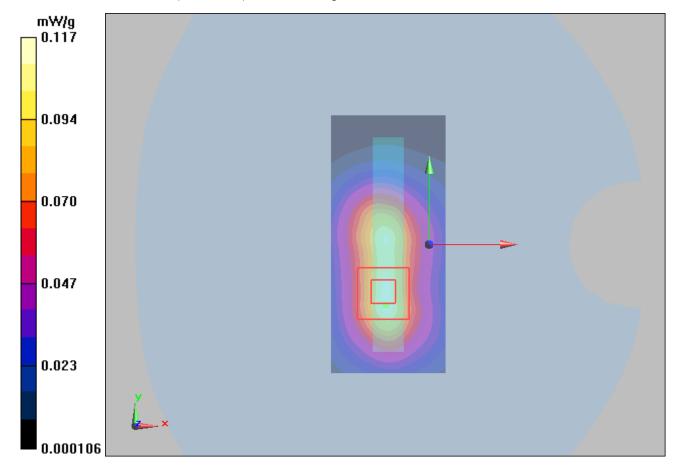


Figure 33 802.11b Test Position 5 Channel 1

802.11b Test Position 2 Low(Battery 2)

Date/Time: 2/28/2013 5:14:24 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.85 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Low/Area Scan (61x91x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.235 mW/g

Test Position 2 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.69 V/m; Power Drift = -0.043 dB

Peak SAR (extrapolated) = 0.463 W/kg

SAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.113 mW/g

Maximum value of SAR (measured) = 0.241 mW/g

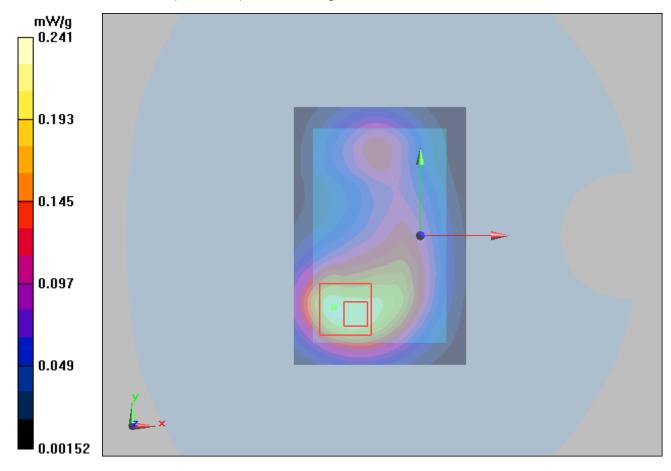


Figure 34 802.11b Test Position 2 Channel 1

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TA-Shanghai (Auden)

Certificate No: ES3-3189_Jun12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3189

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

June 22, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13 *
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700 **	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	FPL
Approved by:	Katja Pokovic	Technical Manager	El Me
			Issued: June 22, 2012
This calibration certificate s	shall not be reproduced except in full	without written approval of the laborato	ry.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the daîta of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

June 22, 2012

Probe ES3DV3

SN:3189

Manufactured:

March 25, 2008

Calibrated: June 22, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.32	1.35	1.05	± 10.1 %
DCP (mV) ⁸	99.5	100.6	100.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	WR mV	Unc ^E (k=2)
0	CW	0.00	Х	0.00	0.00	1.00	160.3	±3.8 %
			Y	0.00	0.00	1.00	164.9	
			Z	0.00	0.00	1.00	182.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

8 Numerical linearization parameter: uncertainty not required.

6 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	6.83	6.83	6.83	0.25	1.06	± 13.4 %
450	43.5	0.87	6.37	6.37	6.37	0.14	1.67	± 13.4 %
835	41.5	0.90	5.81	5.81	5.81	0.63	1.24	± 12.0 %
1750	40.1	1.37	4.90	4.90	4.90	0.80	1.14	± 12.0 %
1900	40.0	1.40	4.69	4.69	4.69	0.62	1.31	± 12.0 %
2450	39.2	1.80	4.14	4.14	4.14	0.65	1.36	± 12.0 %

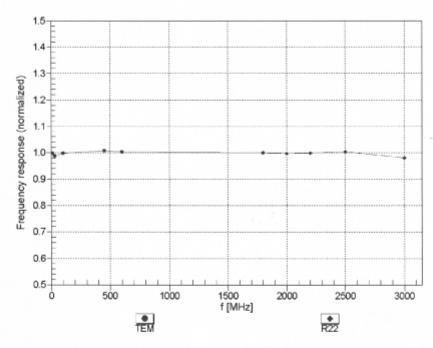
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

The At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

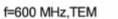
Calibration Parameter Determined in Body Tissue Simulating Media


f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	6.53	6.53	6.53	0.23	1.90	± 13.4 %
450	56.7	0.94	6.73	6.73	6.73	0.10	1.00	± 13.4 %
835	55.2	0.97	5.81	5.81	5.81	0.54	1.33	± 12.0 %
1750	53.4	1.49	4.65	4.65	4.65	0.67	1.38	± 12.0 %
1900	53.3	1.52	4.36	4.36	4.36	0.62	1.40	± 12.0 %
2450	52.7	1.95	3.96	3.96	3.96	0.64	0.99	± 12.0 %

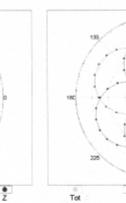
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

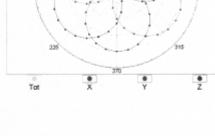
At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

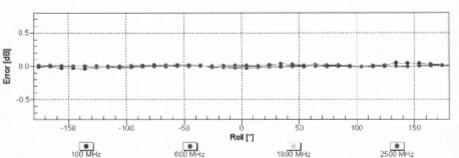
June 22, 2012


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

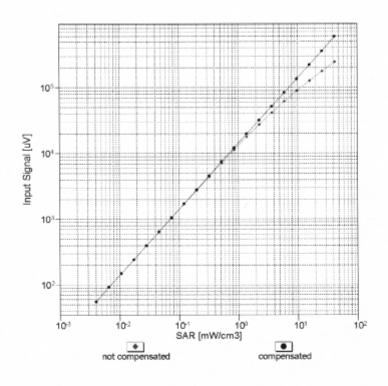
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

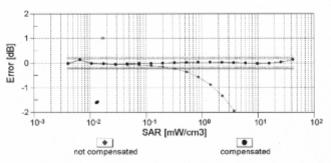

ES3DV3— SN:3189 June 22, 2012


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

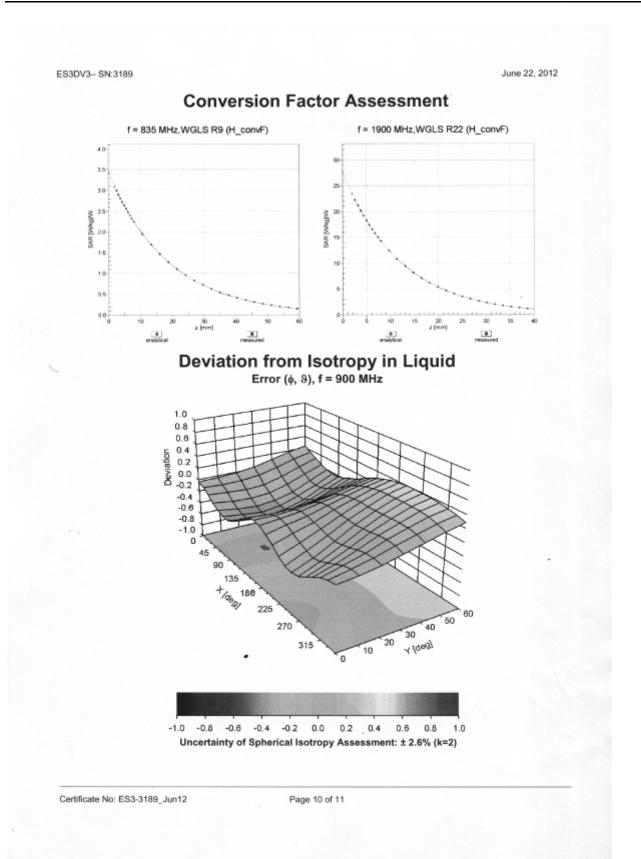


1-000 WIF12, I EIW





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


ES3DV3- SN:3189 June 22, 2012

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	54.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Certificate No: D835V2-4d020_Aug11 TA-Shanghai (Auden) Client CALIBRATION CERTIFICATE Object D835V2 - SN: 4d020 QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz August 26, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Primary Standards Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100006 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: August 26, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D835V2-4d020_Aug11

Page 1 of 8

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1301-0013SAR02R1

Page 87 of 119

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d020_Aug11

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.11 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

7	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition		
SAR measured	250 mW input power	1.59 mW / g	
SAR for nominal Body TSL parameters	normalized to 1W	6.26 mW / g ± 16.5 % (k=2)	

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1301-0013SAR02R1

Page 89 of 119

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 jΩ	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 jΩ	
Return Loss	- 25.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 22, 2004

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated; 29.04.2011

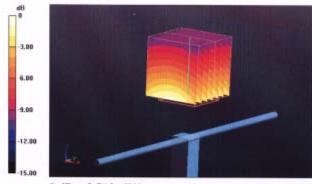
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

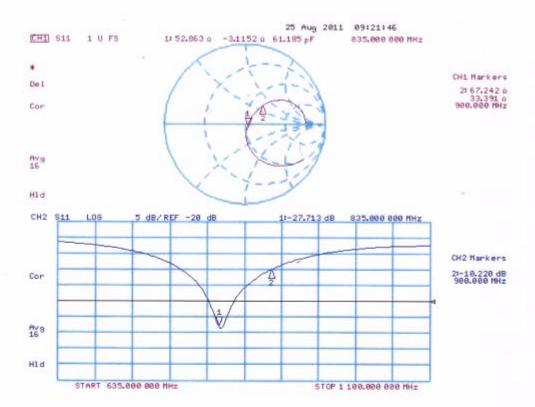
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.930 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.421 W/kg


SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g

Maximum value of SAR (measured) = 2.708 mW/g

0 dB = 2.710 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 26.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

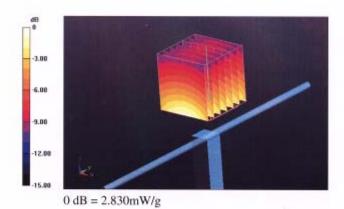
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011

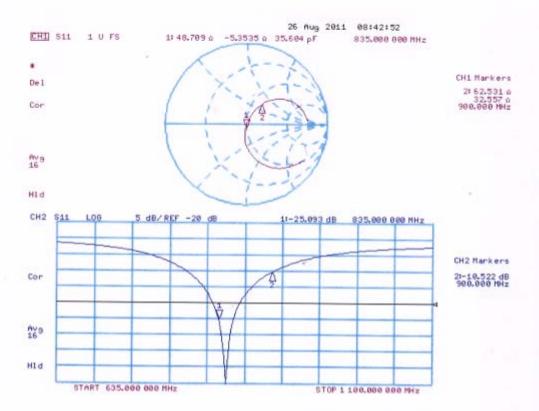
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001


DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.406 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.509 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.827 mW/g

Impedance Measurement Plot for Body TSL

ANNEX F: D1900V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

TA-Shanghai (Auden)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d060_Aug11

CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d060 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Signature Calibrated by: Dimce Iliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: August 31, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d060_Aug11

Page 1 of 8

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1301-0013SAR02R1

Page 95 of 119

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.1 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mhō/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1301-0013SAR02R1

Page 97 of 119

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.6 \Omega + 7.5 jΩ$	
Return Loss	- 22.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 7.9 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 2004

DASY5 Validation Report for Head TSL

Date: 30.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011

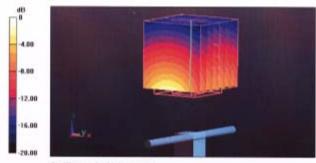
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

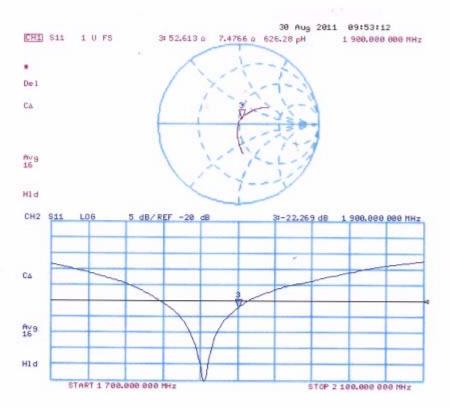
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.636 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 18.535 W/kg


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g

Maximum value of SAR (measured) = 12.600 mW/g

0 dB = 12.600 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 31.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011

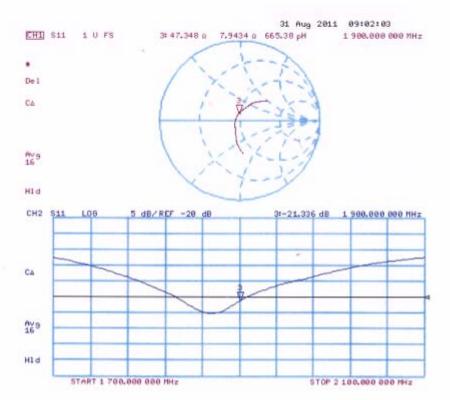
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.435 V/m; Power Drift = -0.0099 dB

Peak SAR (extrapolated) = 18.663 W/kg


SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g

Maximum value of SAR (measured) = 13.397 mW/g

0 dB = 13.400 mW/g

Impedance Measurement Plot for Body TSL

ANNEX G: D2450V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION	CERTIFICATE		
Object	D2450V2 - SN: 7	86	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 29, 2011		
The measurements and the unce	rtainties with confidence p	conal standards, which realize the physical ur robability are given on the following pages are ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
	**************************************	Cal Data (Cartificate No.)	Sahadulad Calibration
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A	ID # GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	Oct-11 Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 SN: S5086 (20b)	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	Oct-11 Oct-11 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Oct-11 Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	Oct-11 Oct-11 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 - Apr-12 Jul-12 Scheduled Check In house check: Oct-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-786_Aug11

Page 1 of 8

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1301-0013SAR02R1

Page 103 of 119

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.