

SAR TEST REPORT

No. I16Z42351-SEM01

For

Huawei Technologies Co.,Ltd.

Smart Phone

Model Name: MYA-L11

With

Hardware Version: VER.A

Software Version: Maya-L11C432B017

FCC ID: QISMYA-L11

Issued Date: 2017-1-17

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China100191 Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl terminals@catr.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I16Z42351-SEM01	Rev.0	2017-1-17	Initial creation of test report

TABLE OF CONTENT

1 T	EST LABORATORY	5
1.1	TESTING LOCATION	5
1.2	TESTING ENVIRONMENT	5
1.3	PROJECT DATA	
1.4	Signature	5
2 S	STATEMENT OF COMPLIANCE	6
3 C	CLIENT INFORMATION	8
3.1	APPLICANT INFORMATION	8
3.2	MANUFACTURER INFORMATION	8
4 E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1	ABOUT EUT	9
4.2	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	9
4.3	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	10
5 T	EST METHODOLOGY	11
5.1	APPLICABLE LIMIT REGULATIONS	11
5.2	APPLICABLE MEASUREMENT STANDARDS	11
6 S	SPECIFIC ABSORPTION RATE (SAR)	12
6.1	Introduction	12
6.2	SAR DEFINITION	12
7 T	ISSUE SIMULATING LIQUIDS	13
7.1	TARGETS FOR TISSUE SIMULATING LIQUID	13
7.2	DIELECTRIC PERFORMANCE	13
8 S	SYSTEM VERIFICATION	18
8.1	SYSTEM SETUP	18
8.2	System Verification	19
9 N	MEASUREMENT PROCEDURES	20
9.1	TESTS TO BE PERFORMED.	20
9.2	GENERAL MEASUREMENT PROCEDURE	22
9.3	WCDMA MEASUREMENT PROCEDURES FOR SAR	23
9.4	SAR MEASUREMENT FOR LTE	24
9.5	BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.6	Power Drift	25
10	AREA SCAN BASED 1-G SAR	25
10.1	REQUIREMENT OF KDB	25
10.2	FAST SAR ALGORITHMS	25
11	CONDUCTED OUTPUT POWER	26

11.1	GSM MEASUREMENT RESULT	26
11.2	WCDMA MEASUREMENT RESULT	27
11.3	LTE MEASUREMENT RESULT	28
11.4	WI-FI AND BT MEASUREMENT RESULT	29
12	SIMULTANEOUS TX SAR CONSIDERATIONS	30
12.1	Introduction	30
12.2	Transmit Antenna Separation Distances	30
12.3	SAR MEASUREMENT POSITIONS	31
12.4	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	31
13	EVALUATION OF SIMULTANEOUS	32
14	SAR TEST RESULT	33
14.1	VALUATION OF MULTI-BATTERIES	33
14.2	SAR results	34
14.3	FULL SAR	42
14.4	WLAN EVALUATION	43
15	SAR MEASUREMENT VARIABILITY	48
16	MEASUREMENT UNCERTAINTY	49
16.1	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	49
16.2	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	50
16.3	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	51
16.4	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	52
17	MAIN TEST INSTRUMENTS	54
ANNE	X A GRAPH RESULTS	55
ANNE	X B SYSTEM VERIFICATION RESULTS	85
ANNE	X C SAR MEASUREMENT SETUP	94
ANNE	X D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	100
ANNE	X E EQUIVALENT MEDIA RECIPES	103
ANNE	X F SYSTEM VALIDATION	104
ANNE	X G PROBE CALIBRATION CERTIFICATE	105
ANNE	X H DIPOLE CALIBRATION CERTIFICATE	116
ANNE	X I ACCREDITATION CERTIFICATE	148

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan	
Test Engineer:	Lin Xiaojun	
Testing Start Date:	January 1,2017	
Testing End Date:	January 4,2017	

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Lu Bingsong

Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of SAR found during testing for Huawei Technologies Co.,Ltd. Smart Phone MYA-L11 is as follows:

Table 2.1: Highest Reported SAR (1g)

	<u> </u>	<u></u>	
Exposure Configuration	Technology Band	Highest Reported SAR 1g (W/Kg)	Equipment Class
	GSM 850	0.41	
Hood	PCS 1900	0.29	DCE
Head (Congretion Distance Omm)	WCDMA1900-BII	0.74	PCE
(Separation Distance 0mm)	LTE2500-FDD7	0.66	
	WLAN 2.4 GHz	0.74	DTS
	GSM 850	0.66	
Hotspot	PCS 1900	0.40	DCE
(Separation Distance	WCDMA1900-BII	0.66	PCE
10mm)	LTE2500-FDD7	0.96	
	WLAN 2.4 GHz	0.13	DTS
	GSM 850	0.55	
Body worn	PCS 1900	0.17	DOE
(Separation Distance	WCDMA1900-BII	0.25	PCE
15mm)	LTE2500-FDD7	0.40	
	WLAN 2.4 GHz	0.11	DTS

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm or 15mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (**Table 2.1**), and the values are: 0.96 **W/kg** (1g).

Table 2.2: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported SAR value for Head	Right hand, Touch cheek	0.74	0.74	1.48
Highest reported	Front 10mm	0.96	0.12	1.08
SAR value for Body	Rear 15mm	0.55	0.11	0.66

Table 2.3: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	ВТ	Sum	
Maximum reported	Right hand, Touch cheek	0.74	0.33 ^[1]	1.07	
SAR value for Head	Night Hand, Todon Cheek	0.74	0.55	1.07	
Maximum reported	Front 10mm	0.96	0.17 ^[1]	1.13	
SAR value for Body	Rear 15mm	0.55	0.11 ^[1]	0.66	

^{[1] -} Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is 1.48 **W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	Huawei Technologies Co.,Ltd.
Address /Post:	Administration Building, Headquarters of Huawei Technologies Co.,
Address /Post.	Ltd., Bantian, Longgang District Shenzhen China
City:	Shenzhen
Country:	China
Contact Person:	Dong Zhe
E-mail:	zhe.dong@huawei.com
Telephone:	75536375506
Fax:	1

3.2 Manufacturer Information

Company Name:	Huawei Technologies Co.,Ltd.
Address /Docts	Administration Building, Headquarters of Huawei Technologies Co.,
Address /Post:	Ltd., Bantian, Longgang District Shenzhen China
City:	Shenzhen
Country:	China
Contact Person:	Dong Zhe
E-mail:	zhe.dong@huawei.com
Telephone:	75536375506
Fax:	1

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	Smart Phone
Model name:	MYA-L11
	GSM 850/1900 WCDMA1900
Operating mode(s):	LTE B7, BT, WLAN
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
Ty Fraguency	1852.4-1907.6 MHz (WCDMA1900 Band II)
Tx Frequency:	2502.5 – 2567.5 MHz (LTE Band 7)
	2412 – 2462 MHz (Wi-Fi 2.4G)
	2402 – 2480 MHz (Bluetooth)
	869.2 – 891.8 MHz (GSM 850)
	1930.2 – 1989.8 MHz (GSM 1900)
Rx Frequency:	1932.4 –1987.6 MHz (WCDMA1900 Band II)
RX Frequency.	2630 – 2680(LTE Band 7)
	2402 – 2472 MHz (Wi-Fi 2.4G)
	2400 – 2480 MHz (Bluetooth)
	HSDPA: 14
WCDMA Category	HSUPA: 7
WCDIVIA Category	HSPA+: 7
	DC-HSDPA: 24
	GSM: R5
Release Version	GPRS: R5
	UMTS: Rel 8
GPRS/EGPRS Multislot Class:	12
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Hotspot mode:	Support
NFC:	Support

4.2 Internal Identification of EUT used during the test

EUTID	IMEI	HW Version	SW Version
1	862665030014002	VER.A	Maya-L11C432B017
2	862665030015405	VER.A	Maya-L11C432B017
3	862665030015413	VER.A	Maya-L11C432B017
4	862665030015355	VER.A	Maya-L11C432B017
5	862665030015397	VER.A	Maya-L11C432B017
6	862665030014986	VER.A	Maya-L11C432B017

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1 to 5 and conducted power with the EUT6.

4.3 Internal Identification of AE used during the test

AE ID	Description	Model	SN	Manufacturer		
AE1	Battery	HB405979ECW	862665030015132	Sunwoda Electronic Co., LTD.		
AE2	Battery	HB405979ECW 862665030015280		SCUD (FUJIAN) Electronics Co., Ltd.		
AE3	Battery	HB405979ECW	862665030014812	SCUD (FUJIAN) Electronics Co., Ltd.		
AE4	Battery	HB405979ECW	862665030015272	Huizhou Desay Battery Co., Ltd.		
AE5	Headset	MEMD1632B580C00	1	Jiangxi Lianchuang Hongsheng		
AES	пеаизеі	MEMD 1032B360C00	1	Electronic Co., LTD.		
AE6	Headset	EMC309-001	1	MERRY ELECTRONICS CO., LTD.		
AE7	Headset	1311-3291-3.5mm-229	1	BOLUO COUNTY QUANCHENG		
AE/	пеаиѕеі	1311-3291-3.5111111-229	1	ELECTRONIC CO.,LTD.		

^{*}AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

				•	
Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3
2600	Head	1.96	1.86~2.06	39.01	37.1~41.0
2600	Body	2.16	2.05~2.27	52.5	49.9~55.1

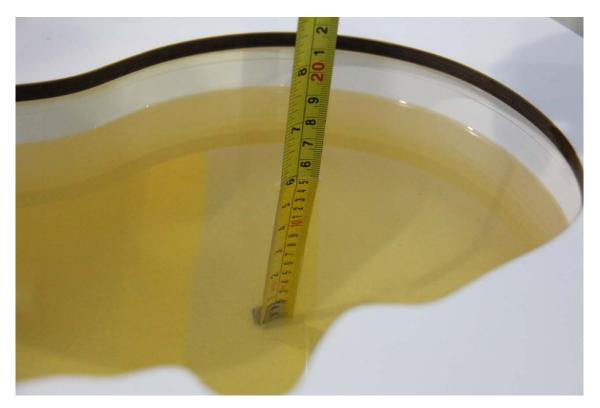

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

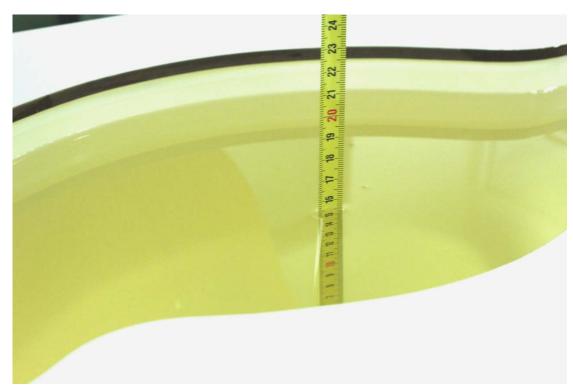
3 1										
Measurement Date yyyy/mm/dd	Frequency	Туре	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)				
2017/1/1	025 MU-	Head	41.1	-0.96	0.892	-0.89				
2017/1/1	835 MHz	Body	54.29	-1.65	0.977	0.72				
2017/1/2	1900 MHz	Head	40.74	1.85	1.408	0.57				
2017/1/2	1900 10172	Body	52.48	-1.54	1.515	-0.33				
2017/1/3	2450 MHz	Head	39.19	-0.03	1.836	2.00				
2017/1/3	2430 IVITZ	Body	52.52	-0.34	1.938	-0.62				
2017/1/4	2600 MH-	Head	38.8	-0.54	1.938	-1.12				
2017/1/4	2600 MHz	Body	53.29	1.50	2.167	0.32				

Note: The liquid temperature is 22.0 $^{\circ}\mathrm{C}$

Picture 7-1 Liquid depth in the Head Phantom (835MHz)

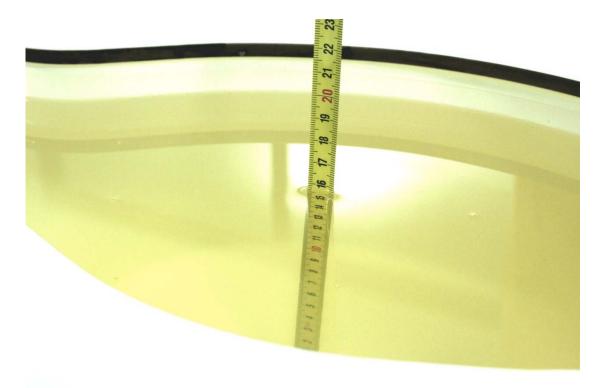
Picture 7-2 Liquid depth in the Flat Phantom (835MHz)

Picture 7-3 Liquid depth in the Head Phantom (1900 MHz)



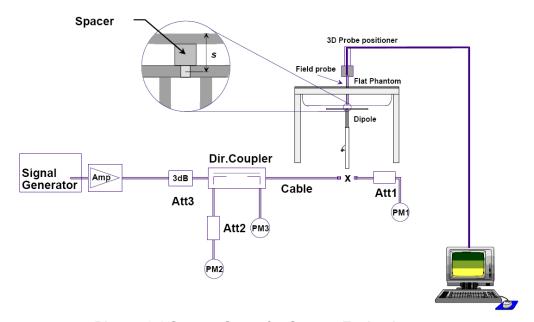
Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-5 Liquid depth in the Head Phantom (2450MHz)



Picture 7-6 Liquid depth in the Flat Phantom (2450MHz)

Picture 7-7 Liquid depth in the Head Phantom (2600 MHz Head)


Picture 7-8 Liquid depth in the Flat Phantom (2600MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement Date	Date		lue (W/kg)	Measure (W/		Deviation		
(yyyy-mm-	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
dd)		Average	Average	Average	Average	Average	Average	
2017/1/1	835 MHz	6.18	9.44	6.2	9.32	0.32%	-1.27%	
2017/1/2	1900 MHz	21.20	40.70	21.24	40.76	0.19%	0.15%	
2017/1/3	2450 MHz	24.60	52.80	25	52.76	1.63%	-0.08%	
2017/1/4	2600 MHz	25.20	56.70	25.48	55.72	1.11%	-1.73%	

Table 8.2: System Verification of Body

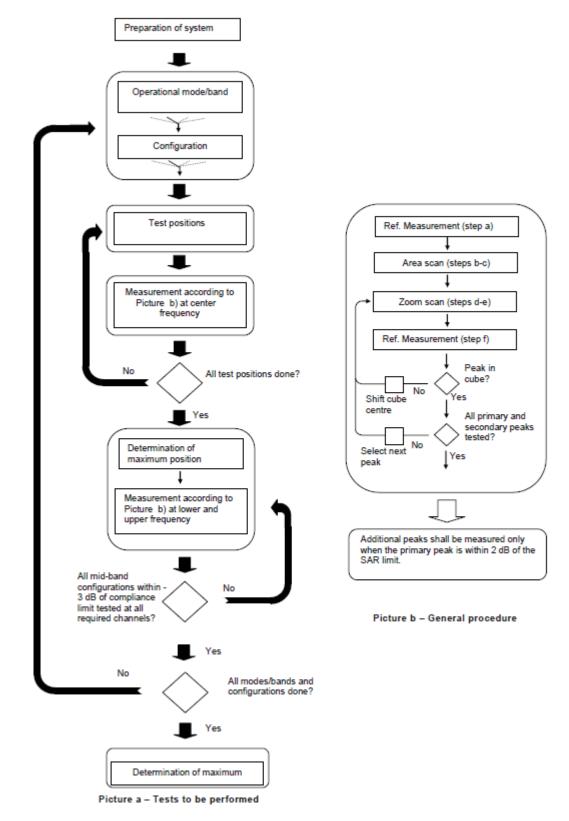
Measurement Date	Frequency	Target value (W/kg) Measured value (W/kg)		equency Target value (W/kg)		iet value (W/kg)		Devi	Deviation	
(yyyy-mm- dd)		10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average			
2017/1/1	835 MHz	6.36	9.69	6.24	9.56	-1.89%	-1.34%			
2017/1/2	1900 MHz	21.3	40.1	21.12	41.4	-0.85%	3.24%			
2017/1/3	2450 MHz	24.1	51.2	24.48	53.2	1.58%	3.91%			
2017/1/4	2600 MHz	24.8	55.3	25.08	55.72	1.13%	0.76%			

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the center of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c >$ 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤3 GHz	> 3 GHz		
Maximum distance from (geometric center of pro			5 ± 1 mm	½·5·ln(2) ± 0.5 mm		
Maximum probe angle to normal at the measurem		axis to phantom surface	30° ± 1° 20° ± 1°			
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3-4 \text{ GHz}: \leq 12 \text{ mm}$ $4-6 \text{ GHz}: \leq 10 \text{ mm}$		
Maximum area scan spa	atial resoluti	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan sp	patial resolu	tion: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
aurface	grid Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCHn), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta_c}$	$oldsymbol{eta_{\!d}}$	β_d (SF)	$oldsymbol{eta_c}/oldsymbol{eta_d}$	$oldsymbol{eta_{hs}}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSPA Data Devices

Sub-	eta_c	$eta_{\!\scriptscriptstyle d}$	$oldsymbol{eta_d}$ (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	$oldsymbol{eta_{ed}}$	$oldsymbol{eta_{ed}}$ (codes)	CM (dB)	MPR (dB)	AG Index	E- TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.5	1.5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	1.5	1.5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	1.5	1.5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	1.5	1.5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.5	1.5	21	81

Rel.8 DC-HSDPA (Cat 24)

SAR test exclusion for Rel.8 DC-HSDPA must satisfy the SAR test exclusion requirements of Rel.5 HSDPA. SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion.

9.4 SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Rohde & Rchwarz CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

- 1) QPSK with 1 RB allocation
 - Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.
- 2) QPSK with 50% RB allocation The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation
 - For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.5 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.6 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit

algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11-1 GSM850

			G	SM850				
		Mea	asured Power (d	IBm)		Average Power (dBm)		
Config	Tune-up	CH25 1 848.8 MHz	CH190 836.6 MHz	CH128 824.2 MHz	Caculation	CH25 1 848.8 MHz	CH190 836.6 MHz	CH128 824.2 MHz
GSM Speech	33.50	33.01	33.04	33.01				
GPRS 1 Txslot	33.50	32.92	32.96	32.93	-9.03	23.89	23.93	23.90
GPRS 2 Txslots	32.50	32.25	32.29	32.26	-6.02	26.23	26.27	26.24
GPRS 3 Txslots	30.50	30.38	30.39	30.35	-4.26	26.12	26.13	26.09
GPRS 4 Txslots	29.50	29.42	29.43	29.40	-3.01	26.41	26.42	26.39
EGPRS GMSK 1 Txslot	33.50	32.20	32.24	32.21	-9.03	23.17	23.21	23.18
EGPRS GMSK 2 Txslots	32.50	31.54	31.58	31.55	-6.02	25.52	25.56	25.53
EGPRS GMSK 3 Txslots	30.50	29.80	29.82	29.79	-4.26	25.54	25.56	25.53
EGPRS GMSK 4 Txslots	29.00	28.63	28.69	28.67	-3.01	25.62	25.68	25.66
EGPRS 8PSK 1 Txslot	27.10	25.75	25.62	25.49	-9.03	16.72	16.59	16.46
EGPRS 8PSK 2 Txslots	26.10	24.43	24.30	24.19	-6.02	18.41	18.28	18.17
EGPRS 8PSK 3 Txslots	24.10	23.05	22.93	22.82	-4.26	18.79	18.67	18.56
EGPRS 8PSK 4 Txslots	23.10	21.85	21.73	21.65	-3.01	18.84	18.72	18.64

Table 11-2 PCS1900

	PCS1900												
		Measured Power (dBm)				Average Power (dBm)							
Config	Tune-up	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz	Caculation	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz					
GSM Speech	30.50	29.84	29.82	29.92									
GPRS 1 Txslot	30.50	29.82	29.82	29.91	-9.03	20.79	20.79	20.88					
GPRS 2 Txslots	29.50	29.03	29.02	29.13	-6.02	23.01	23.00	23.11					
GPRS 3 Txslots	27.50	27.19	27.17	27.28	-4.26	22.93	22.91	23.02					
GPRS 4 Txslots	26.50	26.09	26.08	26.17	-3.01	23.08	23.07	23.16					
EGPRS GMSK 1 Txslot	30.50	29.81	29.82	29.91	-9.03	20.78	20.79	20.88					
EGPRS GMSK 2 Txslots	29.50	29.03	29.01	29.13	-6.02	23.01	22.99	23.11					
EGPRS GMSK 3 Txslots	27.50	27.18	27.17	27.28	-4.26	22.92	22.91	23.02					
EGPRS GMSK 4 Txslots	26.50	26.08	26.08	26.16	-3.01	23.07	23.07	23.15					
EGPRS 8PSK 1 Txslot	26.10	25.60	25.64	25.67	-9.03	16.57	16.61	16.64					
EGPRS 8PSK 2 Txslots	25.10	24.37	24.36	24.43	-6.02	18.35	18.34	18.41					
EGPRS 8PSK 3 Txslots	23.10	22.24	22.27	22.33	-4.26	17.98	18.01	18.07					
EGPRS 8PSK 4 Txslots	22.10	21.16	21.18	21.20	-3.01	18.15	18.17	18.19					

NOTES:

Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for 850 and 1900 GPRS and EGPRS.

11.2 WCDMA Measurement result

Table 11-3 WCDMA1900-BII

		WCDMA1900	-BII					
			Measured Power (dBm)					
Item		Tune-up	CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz			
WCDMA	RMC	23.50	22.30	22.00	22.20			
	subtest1	23.00	21.67	21.49	21.92			
HSDPA	subtest2	23.00	21.65	21.45	21.94			
ПЭДРА	subtest3	22.00	21.16	21.00	21.41			
	subtest4	22.00	21.13	21.00	21.36			
	subtest1	21.00	19.67	19.53	20.39			
	subtest2	20.50	19.68	19.50	19.90			
HSUPA	subtest3	21.00	20.66	20.50	20.91			
	subtest4	20.50	19.15	18.94	19.36			
	subtest5	22.00	21.69	21.44	21.87			
HSPA+	1	22.50	21.47	21.30	21.69			
	subtest1	23.50	21.94	21.74	22.29			
DC-HSDPA	subtest2	23.50	21.93	21.79	22.17			
DC-HSDPA	subtest3	22.50	21.37	21.21	21.73			
	subtest4	22.50	21.36	21.25	21.71			

11.3 LTE Measurement result

Table 11-4 LTE2500-FDD7

		Table	LTE2500-FD0	500-FDD7			
			LTE2500-FDL			er (dBm) & MPR	
BandWidth	DP Number/Stee	hannel/Frequenc	Tune-up	QPSK 16QAM Measured Measured			
Bandwidth	RB Number/Star	nannei/Frequend	Tune-up	Power	MPR	Power	MPR
		21425	23.2	22.55	0	21.73	1
	1H	21100	23.2	22.38	0	21.57	1 1
		20775 21425	23.2	22.26 22.59	0	21.42 21.77	1
	1M	21100	23.2	22.48	0	21.62	1
		20775	23.2	22.28	0	21.43	1
		21425	23.2	22.54	0	21.77	1
	1L	21100 20775	23.2	22.41 22.25	0	21.59 21.39	<u>1</u>
		21425	23.2	21.67	1	20.66	2
5MHz	12H	21100	23.2	21.51	1	20.48	2
		20775	23.2	21.36	1	20.34	2
	12M	21425 21100	23.2	21.66 21.51	1 1	20.64	2
	12	20775	23.2	21.33	1	20.29	2
		21425	23.2	21.65	1	20.64	2
	12L	21100	23.2	21.50	1	20.48	2
		20775 21425	23.2	21.35	1	20.32	2
	25	21425	23.2	21.64 21.50	1	20.62 20.46	2
	20	20775	23.2	21.33	1	20.29	2
		21400	23.2	22.62	0	21.80	1
	1H	21100	23.2	22.42	0	21.61	1
	—	20800 21400	23.2	22.33 22.54	0	21.57 21.77	1
	1M	21100	23.2	22.43	0	21.62	1
		20800	23.2	22.31	0	21.49	1
		21400	23.2	22.48	0	21.74	1
	1L	21100	23.2	22.39	0	21.60	1
	—	20800 21400	23.2	22.28 21.65	0	21.42 20.62	2
10MHz	25H	21100	23.2	21.65	1	20.62	2
		20800	23.2	21.38	1	20.35	2
		21400	23.2	21.60	1	20.60	2
	25M	21100	23.2	21.50	1	20.46	2
		20800	23.2	21.37	1	20.32	2
	25L	21400 21100	23.2	21.55 21.47	1 1	20.57 20.44	2
	250	20800	23.2	21.33	1	20.28	2
		21400	23.2	21.64	1	20.63	2
	50	21100	23.2	21.53	1	20.51	2
		20800	23.2	21.37	1	20.34	2
	_	21375	23.2	22.65	0	21.85	1
	1H	21100	23.2	22.49	0	21.67	1
		20825	23.2	22.36	0	21.63	1
		21375	23.2	22.51	0	21.78	1
	1M	21100 20825	23.2	22.45 22.37	0	21.63 21.53	1
		21375	23.2	22.40	0	21.70	1
	1L	21100	23.2	22.40	0	21.61	1
		20825	23.2	22.29	0	21.43	1
457		21375	23.2	21.68	1	20.68	2
15MHz	36H	21100	23.2	21.56	1	20.52	2
	—	20825 21375	23.2	21.43 21.63	1	20.39 20.64	2
	36M	21100	23.2	21.54	1	20.53	2
		20825	23.2	21.43	1	20.40	2
		21375	23.2	21.54	1	20.56	2
	36L	21100	23.2	21.48	1	20.47	2
	—	20825 21375	23.2	21.40 21.60	1	20.36 20.61	2
	75	21100	23.2	21.53	1	20.51	2
		20825	23.2	21.42	1	20.39	2
		21350	23.2	22.71	0	21.88	1
	1H	21100	23.2	22.50	0	21.69	1
		20850	23.2	22.42	0	21.68	1
		21350	23.2	22.52	0	21.75	1
	1M	21100	23.2	22.44	0	21.63	1
		20850	23.2	22.33	0	21.56	1
		21350	23.2	22.46	0	21.68	1
	1L	21100	23.2	22.41	0	21.64	1
Ļ		20850	23.2	22.28	0	21.39	1
001417	5011	21350	23.2	21.57	1	20.66	2
20MHz	50H	21100	23.2	21.54	1	20.51	2
		20850	23.2	21.41	1	20.42	2
	5014	21350	23.2	21.54	1	20.58	2
	50M	21100	23.2	21.52	1	20.49	2
		20850	23.2	21.39	1	20.37	2
	501	21350	23.2	21.47	1	20.53	2
	50L	21100 20850	23.2	21.46 21.38	1	20.46 20.35	2
							2
	100	21350 21100	23.2	21.54 21.49	1	20.58 20.46	2
	100	20850	23.2	21.49	1	20.46	2
		20000	20.2	21.00		20.04	~

©Copyright. All rights reserved by CTTL.

11.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

Table 11-5 Bluetooth Power

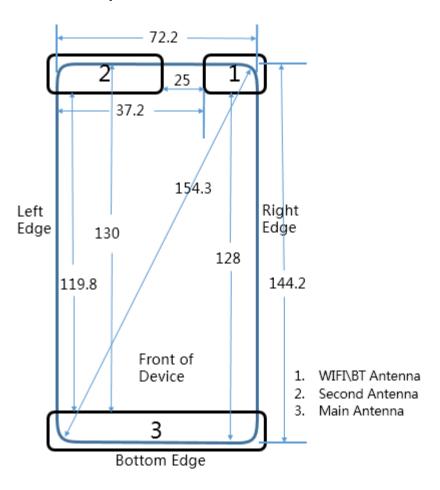
Bluetooth Power										
Mode Channel Frequence Tune-up Measured										
	78	2480 MHz	9	7.98						
GFSK	39	2441 MHz	9	7.69						
70.000	0	2402 MHz	9	7.5						

The average conducted power for Wi-Fi is as following:

Table 11-6 WLAN 2450

	WLAN 2450			SN			
Band	Mode	Channel	Frequence	Data Rate	Tune-up	Measured	
		1	2412 MHz		17.50	16.75	
	802.11b	6	2437 MHz	1Mbps	17.50	16.58	
		11	2462 MHz	3 667	17.50	16.50	
		1	2412 MHz		15.00	14.65	
	802.11g	6	2437 MHz	12Mbps	15.00	14.54	
WLAN 2.4G		11	2462 MHz		15.00	14.59	
WLAN 2.46	802.11n	1	2412 MHz		14.00	13.24	
	20M	6	2437 MHz	MCS3	14.00	13.02	
	ZUW	11	2462 MHz		14.00	13.84	
	802.11n	1	2412 MHz		13.00	12.47	
	40M	6	2437 MHz	MCS0	13.00	12.46	
	40M	11	2462 MHz		13.00	12.42	

Note: All values in the above table is the worst case value based on our evaluation.



12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

Note: The second antenna is a diversity antenna.

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions									
Mode Front Rear Left edge Right edge Top edge Bottom edge									
Main antenna	Main antenna Yes Yes Yes Yes No Yes								
WLAN	WLAN Yes Yes No Yes Yes No								

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Table 12.1: Standalone SAR test exclusion considerations

			SAR test	RF outpu			
Band/Mode	F(GHz)	Position	exclusion threshold (mW)	dBm	mW	SAR test exclusion	
Pluotooth	2.441	Head	9.6	9	7.94	Yes	
Bluetooth		Body	19.2	9	7.94	Yes	
2.4GHz WLAN	2.45	Head	9.58	17.5	56.23	No	
802.11 b	2.40	Body	19.17	17.5	56.23	No	

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum	
Highest reported	Right hand, Touch cheek	0.74	0.74	1.48	
SAR value for Head	Right hand, Touch cheek	0.74	0.74	1.40	
Highest reported	Front 10mm	0.96	0.12	1.08	
SAR value for Body	Rear 15mm	0.55	0.11	0.66	

Table 13.2: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	ВТ	Sum	
Maximum reported	Right hand, Touch cheek	0.74	0.33	1.07	
SAR value for Head	Right Hand, Toddi Cheek	0.74	0.55	1.07	
Maximum reported	Front 10mm	0.96	0.17	1.13	
SAR value for Body	Rear 15mm	0.55	0.11	0.66	

^{[1] -} Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3: Estimated SAR for Bluetooth

Mode/Band	E (CU-)	F (GHz) Position		Upper limit	Estimated _{1g}	
Wiode/Barid	r (GHZ)	Position	(mm)	dBm	mW	(W/kg)
Bluetooth	2.441	Head	5	9	7.94	0.33
Bluetooth	2.441	Body	10	9	7.94	0.17
Bluetooth	2.441	Body	15	9	7.94	0.11

^{* -} Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10 mm or 15mm and just applied to the condition of body worn accessory. It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target}-P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14-1 Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850/1900	1:2
WCDMA<E	1:1

14.1 valuation of multi-batteries

We'll perform the head measurement in all bands with the primary battery depending on the evaluation of multi-batteries and retest on highest value point with other batteries. Then, repeat the measurement in the Body test.

Note:

B1: HB405979ECW SCUD (FUJIAN) Electronics Co., Ltd. Chip Coslight electric core

B2: HB405979ECW SCUD (FUJIAN) Electronics Co., Ltd. Chip LG electric core

B3: HB405979ECW Sunwoda Electronic Co., LTD.

B4: HB405979ECW Huizhou Desay Battery Co., Ltd.

H1: MEMD1632B580C00

H2: EMC309-001

H3: 1311-3291-3.5mm-229

Freq	uency	Mode/Band	Side	Position	Pottory Type	1g SAR	Power Drift	
MHz	Channel	Wiode/Ballu	Side Position B		Battery Type	(W/kg)	rower Drift	
1880	9400	WCDMA1900-BII	Left	Cheek	B1	0.382	0.08	
1880	9400	WCDMA1900-BII	Left	Cheek	B2	0.353	0.08	
1880	9400	WCDMA1900-BII	Left	Cheek	В3	0.341	0.17	
1880	9400	WCDMA1900-BII	Left	Cheek	B4	0.356	0.09	

Note: According to the values in the above table, the battery, B1, is the primary battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Freq	Frequency Mode/Band		Docition	Dottom: Time	1g SAR	Dawer Drift
MHz	Channel	wode/Band	Position	Battery Type	(W/kg)	Power Drift
1880	9400	WCDMA1900-BII	Rear	B1	0.439	0.07
1880	9400	WCDMA1900-BII	Rear	B2	0.430	0.01
1880	9400	WCDMA1900-BII	Rear	В3	0.307	0.02
1880	9400	WCDMA1900-BII	Rear	B4	0.397	0.05

Note: According to the values in the above table, the battery, B1, is the primary battery. We'll perform the Body measurement with this battery and retest on highest value point with others.

14.2 SAR results

Table 14-1 GSM850 Head

				GSM850 Head				
Ambient 7	Temperature:		22	2.4		Liquid Te	mperature:	22.2
	Davisa	SAR	Measured SAR [W/kg]			Reported SAR [W/kg]		
Mode	Device orientation	measurement	CH25 1 848.8 MHz	CH190 836.6 MHz	CH128 824.2 MHz	CH25 1 848.8 MHz	CH190 836.6 MHz	CH128 824.2 MHz
	Tun	e-up	33.50	33.50	33.50		Scaling factor*	
	Slot Average	Power [dBm]	33.01	33.04	33.01	1.12	1.11	1.12
		1g SAR	0.366	0.34	0.269	0.41	0.38	0.30
	Left Cheek	10g SAR	0.279	0.253	0.199	0.31	0.28	0.22
		Deviation	-0.08	-0.01	0.04	-0.08	-0.01	0.04
		1g SAR		0.209		H () ()	0.23	H (0)
GSM	Left Tilt	10g SAR		0.164		0.00	0.18	0.00
GSM		Deviation		-0.07			-0.07	
	Right Cheek	1g SAR		0.326		101	0.36	#1 TE
		10g SAR		0.248		0.00	0.28	0.00
		Deviation		-0.01		011)	-0.01	(1)
		1g SAR		0.206		H (1)	0.23	u (1)
	Right Tilt	10g SAR		0.164		0.00	0.18	0 11)
		Deviation		0.02		0.00	0.02	0.00
		1g SAR	0.364			0.41	0117	H () (
GSM B2	Left Cheek	10g SAR	0.273			0.31	# D.C	(in)
DZ		Deviation	-0.02			-0.02	1100	0.00
		1g SAR	0.347			0.39	(111)	n () (
GSM B3	Left Cheek	10g SAR	0.258			0.29	11 () (0 11)
63		Deviation	-0.01			-0.01	11 () (0 11)
		1g SAR	0.354			0.40	011)	1100
GSM B4	Left Cheek	10g SAR	0.263			0.29	1000	0 10)
D4		Deviation	-0.05			-0.05	11 () ()	0.00

Table 14-2 GSM850 Body 10mm

				GSM850 Body					
Ambient Ter	mperature:	22.4				Liquid Ter	mperature:	22.	
Mode	Dorder.	The State of	M	easured SAR [W/I	kg]	Reported SAR [W/kg]			
	Device orientation	SAR measurement	CH25 1 848.8 MHz	CH190 836.6 MHz	CH128 824.2 MHz	CH25 1 848.8 MHz	CH190 836.6 MHz	CH128 824.2 MHz	
	Tune-up		29.50	29.50	29.50		Scaling factor*	Scaling factor*	
Ī	Slot Average Power [dBm]		29.42	29.43	29.40	1.02	1.02	1.02	
ľ		1g SAR		0.283		H 0 (0.29	11.00	
	Front	10g SAR		0.203		и0(0.21	11 () (
		Deviation		-0.02		11 ()(-0.02	110(
ſ		1g SAR	0.648	0.368	0.385	0.66	0.37	0.39	
	Rear	10g SAR	0.504	0.258	0.269	0.51	0.26	0.28	
		Deviation	0.05	-0.04	0.13	0.05	-0.04	0.13	
GPRS 4 Txslots	Bottom edge	1g SAR		0.035		H () (0.04	# (I) (
		10g SAR		0.0186		11.00	0.02	FI (1)	
		Deviation		-0.03		100	-0.03	10	
[Left edge	1g SAR		0.334		0.00	0.34	0.00	
		10g SAR		0.215		0.00	0.22	0.00	
		Deviation		0.09		0,117	0.09	0.11)	
ſ	Right edge	1g SAR		0.285		11.00	0.29	1100	
		10g SAR		0.184		100	0.19	11.00	
		Deviation		-0.09		101	-0.09	107	
	Tune-up		29.00	29.00	29.00	Scaling factor*			
	Slot Average Power [dBm]		28.63	28.69	28.67	1.09	1.07	1.08	
EGPRS GMSK 4	Rear	1g SAR	0.585			0.64	() H)	11 () (
TASIOIS		10g SAR	0.426			0.46	1100	0.40	
		Deviation	-0.01			-0.01	11 0 0	0.0	
	Rear	1g SAR	0.557			0.57	0.11)	11 () (
GPRS 4 Txslots B2		10g SAR	0.386			0.39	11 () (0 11)	
62		Deviation	-0.04			-0.04	11 () (£ 14)	
GPRS 4 Txslots B3	Rear	1g SAR	0.611			0.62	(j. i.)	11.00	
		10g SAR	0.432			0.44	# () ((ju)	
		Deviation	0.02			0.02	n ĝ((i 11)	
***************************************	Rear	1g SAR	0.602			0.61	011)	11 B.	
GPRS 4 Txslots		10g SAR	0.422			0.43	H () (0 (0)	
B4		Deviation	0.17		!	0.17	11 () ()	0.0	

Table 14-3 GSM850 Body 15mm

				GSM850 Body	<u>, , , , , , , , , , , , , , , , , , , </u>			
Ambient Te	mperature:	Liquid Ter	mperature:	22.2				
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]		
			CH25 1 848.8 MHz	CH190 836.6 MHz	CH128 824.2 MHz	CH25 1 848.8 MHz	CH190 836.6 MHz	CH128 824.2 MHz
	Tune-up		29.50	29.50	29.50	Scaling factor*		
	Slot Average Power [dBm]		29.42	29.43	29.40	1.02	1.02	1.02
		1g SAR		0.237		0.00	0.24	0.00
GPRS 4	Front	10g SAR		0.167		0.00	0.17	0.00
Txslots		Deviation		-0.02		0.00	-0.02	0.00
	Rear	1g SAR	0.543	0.308	0.322	0.55	0.31	0.33
		10g SAR	0.416	0.213	0.222	0.42	0.22	0.23
		Deviation	-0.02	0.06	0.11	-0.02	0.06	0.11
	Tune-up		29.00	29.00	29.00	Scaling factor*		
50000 0M0K /	Slot Average Power [dBm]		28.63	28.69	28.67	1.09	1.07	1.08
EGPRS GMSK 4 Txslots		1g SAR	0.489			0.53	0.00	0.00
TAGIOLO	Rear	10g SAR	0.351			0.38	0.00	0.00
		Deviation	0.02			0.02	0.00	0.00
	Rear	1g SAR	0.466			0.47	0.00	0.00
GPRS 4 Txslots B2		10g SAR	0.32			0.33	0.00	0.00
52		Deviation	0.18			0.18	0.00	0.00
	Rear	1g SAR	0.511			0.52	0.00	0.00
GPRS 4 Txslots B3		10g SAR	0.357			0.36	0.00	0.00
		Deviation	0.04			0.04	0.00	0.00
	Rear	1g SAR	0.506			0.52	0.00	0.00
GPRS 4 Txslots B4		10g SAR	0.256			0.26	0.00	0.00
		Deviation	0.07			0.07	0.00	0.00

Table 14-4 PCS1900 Head

			ı	PCS1900 Head	d			
Ambient Temperature: 22.4						Liquid Ten	nperature:	22.2
Mode	Davisa	CAD	Measured SAR [W/kg]			Reported SAR [W/kg]		
	Device orientation	SAR measurement	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz
	Tun	Tune-up		30.50 30.50		Scaling factor*		
	Slot Average Power [dBm]		29.84	29.82	29.92	1.16	1.17	1.14
		1g SAR		0.179		0+1	0.21	0 11)
	Left Cheek	10g SAR		0.112		011)	0.13	Ú 1104
		Deviation		-0.08		0.07	-0.08	0.110
	Left Tilt	1g SAR		0.104		u () (0.12	n.00
GSM		10g SAR		0.066		0.00	0.08	0 11):
GSM		Deviation		0.12			0.12	
	Right Cheek	1g SAR	0.237	0.238	0.254	0.28	0.28	0.29
		10g SAR	0.14	0.138	0.163	0.16	0.16	0.19
		Deviation	0.03	0.09	0.02	0.03	0.09	0.02
		1g SAR		0.105		HD:	0.12	H 0 (
	Right Tilt	10g SAR		0.066		0.00	0.08	(1.11)4
		Deviation		0.06		0.00	0.06	(11):
	Right Cheek	1g SAR			0.234	H00	(11)	0.27
GSM B2		10g SAR			0.136	010	101	0.16
BZ		Deviation			0.07	0.07	101	0.07
	Right Cheek	1g SAR			0.231	ир(111)	0.26
GSM B3		10g SAR			0.132	(in)	11 () (0.15
ВЗ		Deviation			-0.03	fin)	11.0.0	-0.03
	Right Cheek	1g SAR			0.236	000	(11)	0.27
GSM		10g SAR			0.135	011)	1.00	0.15
B4		Deviation			0.04	011)	0.00	0.04

Table 14-5 PCS1900 Body 10mm

				PCS1900 Bod	/			
Ambient Te	mperature:	22.4				Liquid Ten	nperature:	22.2
	TENTE .	100000	Measured SAR [W/kg]			Reported SAR [W/kg]		
Mode	Device orientation	SAR measurement	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz
	Tune-up		26.50 26.50 26.50		Scaling factor*			
	Slot Average Power [dBm]		26.09	26.08	26.17	1.10	1.10	1.08
		1g SAR		0.247		H () (0.27	# B (
	Front	10g SAR		0.166		но;	0.18	110(
		Deviation		-0.07		1104	-0.07	H 0 (
		1g SAR	0.278	0.279	0.374	0.31	0.31	0.40
GPRS 4 Txslots	Rear	10g SAR	0.175	0.178	0.242	0.19	0.20	0.26
		Deviation	0.03	-0.09	0.07	0.03	-0.09	0.07
	Bottom edge	1g SAR		0.207		H ()	0.23	# D
		10g SAR		0.114		11.00	0.13	0.00
		Deviation		0.07		H () (0.07	n (1)
	Left edge	1g SAR		0.193		0.00	0.21	0.00
		10g SAR		0.113		0.00	0.12	0.00
		Deviation		0.01		0.00	0.01	0.11)
	Right edge	1g SAR		0.163		1.0%	0.18	0.00
		10g SAR		0.102	***************************************	1.00	0.11	1.00
		Deviation		0.12		H () (0.12	и (()
	Tune-up		26.50	26.50	26.50	Scaling factor*		
EGPRS GMSK 4	Slot Average Power [dBm]		26.08	26.08	26.16	1.10	1.10	1.08
Txslots	Rear	1g SAR			0.359	1101	011)	0.39
11/1/19/19/02/20		10g SAR			0.211	Dir.	# D C	0.23
		Deviation			0.03	0 (1)	100	0.03
CDDS 4 Tuelete	Rear	1g SAR			0.351	H () (0.38
GPRS 4 Txslots B2		10g SAR			0.204	0 = (# O.C	0.22
		Deviation			0.16	en:	11 () (0.16
GPRS 4 Txslots B3	Rear	1g SAR			0.35	1100	ÛН)	0.38
		10g SAR			0.194	(11)	11 () ()	0.21
		Deviation			0.14	įu.	11 () (0.14
CDDS 4 Twelet	Rear	1g SAR			0.358	1100	û II)	0.39
GPRS 4 Txslots B4		10g SAR			0.21	011	101	0.23
54		Deviation			0.07	0 113	u O-C	0.07

Table 14-6 PCS1900 Body 15mm

			F	PCS1900 Boo	ly			
Ambient Te	mperature:	22.4				Liquid Ten	nperature:	22.2
		045	Mea	asured SAR [W	/kg]	Re	ported SAR [W/	kg]
Mode	Device orientation	SAR measurement	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz	CH810 1909.8 MHz	CH661 1880 MHz	CH512 1850.2 MHz
	Tune-up		26.50	26.50	26.50		Scaling factor*	
	Slot Average	Power [dBm]	26.09	26.08	26.17	1.10	1.10	1.08
		1g SAR		0.107		0.00	0.12	0.00
GPRS 4	Front	10g SAR		0.07		0.00	0.08	0.00
Txslots		Deviation		-0.03		0.00	-0.03	0.00
		1g SAR	0.119	0.121	0.161	0.13	0.13	0.17
	Rear	10g SAR	0.075	0.077	0.107	0.08	0.08	0.12
		Deviation	-0.02	0.06	-0.04	-0.02	0.06	-0.04
	Tune-up		26.50	26.50	26.50	Scaling factor*		
EGPRS GMSK 4	Slot Average Power [dBm]		26.08	26.08	26.16	1.10	1.10	1.08
Txslots		1g SAR			0.152	0.00	0.00	0.16
***************************************	Rear	10g SAR			0.087	0.00	0.00	0.09
		Deviation			0.07	0.00	0.00	0.07
000047		1g SAR			0.142	0.00	0.00	0.15
GPRS 4 Txslots B2	Rear	10g SAR			0.083	0.00	0.00	0.09
		Deviation			0.11	0.00	0.00	0.11
		1g SAR			0.141	0.00	0.00	0.15
GPRS 4 Txslots B3	Rear	10g SAR			0.078	0.00	0.00	0.08
20		Deviation			0.08	0.00	0.00	0.08
000045		1g SAR			0.148	0.00	0.00	0.16
GPRS 4 Txslots B4	Rear	10g SAR			0.086	0.00	0.00	0.09
24		Deviation			0.09	0.00	0.00	0.09

Table 14-7 WCDMA1900-BII Head

Amhient 1	Temperature:	22.4	WO	DMA1900-BII F	icau	Liquid Ten	nnerature.	22.	
ATIDICIT	T		Me	easured SAR [W/	kal	Reported SAR [W/kg]			
Mode	Device orientation	SAR measurement	CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz	CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz	
	Tur	ie-up	23.50	23.50	23.50		Scaling factor*		
	Slot Average	Slot Average Power [dBm]		22.00	22.20	1.32	1.41	1.35	
		1g SAR		0.382		011	0.54	0 (0)	
	Left Cheek	10g SAR		0.253		000	0.36	0.10	
		Deviation		0.08		011)	0.08	0.10	
		1g SAR		0.21		H (II)	0.30	11.01	
RMC	Left Tilt	10g SAR		0.143		0 (1)	0.20	0.11)	
RMC		Deviation		0.04		0.00	0.04	0.0)	
		1g SAR	0.56	0.447	0.496	0.74	0.63	0.67	
	Right Cheek	10g SAR	0.355	0.285	0.316	0.47	0.40	0.43	
		Deviation	0.07	0.03	0.12	0.07	0.03	0.12	
		1g SAR		0.204		нф	0.29	H.02	
	Right Tilt	10g SAR		0.135		(in)	0.19	0 (1):	
		Deviation		0.04		(in)	0.04	() (1):	
		1g SAR	0.544			0.72	(H)	H ()	
RMC B2	Right Cheek	10g SAR	0.345			0.45	10.	0 103	
BZ		Deviation	-0.08			-0.08	10	0.163	
		1g SAR	0.554			0.73	(111)	n ji	
RMC B3	Right Cheek	10g SAR	0.348			0.46	11.00	(1.11):	
83		Deviation	0.04			0.04	11.00	(1.11):	
		1g SAR	0.547			0.72	0.00	n n h	
RMC	Right Cheek	10g SAR	0.349			0.46	11,00	0.00	
B4		Deviation	0.12			0.12	11.00	0.10	

Table 14-8 WCDMA1900-BII Body 10mm

			WC	DMA1900-BII E	Body				
Ambient 7	Femperature:	22.4				Liquid Ten	nperature:	2:	
	Device	CAD	Me	easured SAR [W/	kg]	Reported SAR [W/kg]			
Mode	orientation	SAR measurement	CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz	CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz	
	Tun	ie-up	23.50	23.50	23.50		Scaling factor*		
	Slot Average	Power [dBm]	22.30 22.00		22.20	1.32	1.41	1.35	
		1g SAR		0.356		11 (0.0)	0.50	11 (17)	
	Front	10g SAR		0.253		пр	0.36	11 (1)	
		Deviation		0.03		и0);	0.03	и (1)	
		1g SAR	0.451	0.439	0.49	0.59	0.62	0.66	
	Rear	10g SAR	0.311	0.305	0.302	0.41	0.43	0.41	
		Deviation	0.01	0.07	0.01	0.01	0.07	0.01	
RMC		1g SAR		0.355		1100	0.50	1100	
	Bottom edge	10g SAR		0.209		1100	0.30	11 (1)	
		Deviation		0.14		400	0.14	11.01	
	Left edge	1g SAR		0.204		(in)	0.29	011)	
		10g SAR		0.132		(H)	0.19	(i 11)	
		Deviation		0.17		1 H)	0.17	0.14)	
		1g SAR		0.235		1100	0.33	11 () (
	Right edge	10g SAR		0.158		1100	0.22	1100	
		Deviation		0.05		1101	0.05	1100	
DILLO		1g SAR			0.452	Ou)	110(0.61	
RMC B2	Rear	10g SAR			0.285	н0(011)	0.38	
U.		Deviation			0.05	1100	011)	0.05	
		1g SAR			0.458	() H)	11.0(0.62	
RMC B3	Rear	10g SAR			0.288	11.00%	011)	0.39	
55		Deviation			0.08	1107	011)	0.08	
		1g SAR			0.457	g se)	11.0(0.62	
RMC B4	Rear	10g SAR			0.291	нос	0 11)	0.39	
D4	147/A276	Deviation			0.03	ир;	011)	0.03	

Table 14-9 WCDMA1900-BII Body 15mm

			WCI	DMA1900-BII	Body			
Ambient 7	Temperature:	22.4				Liquid Ter	nperature:	22.2
		045	Mea	asured SAR [W	/kg]	Re	ported SAR [W	/kg]
Mode	Device orientation	SAR measurement	CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz	CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz
	Tur	ie-up	23.50	23.50	23.50		Scaling factor*	
	Slot Average	Power [dBm]	22.30	22.00	22.20	1.32	1.41	1.35
		1g SAR		0.137		0.00	0.19	0.00
RMC	Front	10g SAR		0.097		0.00	0.14	0.00
KIVIC		Deviation		0.09		0.00	0.09	0.00
		1g SAR	0.174	0.168	0.189	0.23	0.24	0.25
	Rear	10g SAR	0.119	0.116	0.125	0.16	0.16	0.17
		Deviation	0.03	-0.01	0.07	0.03	-0.01	0.07
		1g SAR			0.174	0.00	0.00	0.23
RMC B2	Rear	10g SAR			0.09	0.00	0.00	0.12
		Deviation			0.07	0.00	0.00	0.07
		1g SAR			0.177	0.00	0.00	0.24
RMC B3	Rear	10g SAR			0.112	0.00	0.00	0.15
		Deviation			0.11	0.00	0.00	0.11
		1g SAR			0.176	0.00	0.00	0.24
RMC B4	Rear	10g SAR			0.113	0.00	0.00	0.15
		Deviation			0.13	0.00	0.00	0.13

Table 14-10 LTE2500-FDD7 Head

			נז	E2500-FDD7 H	ead			
Ambient Te	mperature:	22.4				Liquid Ter	mperature:	22.2
	Device	SAR	- 1	leasured SAR [W/l	(g]	R	eported SAR [W/k	g]
Mode	orientation	measurement _	21350	21100	20850	21350	21100	20850
	Orientation	measurement	Н	Н	Н	Н	Н	Н
	Tur	ne-up	23.20	23.20	23.20			
	Measured	Power [dBm]	22.71	22.50	22.42	1.12	1.17	1.20
		1g SAR	0.213			0.24	0.00	n fr
	Left Cheek	10g SAR	0.127			0.14	010)	11.000
		Deviation	0.11			0.11	0112	0.00
		1g SAR	0.17			0.19	4.01	0.00
20MHz	Left Tilt	10g SAR	0.083			0.09	(11)	H ()
QPSK1RB		Deviation	0.09			0.09	(11)	и (С
		1g SAR	0.587			0.66	n () (0.00
	Right Cheek	10g SAR	0.309			0.35	011)	H 00
		Deviation	-0.04			-0.04	0 (1)	H 0.2
		1g SAR	0.147			0.16	11 B (0 11)
	Right Tilt	10g SAR	0.08			0.09	0 11)	H 0.0
		Deviation	-0.1			-0.10	0.00	11 () (
	2	A DESCRIPTION OF THE PERSON OF	- 1	Measured SAR [W/A	(g]	R	eported SAR [W/k	g]
TRUE	Device orientation	SAR measurement	21350	21100	20850	21350	21100	20850
			н	Н	Н	н	H	н
	Tur	ne-up	22.20	22.20	22.20		Scaling factor*	
		Power [dBm]	21.57	21.54	21.41	1.16	1.17	1.20
ŀ		1g SAR	0.168			0.19	0.112	11.0
	Left Cheek	10g SAR	0.101			0.12	0.00	11 B.C
	ersenanti kasini	Deviation	0.02			0.02	ηн,	110.
	Left Tilt	1g SAR	0.127			0.15	100	0 11)
20MHz		10g SAR	0.063			0.07	0 113	11.00
QPSK50%RB		Deviation	0.16			0.16	8 H)	10:
Marie Control of the	Right Cheek	1g SAR	0.484			0.56	1101	0 =:
		10g SAR	0.257			0.30	0 H)	H 0 (
		Deviation	-0.08			-0.08	0 11	21 D.C
		1g SAR	0.116			0.13	11.00	() ii)
	Right Tilt	10g SAR	0.063			0.07	811)	H 0.1
	0.00	Deviation	-0.12			-0.12	111	110.
				Measured SAR [W/A	(g)		eported SAR [W/k	000000000000000000000000000000000000000
Mode	Device orientation	SAR measurement	21350	21100	20850	21350	21100	20850
	Tur	ne-up	22.20	22.20	22.20		Scaling factor*	
		Power [dBm]	21.54	21.49	21.36	1.16	1.18	1.21
20MHz	measureu	1g SAR	21.34	21.49	21.30	1.10	1.18	1.21
QPSK100%RB	Left Cheek	10g SAR				0 H)	* 60	0 44. (1 42)
	Len Olleen	Deviation				8 m2	11.00	0 m
201111-		1g SAR	0.498			0.56	011	n 0.
20MHz QPSK1RB	Right Cheek	10g SAR	0.498	-		0.30	# 0£) =)
B2	, agin oneek	Deviation	0.200			0.04	11 BC	0 ··. () (1)
		1g SAR	0.521			0.58	0 H)	
20MHz QPSK1RB	Right Cheek	10g SAR	0.521		 	0.31	1181	1101 811)
B3	ragin oneek	Deviation	0.274		 	0.18	= 000	0 H)
20MHz		1g SAR	0.16			0.18	nu.	и». Иў:
QPSK1RB	Right Cheek	10g SAR	0.51			0.30		11.0
B4	ragin Grieek	Deviation 10g SAR	0.271	-		0.30	010	110

Table 14-11 LTE2500-FDD7 Body 10mm

Ambient Te	mperature:	22.4		111 11		Liquid Te	mperature:	22.2
	Device	SAR	M	easured SAR [W/I	(g)		Reported SAR [W/k	9]
Mode	orientation	measurement	21350	21100	20850	21350	21100	20850
			Н	Н	Н	Н	Н	Н
		ne-up	23.20	23.20	23.20		Scaling factor*	
	Measured	Power [dBm]	22.71	22.50	22.42	1.12	1.17	1.20
	E0100	1g SAR	0.853	0.631	0.555	0.96	0.74	0.66
	Front	10g SAR	0.465	0.332	0.293	0.52	0.39	0.35
		Deviation	0.19	0.12	0.09	0.19	0.12	0.09
	_	1g SAR	0.574			0.64	0.11)	11.00
	Rear	10g SAR	0.298			0.33	() H)	1100
20MHz		Deviation	-0.12	0.700	0.040	-0.12		1100
QPSK1RB	Bottom edge	1g SAR 10g SAR	0.79	0.739 0.341	0.648	0.88	0.87	0.78
	Bottom edge	Deviation	0.07	-0.04	0.12	0.42	-0.04	0.12
'		1g SAR	0.238	-0.04	0.12	0.27	0.04	0.12
	Left edge	10g SAR	0.131	 		0.15	011	110
		Deviation	-0.1			-0.10	0.11)	110
		1g SAR	0.399			0.45	iiqq	0.11
	Right edge	10g SAR	0.208			0.23	11.04	0 11)
		Deviation	0.13	T		0.13	11 () (0.10
			M	easured SAR [W/I	(g]	1	Reported SAR [W/k	g]
Mode	Device	SAR	21350	21100	20850	21350	21100	20850
	orientation	measurement	Н	Н	Н			
	Tur	ne-up	22.20	22.20	22.20		Scaling factor*	
	Measured	Power [dBm]	21.57	21.54	21.41	1.16	1.17	1.20
		1g SAR	0.612			0.71		
	Front	10g SAR	0.313			0.36		
-		Deviation	0.06			0.06		
		1g SAR	0.469			0.54		
	Rear	10g SAR	0.241			0.28		
20MHz		Deviation	-0.05			-0.05		
QPSK50%RB	Bottom edge	1g SAR	0.622			0.72		
Q. OKOOMIKO		10g SAR	0.285			0.33		
		Deviation	-0.08			-0.08		
	Left edge	1g SAR	0.188			0.22		
		10g SAR	0.103			0.12		
		Deviation	0.04			0.04		
		1g SAR	0.317			0.37		
	Right edge	10g SAR	0.166			0.19		
		Deviation	-0.03			-0.03		
			M	easured SAR [W/I	(g]	I	Reported SAR [W/k	g]
Mode	Device orientation	SAR measurement	21350	21100	20850	21350	21100	20850
	Tur	ne-up	22.20	22.20	22.20		Scaling factor*	
20MHz		Power [dBm]	21.54	21.49	21.36	1.16	1.18	1.21
QPSK100%RB		1g SAR	0.546			0.64	# D.C	010)
	Front	10g SAR	0.287			0.33	14 (I) (I)	0 (4)
		Deviation	0.08			80.0	100	0 11.
20MHz		1g SAR	0.794			0.89	0.113	11.00
QPSK1RB	Front	10g SAR	0.405			0.45	H 0 (0 11,
B2		Deviation	-0.12			-0.12	n () (£ н;
20MHz	2.0	1g SAR	0.774			0.87	ĝu)	H 0.
QPSK1RB	Front	10g SAR	0.395			0.44	11 (1)	0 11)
B3		Deviation	0.08			0.08	0.00	0 11)
20MHz	020001	1g SAR	0.782			0.88	g ir)	11.0
QPSK1RB	Front	10g SAR	0.401			0.45	# D.C	8 (1)
B4	rion	Davieties	-0.04			-0.04	11.0%	(1 m)
B4		Deviation						200000000000000000000000000000000000000
B4 20MHz	Bottom edge	1g SAR 10g SAR	0.611			0.68 0.31	011)	110. 111.

Table 14-12 LTE2500-FDD7 Body 15mm

			LTE	2500-FDD7 E	Body				
Ambient Te	mperature:	22.4				Liquid Ter	mperature:	22.2	
			Me	asured SAR [W	/kg]	Re	ported SAR [W/	kg]	
Mode	Device orientation	SAR measurement	21350	21100	20850	21350	21100	20850	
	Orientation	measurement	Н	Н	Н	Н	Н	Н	
	Tur	ne-up	23.20	23.20	23.20		Scaling factor*		
	Measured I	Power [dBm]	22.71	22.50	22.42	1.12	1.17	1.20	
		1g SAR	0.354			0.40	0.00	0.00	
20MHz	Front	10g SAR	0.194			0.22	0.00	0.00	
QPSK1RB		Deviation	0.11			0.11	0.00	0.00	
		1g SAR	0.235			0.26	0.00	0.00	
	Rear	10g SAR	0.122			0.14	0.00	0.00	
		Deviation	0.04			0.04	0.00	0.00	
			Me	asured SAR [W	/kg]	Re	ported SAR [W/	kg]	
Mode	Device orientation	SAR measurement	21350	21100	20850	21350	21100	20850	
			Н	Н	Н				
	Tur	ne-up	22.20	22.20	22.20		Scaling factor*		
	Measured I	Power [dBm]	21.57	21.54	21.41	1.16	1.17	1.20	
20MHz QPSK50%RB		1g SAR	0.265			0.31			
	Front	10g SAR	0.124			0.14			
		Deviation	0.01			0.01			
		1g SAR	0.174			0.20			
	Rear	10g SAR	0.091			0.11			
		Deviation	0.11			0.11			
			Me	asured SAR [W	/kg]	Reported SAR [W/kg]			
Mode	Device orientation	SAR measurement	21350	21100	20850	21350	21100	20850	
	Tur	ne-up	22.20	22.20	22.20		Scaling factor*		
001#11	Measured I	Power [dBm]	21.54	21.49	21.36	1.16	1.18	1.21	
20MHz QPSK100%RB		1g SAR				0.00	0.00	0.00	
QF SK 100 /6KD	Front	10g SAR				0.00	0.00	0.00	
		Deviation				0.00	0.00	0.00	
20MHz		1g SAR	0.325			0.36	0.00	0.00	
QPSK1RB	Front	10g SAR	0.166			0.19	0.00	0.00	
B2		Deviation	0.06			0.06	0.00	0.00	
20MHz		1g SAR	0.317			0.35	0.00	0.00	
QPSK1RB	Front	10g SAR	0.162			0.18	0.00	0.00	
В3		Deviation	0.12			0.12	0.00	0.00	
20MHz		1g SAR	0.32			0.36	0.00	0.00	
QPSK1RB	Front	10g SAR	0.164			0.18	0.00	0.00	
B4		Deviation	0.07			0.07	0.00	0.00	

14.3 Full SAR

Table 14-13 Full SAR for 10mm

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift	Figure
GSM850	251	848.8 MHz	33. 5	33.01	Left Cheek	0. 279	0.366	0.31	0.41	-0.08	Fig A. 1
GSM850	251	848.8 MHz	29.5	29. 42	Rear	0.504	0.648	0.51	0.66	0.05	Fig A. 2
PCS1900	512	1850.2 MHz	30. 5	29.92	Right Cheek	0. 163	0.254	0.19	0.29	0.02	<u>Fig A. 4</u>
PCS1900	512	1850.2 MHz	26. 5	26. 17	Rear	0. 242	0.374	0.26	0.40	0.07	Fig A. 5
WCDMA1900-BII	9538	1907.6 MHz	23. 5	22.30	Right Cheek	0.355	0.56	0.47	0.74	0.07	Fig A. 7
WCDMA1900-BII	9262	1852.4 MHz	23. 5	22. 20	Rear	0.302	0.49	0.41	0.66	0.01	Fig A. 8
LTE2500-FDD7	21350	2560 MHz	23. 2	22.71	Right Cheek	0.309	0.587	0.35	0.66	-0.04	<u>Fig A.7</u>
LTE2500-FDD7	21350	2560 MHz	23. 2	22.71	Front	0.465	0.853	0.52	0.96	0.19	Fig A. 11

Table 14-14 Full SAR for 15mm

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift	Figure
GSM850	251	848.8 MHz	29. 5	29. 42	Rear	0.416	0.543	0.42	0.55	-0.02	<u>Fig A. 3</u>
PCS1900	512	1850.2 MHz	26. 5	26. 17	Rear	0. 107	0. 161	0.12	0.17	-0.04	Fig A. 6
WCDMA1900-BII	9262	1852.4 MHz	23. 5	22. 20	Rear	0.125	0. 189	0.17	0.25	0.07	Fig A. 9
LTE2500-FDD7	21350	2560 MHz	23. 2	22.71	Front	0. 194	0.354	0. 22	0.40	0. 11	Fig A. 12

14.4 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 802.11b DSSS using the <u>initial test position</u> procedure.

Note1: When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg.

Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

Table 14-15 WLAN 2450 Head Area Scan

			WLA	AN Head Area	scan			
Ambient Te	mperature:	22.4				Liquid Ter	22.2	
	Desire	OAD	Me	asured SAR [W	/kg]	Re	ported SAR [W/	kg]
Rate	Device orientation	SAR measurement	11	6	1	11	6	1
	Orientation	measarement	2462 MHz	2437 MHz	2412 MHz	2462 MHz	2437 MHz	2412 MHz
	Tun	e-up	17.50 17.50 17.50			Scaling factor*		
	Slot Average	Power [dBm]	16.50	16.58	16.75	1.26	1.24	1.19
		1g Fast SAR			0.218	0.00	0.00	0.26
	Left Cheek	10g SAR			0.119	0.00	0.00	0.14
		Deviation			0.05	0.00	0.00	0.05
		1g Fast SAR			0.127	0.00	0.00	0.15
802.11b 1Mbps	Left Tilt	10g SAR			0.068	0.00	0.00	0.08
ouz. I ib Tivibps		Deviation			0.07	0.00	0.00	0.07
	Right Cheek	1g Fast SAR			0.555	0.00	0.00	0.66
		10g SAR			0.277	0.00	0.00	0.33
		Deviation			-0.17	0.00	0.00	-0.17
		1g Fast SAR			0.26	0.00	0.00	0.31
	Right Tilt	10g SAR			0.138	0.00	0.00	0.16
		Deviation			0.03	0.00	0.00	0.03
		1g Fast SAR			0.513	0.00	0.00	0.61
802.11b 1Mbps B2	Right Cheek	10g SAR			0.262	0.00	0.00	0.31
62		Deviation			0.07	0.00	0.00	0.07
		1g Fast SAR			0.53	0.00	0.00	0.63
802.11b 1Mbps B3	Right Cheek	10g SAR			0.269	0.00	0.00	0.32
БЗ		Deviation			0.06	0.00	0.00	0.06
000 441 488		1g Fast SAR			0.515	0.00	0.00	0.61
802.11b 1Mbps B4	Right Cheek	10g SAR			0.258	0.00	0.00	0.31
D 4	Ĭ	Deviation			0.1	0.00	0.00	0.10

Table 14-16 WLAN 2450 Head Zoom Scan

			WLA	N Head Zoom	scan			
Ambient Te	mperature:	22.4				Liquid Ter	22.2	
	Berden	CAR	Me	asured SAR [W	/kg]	Re	ported SAR [W	/kg]
Rate	Device orientation	SAR measurement	11	6	1	11	6	1
	orientation		2462 MHz	2437 MHz	2412 MHz	2462 MHz	2437 MHz	2412 MHz
	Tune-up		17.50	17.50	17.50		Scaling factor*	
	Slot Average Power [dBm]		16.50	16.58	16.75	1.26	1.24	1.19
	Right Cheek	1g Fast SAR			0.555	0.00	0.00	0.66
		1g Full SAR			0.626	0.00	0.00	0.74
802.11b 1Mbps		10g SAR			0.277	0.00	0.00	0.33
002.11b 11vibps		Deviation			-0.17	0.00	0.00	-0.17
		1g Fast SAR			0.26	0.00	0.00	0.31
	Right Tilt	1g Full SAR			0.27	0.00	0.00	0.32
	Right fill	10g SAR			0.138	0.00	0.00	0.16
		Deviation	·		0.03	0.00	0.00	0.03

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

	Ambient Temperature: 22.4 °C Liquid Temperature: 22.2 °C												
Frequ	uency	Side	Test Position	Actual duty	maximum duty	Reported SAR	Scaled reported SAR (1g)	Figure					
MHz	Ch.	Side	Test Fosition	factor	factor	(1g) (W/kg)	(W/kg)	i igui o					
2412	1	Right	Touch	99.66%	100%	0.74	0.74	Fig.A.13					

Table 14-17 WLAN 2450 Body Area Scan 10mm

			WL	AN Body Area	scan			
Ambient Te	mperature:	22.4				Liquid Ter	nperature:	22.2
		0.45	Me	asured SAR [W	/kg]	Re	ported SAR [W/l	(g]
Mode	Device orientation	SAR measurement	11	6	1	11	6	1
	orientation	measurement	2462 MHz	2437 MHz	2412 MHz	2462 MHz	2437 MHz	2412 MHz
	Tune-up		17.50	17.50	17.50		Scaling factor*	
	Slot Average	Power [dBm]	16.50	16.58	16.75	1.26	1.24	1.19
		1g Fast SAR			0.098	0.00	0.00	0.12
	Front	10g SAR			0.053	0.00	0.00	0.06
		Deviation			0.08	0.00	0.00	0.08
	Rear	1g Fast SAR			0.105	0.00	0.00	0.12
802.11b 1Mbps		10g SAR			0.055	0.00	0.00	0.07
602.11b 1Mbps		Deviation			0.07	0.00	0.00	0.07
	Top edge	1g Fast SAR			0.025	0.00	0.00	0.03
		10g SAR			0.014	0.00	0.00	0.02
		Deviation			-0.01	0.00	0.00	-0.01
		1g Fast SAR			0.003	0.00	0.00	<0.01
	Right edge	10g SAR			0.002	0.00	0.00	<0.01
		Deviation			0.11	0.00	0.00	0.11
000 445 4885		1g Fast SAR			0.096	0.00	0.00	0.11
802.11b 1Mbps B2	Rear	10g SAR			0.052	0.00	0.00	0.06
52		Deviation			0.09	0.00	0.00	0.09
000 44h 4Mhm		1g Fast SAR			0.102	0.00	0.00	0.12
802.11b 1Mbps B3	Rear	10g SAR			0.052	0.00	0.00	0.06
В3		Deviation			0.09	0.00	0.00	0.09
000 44h 4Mhm		1g Fast SAR			0.101	0.00	0.00	0.12
802.11b 1Mbps B4	Rear	10g SAR			0.053	0.00	0.00	0.06
54		Deviation			-0.14	0.00	0.00	-0.14

Table 14-18 WLAN 2450 Body Zoom Scan 10mm

WLAN Body Zoom scan										
Ambient Te	mperature:	22.4				Liquid Ter	mperature:	22.2		
	Device	SAR	Me	asured SAR [W	/kg]	Reported SAR [W/kg]				
Mode	orientation	measurement	11	6	1	11	6	1		
			2462 MHz	2437 MHz	2412 MHz	2462 MHz	2437 MHz	2412 MHz		
	Tune-up		17.50	17.50	17.50	Scaling factor*				
	Slot Average	Power [dBm]	16.50	16.58	16.75	1.26	1.24	1.19		
802.11b 1Mbps		1g Fast SAR			0.105	0.00	0.00	0.12		
602.11b 11vibps	Rear	1g Full SAR			0.111	0.00	0.00	0.13		
	Real	10g SAR			0.055	0.00	0.00	0.07		
		Deviation			0.07	0.00	0.00	0.07		

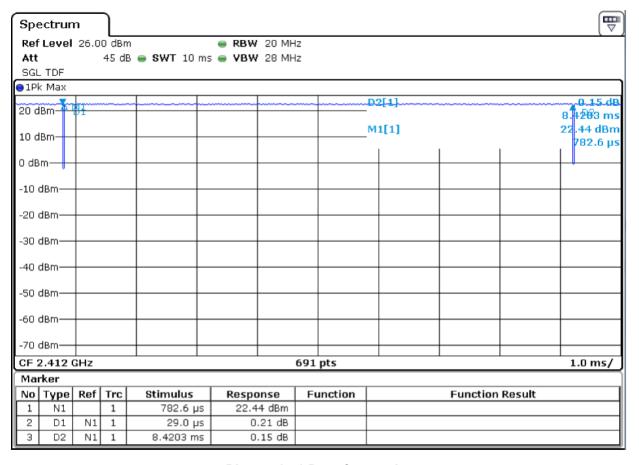
According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

	Am	bient Tempera	ture: 22.4°C	Liquid Ter			
Frequ	Frequency		est Position		Scaled reported	Figure	
MHz	Ch.	Test Position	factor	factor	(1g) (W/kg)	(W/kg)	rigure
2412	1	Rear	99.66%	100%	0.13	0.13	Fig.A.14
2412	1	Front	99.66%	100%	0.12	0.12	/

Table 14-19 WLAN 2450 Body Area Scan 15mm

			\// /	AN Body Area	ecan			
Ambient Te	mperature:	22.4	VVL	AN DOUY AIGA	Scari	Liquid Ter	mperature:	22.2
			Me	asured SAR [W	/kg]	Re	ported SAR [W/	kg]
Mode	Device orientation	SAR measurement	11	6	1	11	6	1
	Orientation	measurement	2462 MHz	2437 MHz	2412 MHz	2462 MHz	2437 MHz	2412 MHz
	Tune-up		17.50	17.50	17.50		Scaling factor*	
	Slot Average	Power [dBm]	16.50	16.58	16.75	1.26	1.24	1.19
		1g Fast SAR			0.079	0.00	0.00	0.09
802.11b 1Mbps	Front	10g SAR			0.048	0.00	0.00	0.06
ouz. I ib Tivibps		Deviation			0.09	0.00	0.00	0.09
	Rear	1g Fast SAR			0.088	0.00	0.00	0.10
		10g SAR			0.048	0.00	0.00	0.06
		Deviation			0.04	0.00	0.00	0.04
000 445 4885		1g Fast SAR			0.08	0.00	0.00	0.10
802.11b 1Mbps B2	Rear	10g SAR			0.046	0.00	0.00	0.05
DZ.		Deviation			0.11	0.00	0.00	0.11
902 44h 4Mhna		1g Fast SAR			0.085	0.00	0.00	0.10
802.11b 1Mbps B3	Rear	10g SAR			0.047	0.00	0.00	0.06
Б3		Deviation			-0.08	0.00	0.00	-0.08
902 44h 4Mhna		1g Fast SAR			0.084	0.00	0.00	0.10
802.11b 1Mbps B4	Rear	10g SAR			0.048	0.00	0.00	0.06
		Deviation			0.02	0.00	0.00	0.02

Table 14-20 WLAN 2450 Body Zoom Scan 15mm


	•											
	WLAN Body Zoom scan											
Ambient Te	mperature:	22.4				Liquid Ter	22.2					
	<u> </u>	045	Mea	asured SAR [W/	/kg]	Reported SAR [W/kg]						
Mode	Device orientation	SAR measurement	11	6	1	11	6	1				
		measurement	2462 MHz	2437 MHz	2412 MHz	2462 MHz	2437 MHz	2412 MHz				
	Tun	e-up	17.50	17.50	17.50	Scaling factor*						
	Slot Average	Power [dBm]	16.50	16.58	16.75	1.26	1.24	1.19				
000 44h 4Mhma		1g Fast SAR			0.088	0.00	0.00	0.10				
802.11b 1Mbps	Rear	1g Full SAR			0.09	0.00	0.00	0.11				
	Real	10g SAR			0.05	0.00	0.00	0.06				
		Deviation			0.04	0.00	0.00	0.04				

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

	Am	bient Tempera	ture: 22.4°C	Liquid Ter				
Frequ	Frequency		Actual duty	maximum duty	Reported SAR	Scaled reported SAR (1g)	Figure	
MHz	Ch.	Test Position	factor	factor	(1g) (W/kg)	(W/kg)	i igui c	
2412	1	Rear	99.66%	100%	0.11	0.11	Fig.A.15	

SAR is not required for OFDM because the 802.11b adjusted SAR $\, \leq \,$ 1.2 W/kg.

Picture 14.1 Duty factor plot

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Test Band	Channel	Frequency	Test Poisition	Original SAR (W/kg)	First Repeated SAR(W/kg)	The Ratio
LTE2500-FDD7	21350	2560 MHz	Front	0.853	0, 849	1.00

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.1	Measurement on	CCIta	inty ioi itoi	mai OAIX i	CSLS	,00011	1112	, O 1 1 L j		
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test s	sample related	1					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
		-	Phant	tom and set-uj	p	•	•	•	•	
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

Liquid permittivity

В

5.0

20

(Combined standard uncertainty	$u_c^{'} =$	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
_	inded uncertainty fidence interval of	1	$u_e = 2u_c$					19.1	18.9	
16.2	Measurement U	ncerta	ainty for No	ormal SAR	Tests	(3~6	GHz)			
No.	Error Description	Type	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedo m
Mea	surement system	<u>I</u>			I	<u>l</u>	<u>l</u>	<u>I</u>	<u>I</u>	
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	l					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-uj	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	T : 11 :41: 14		7.0		<i>[</i> 2	0.6	0.40			

1.7

1.4

0.49

0.6

 $\sqrt{3}$

R

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	inded uncertainty fidence interval of	l	$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)										
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system			1						
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞
			Test	sample related	i					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-u	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞

19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
_	inded uncertainty fidence interval of	l	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Meas	Measurement system										
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
14	Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8	
Test sample related											
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	

©Copyright. All rights reserved by CTTL.

No. I16Z42351-SEM01 Page 53 of 148

16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up										
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		u' _c =	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
Expanded uncertainty (confidence interval of $u_e = 2u_c$ 95 %)		$u_e = 2u_c$					27.0	26.8		

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 26, 2016	One year	
02	Dielectric Probe Kit	85070E	Agilent	No Calibration Requested		
03	Power meter	NRVD	102083	Contember 16 2016	One year	
04	Power sensor	NRV-Z5	100595	September 16,2016	One year	
05	Power sensor	NRV-Z5	100596	March 3,2016	One year	
06	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year	
07	Amplifier	60S1G4	0331848	No Calibration Requested		
08	Directional Coupler	778D	MY48220584	No Calibration Requested		
09	Directional Coupler	772D	MY46151265	No Calibration Requested		
10	BTS	E5515C	MY50263375	January 30, 2016	One year	
11	BTS	CMW500	129942	March 03, 2016	One year	
12	E-field Probe	SPEAG EX3DV4	7307	February19, 2016	One year	
13	DAE	SPEAG DAE4	1331	January 21, 2016	One year	
14	Dipole Validation Kit	SPEAG D835V2	4d069	July 20, 2016	One year	
15	Dipole Validation Kit	SPEAG D1900V2	5d101	July 28, 2016	One year	
16	Dipole Validation Kit	SPEAG D2450V2	853	July 25, 2016	One year	
17	Dipole Validation Kit	SPEAG D2600V2	1012	July 25, 2016	One year	

^{***}END OF REPORT BODY***

ANNEX A Graph Results

GSM850_CH251 Left Cheek

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.886 \text{ mho/m}$; $\epsilon r = 41.16$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: GSM850 848.8 MHz Duty Cycle: 1: 8.3

Probe: EX3DV4 – SN7307 ConvF(10.01,10.01,10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.401 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.894 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.463 W/kg

SAR(1 g) = 0.366 W/kg; SAR(10 g) = 0.279 W/kg

Maximum value of SAR (measured) = 0.399 W/kg

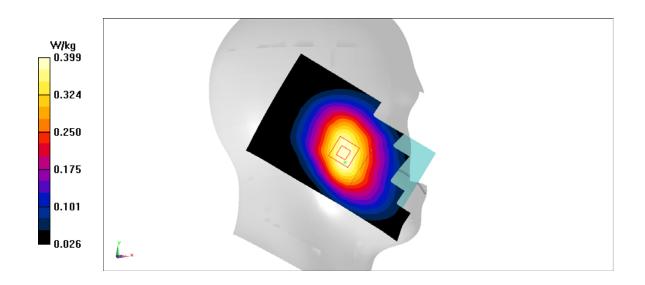


Figure A.1

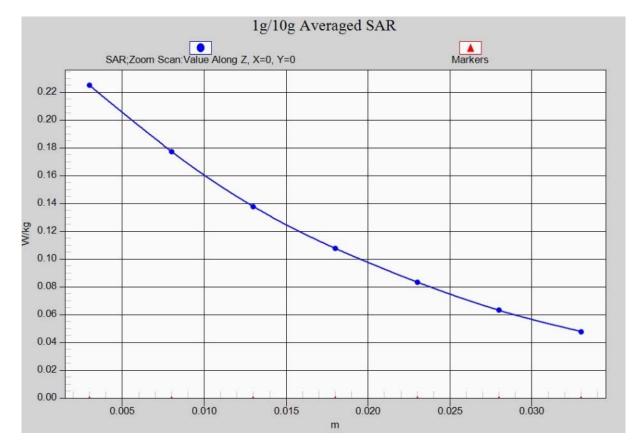


Figure A.1-1

GSM850_CH251 Rear for 10mm

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.972 \text{ mho/m}$; $\epsilon r = 54.33$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: GSM850 848.8 MHz Duty Cycle: 1: 2

Probe: EX3DV4 – SN7307 ConvF(9.83,9.83,9.83)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 0.71 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.73 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.805 W/kg

SAR(1 g) = 0.648 W/kg; SAR(10 g) = 0.504 W/kg

Maximum value of SAR (measured) = 0.674 W/kg

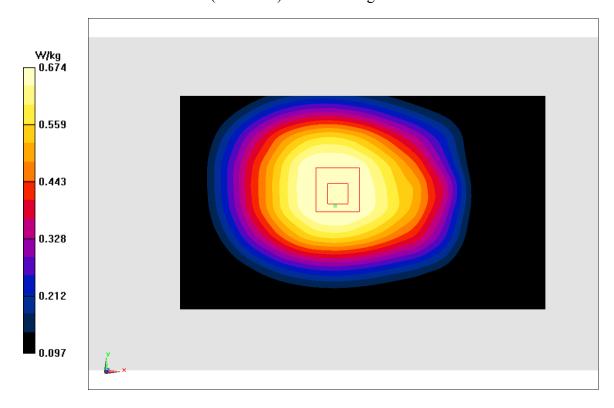


Figure A.2

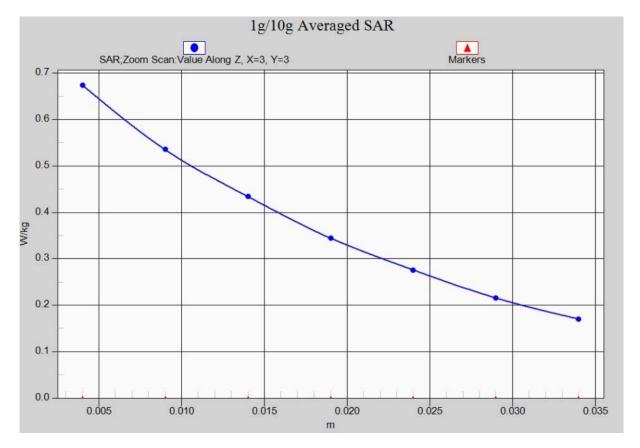


Figure A.2-1

GSM850_CH251 Rear for 15mm

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.972 \text{ mho/m}$; $\epsilon r = 54.33$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN7307 ConvF(9.83,9.83,9.83)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.596 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.74 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.677 W/kg

SAR(1 g) = 0.543 W/kg; SAR(10 g) = 0.416 W/kg

Maximum value of SAR (measured) = 0.564 W/kg

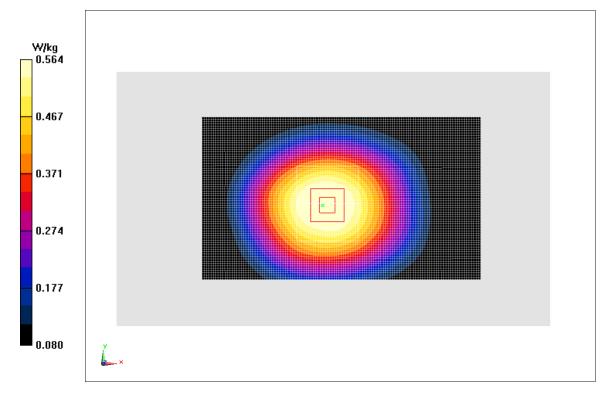


Figure A.3

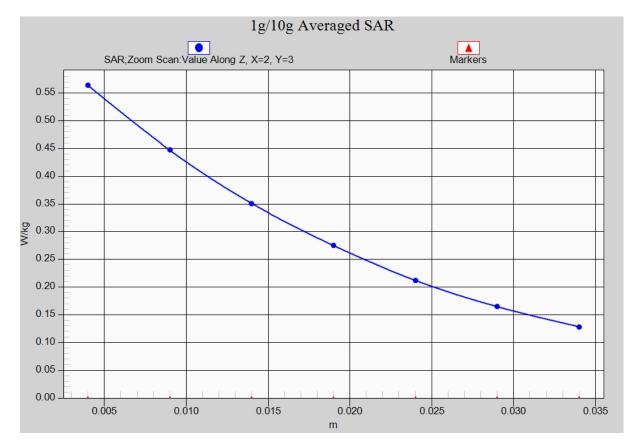


Figure A.3-1

PCS1900_CH512 Right Cheek

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.416 \text{ mho/m}$; $\epsilon r = 40.731$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C

Communication System: PCS1900 1850.2 MHz Duty Cycle: 1: 8.3

Probe: EX3DV4 – SN7307 ConvF(8.1,8.1,8.1)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.284 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.943 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.254 W/kg; SAR(10 g) = 0.163 W/kg

Maximum value of SAR (measured) = 0.275 W/kg

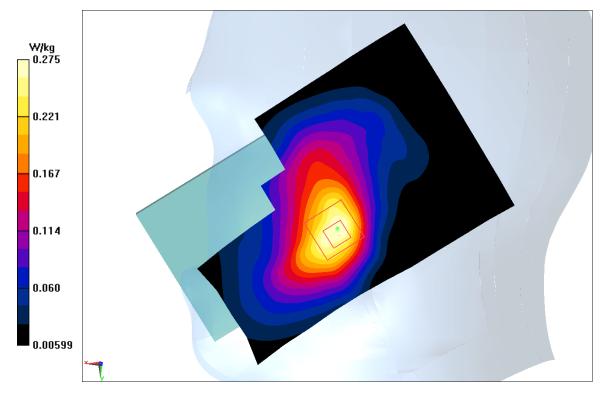


Figure A.4

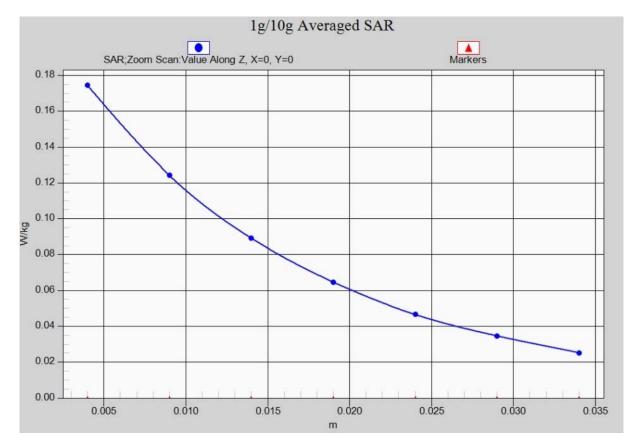


Figure A.4-1

PCS1900_CH512 Rear for 10mm

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.523 \text{ mho/m}$; $\epsilon r = 52.322$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1: 2

Probe: EX3DV4 – SN7307 ConvF(7.67,7.67,7.67)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.454 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.699 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.589 W/kg

SAR(1 g) = 0.374 W/kg; SAR(10 g) = 0.242 W/kgMaximum value of SAR (measured) = 0.399 W/kg

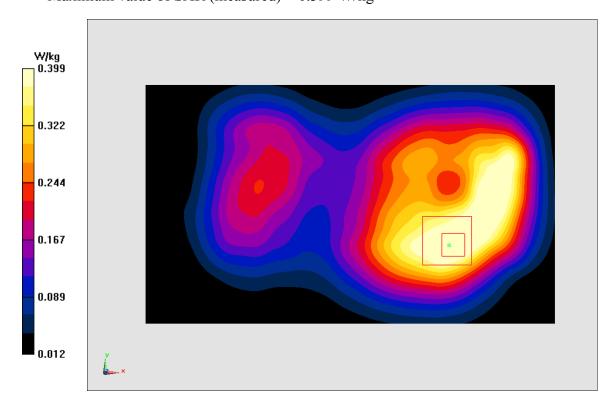


Figure A.5

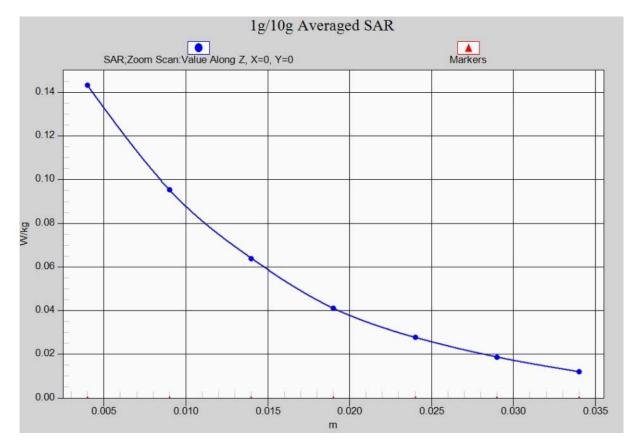


Figure A.5-1

PCS1900 CH512 Rear for 15mm

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.523 \text{ mho/m}$; $\epsilon r = 52.322$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN7307 ConvF(7.67,7.67,7.67)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.189 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.710 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.161 W/kg; SAR(10 g) = 0.107 W/kg

Maximum value of SAR (measured) = 0.173 W/kg

Figure A.6

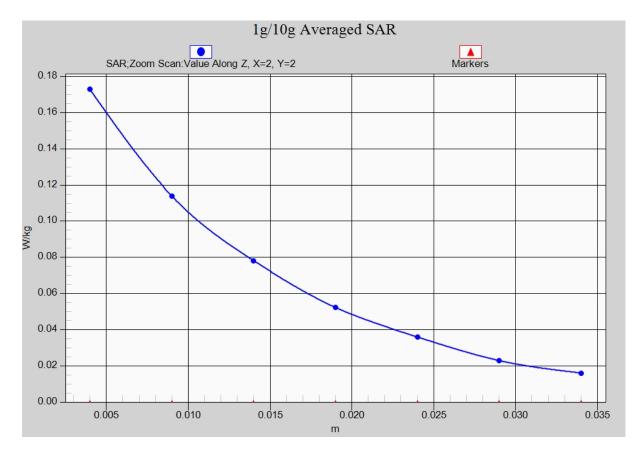


Figure A.6-1

WCDMA1900-BII_CH9538 Right Cheek

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1907.6 MHz; $\sigma = 1.401 \text{ mho/m}$; $\epsilon r = 40.749$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C

Communication System: WCDMA1900-BII 1907.6 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN7307 ConvF(8.1,8.1,8.1)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.639 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.122 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.829 W/kg

SAR(1 g) = 0.56 W/kg; SAR(10 g) = 0.355 W/kg

Maximum value of SAR (measured) = 0.614 W/kg

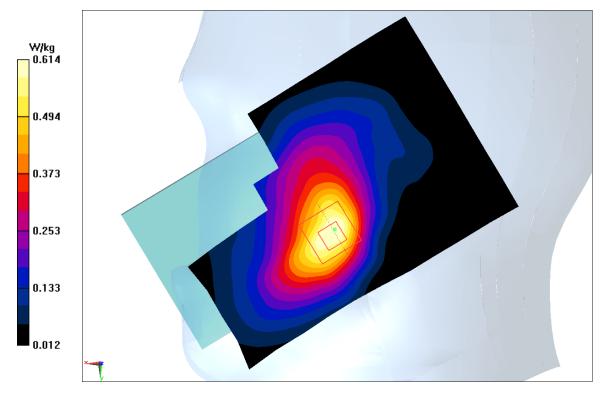


Figure A.7

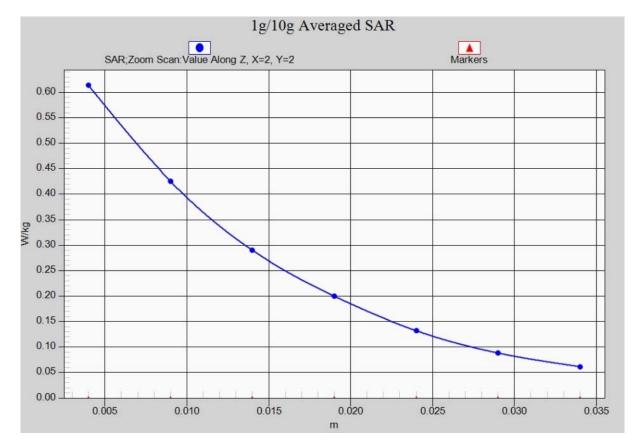


Figure A.7-1

WCDMA1900-BII_CH9262 Rear for 10mm

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.504 \text{ mho/m}$; $\epsilon r = 52.512$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN7307 ConvF(7.67,7.67,7.67)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.606 W/kg

\ 1

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.67 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.795 W/kg

SAR(1 g) = 0.49 W/kg; SAR(10 g) = 0.302 W/kg

Maximum value of SAR (measured) = 0.547 W/kg

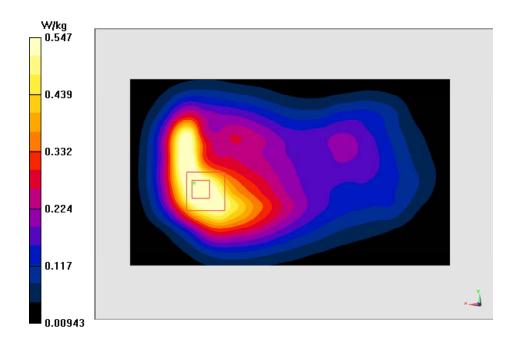


Figure A.8

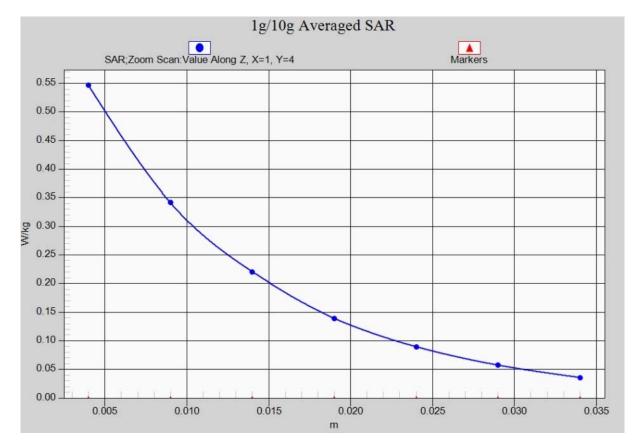


Figure A.8-1

WCDMA1900-BII_CH9262 Rear for 15mm

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.504 \text{ mho/m}$; $\epsilon r = 52.512$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.67,7.67,7.67)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.221 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.908 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.285 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.125 W/kg

Maximum value of SAR (measured) = 0.202 W/kg

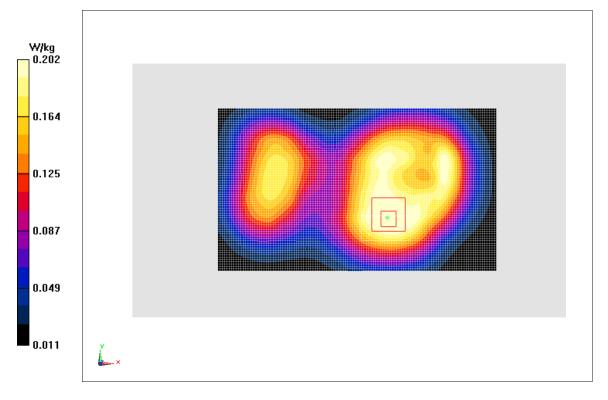


Figure A.9

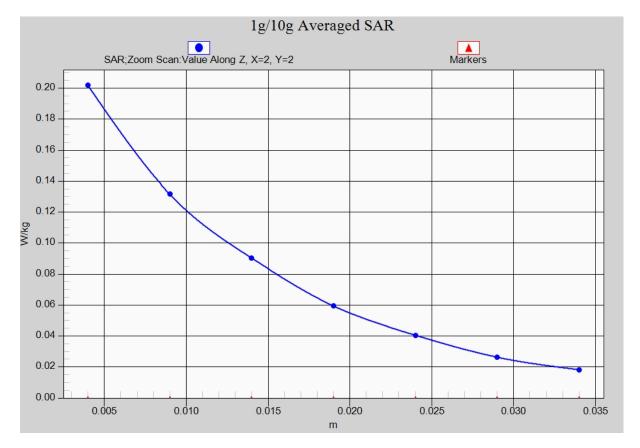


Figure A.9-1

LTE2500-FDD7_CH21350 Right Cheek

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.942 \text{ mho/m}$; $\epsilon r = 38.59$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN7307 ConvF(7.21,7.21,7.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.732 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.493 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.587 W/kg; SAR(10 g) = 0.309 W/kg

Maximum value of SAR (measured) = 0.742 W/kg

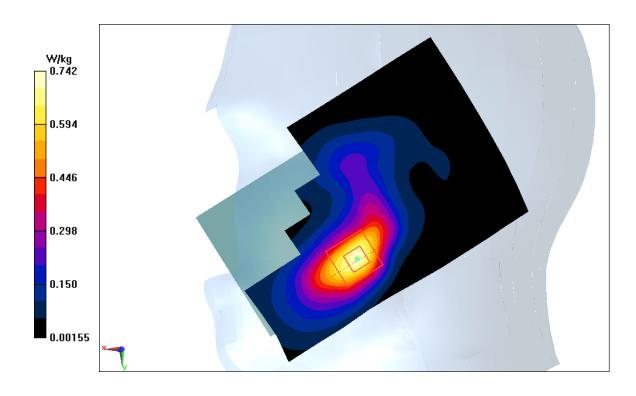


Figure A.10

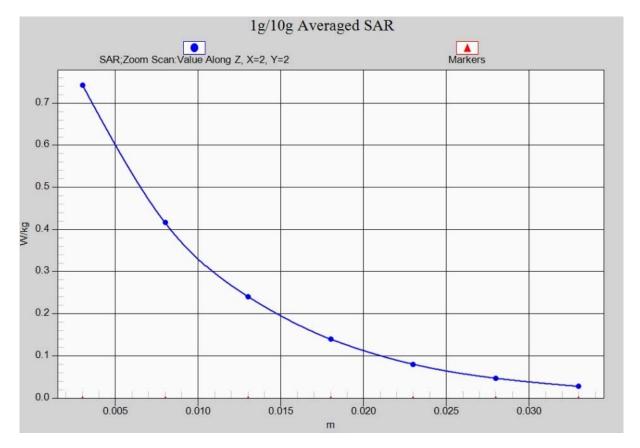


Figure A.10-1

LTE2500-FDD7_CH21350 Front for 10mm

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.172 \text{ mho/m}$; $\epsilon r = 53.113$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN7307 ConvF(7.03,7.03,7.03)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.08 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.098 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.853 W/kg; SAR(10 g) = 0.465 W/kg

Maximum value of SAR (measured) = 0.927 W/kg

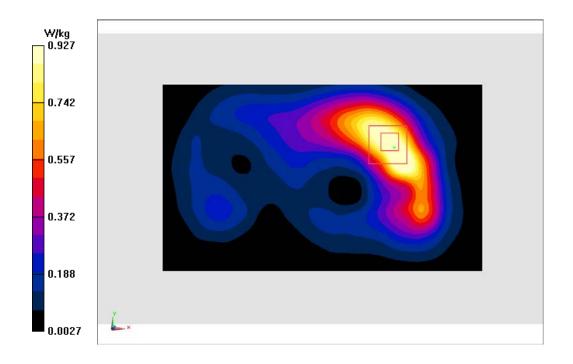


Figure A.11

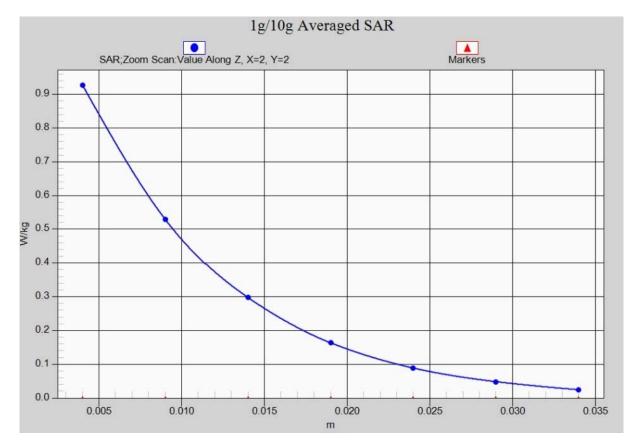


Figure A.11-1

LTE2500-FDD7_CH21350 Front for 15mm

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.172 \text{ mho/m}$; $\epsilon r = 53.113$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.03,7.03,7.03)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.447 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.080 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.650 W/kg

SAR(1 g) = 0.354 W/kg; SAR(10 g) = 0.194 W/kg

Maximum value of SAR (measured) = 0.423 W/kg

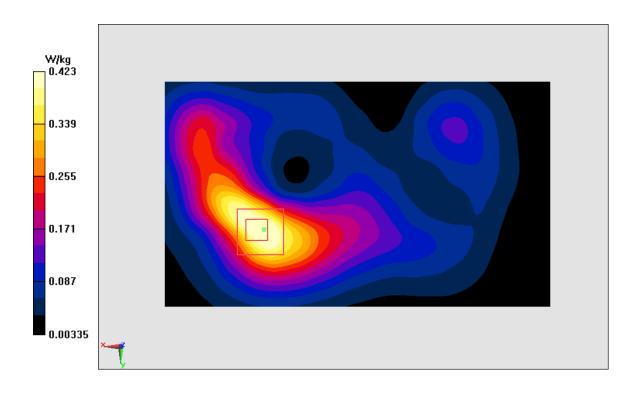


Figure A.12

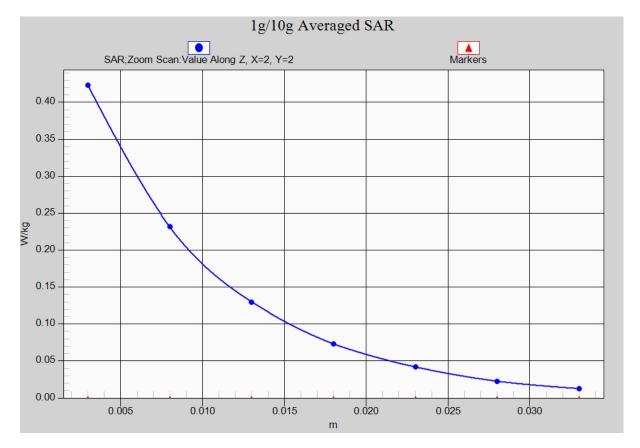


Figure A.12-1

WLAN_CH1 Right Cheek

Date: 1/3/2017

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.844$ mho/m; $\epsilon r = 39.179$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: WLAN 2412 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN7307 ConvF(7.36,7.36,7.36)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.75 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.032 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.4 W/kg

SAR(1 g) = 0.626 W/kg; SAR(10 g) = 0.277 W/kg

Maximum value of SAR (measured) = 0.794 W/kg

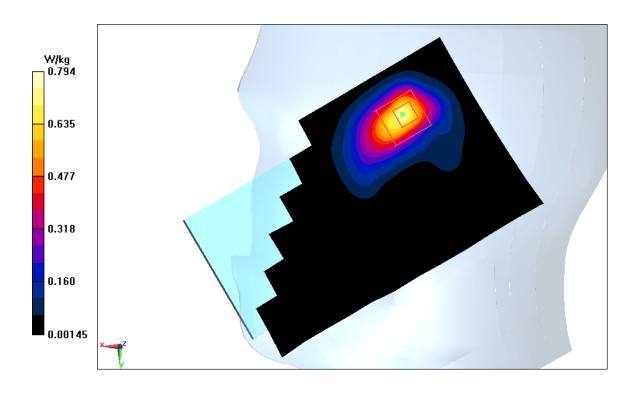


Figure A.13

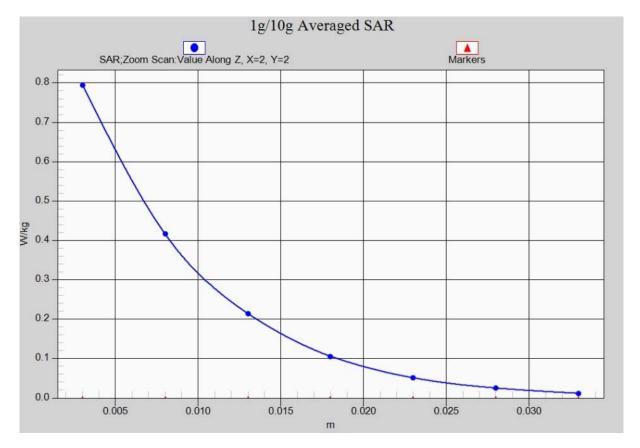


Figure A.13-1

WLAN_CH1 Rear for 10mm

Date: 1/3/2017

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.945$ mho/m; $\epsilon r = 52.496$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C Communication System: WLAN 2412 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN7307 ConvF(7.22,7.22,7.22)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 0.133 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.157 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.206 W/kg

SAR(1 g) = 0.111 W/kg; SAR(10 g) = 0.0553 W/kgMaximum value of SAR (measured) = 0.134 W/kg

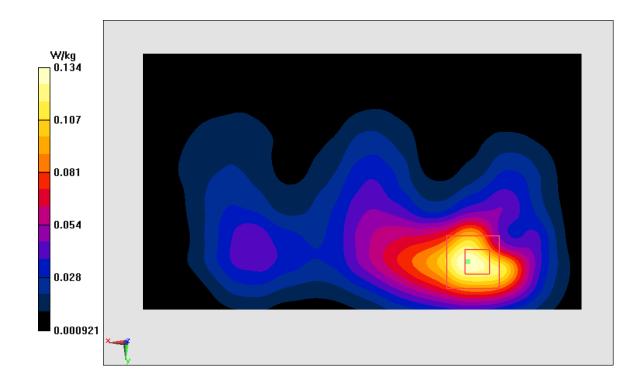


Figure A.14

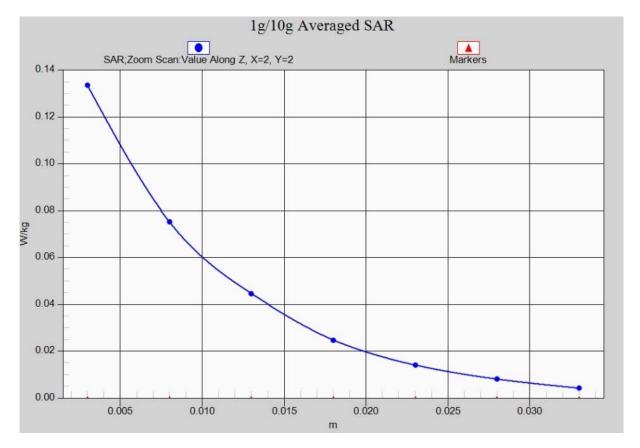


Figure A.14-1

WLAN_CH1 Rear for 15mm

Date: 1/3/2017

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.945$ mho/m; $\epsilon r = 52.496$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C, Liquid Temperature: 22.2°C

Communication System: LTE2500-FDD7 425.1 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.22,7.22,7.22)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.109 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.722 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.168 W/kg

SAR(1 g) = 0.09 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.111 W/kg

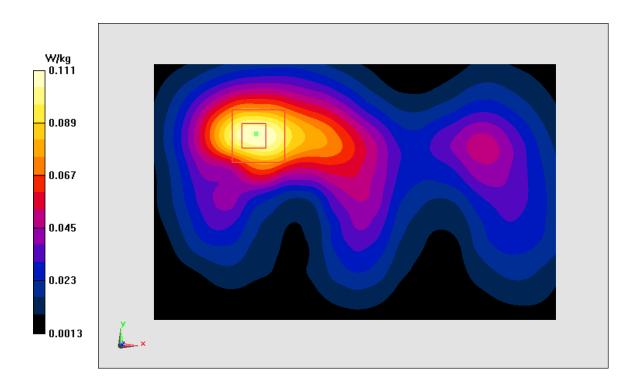


Figure A.15

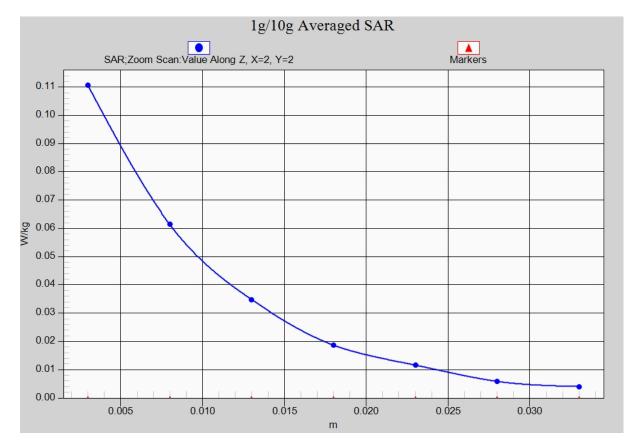


Figure A.15-1

ANNEX B System Verification Results

835 MHz

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.892$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.01,10.01,10.01)

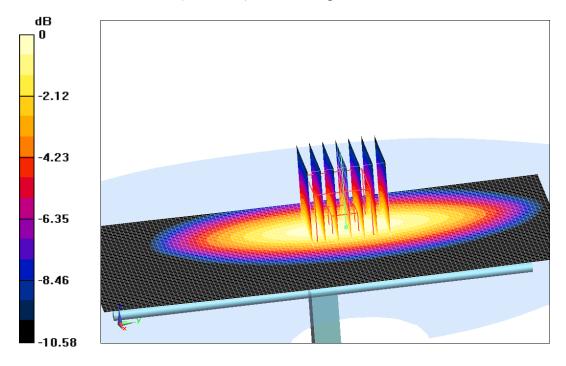
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 59.5 V/m; Power Drift = 0.02

Fast SAR: SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.52 W/kg

Maximum value of SAR (interpolated) = 3.22 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =59.5 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 3.37 W/kg

0 dB = 3.37 W/kg = 5.28 dB W/kg

Fig.B.1 validation 835 MHz 250mW

Date: 1/1/2017

Electronics: DAE4 Sn1331 Medium: Body 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.977$ mho/m; $\varepsilon_r = 54.29$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.83,9.83,9.83)

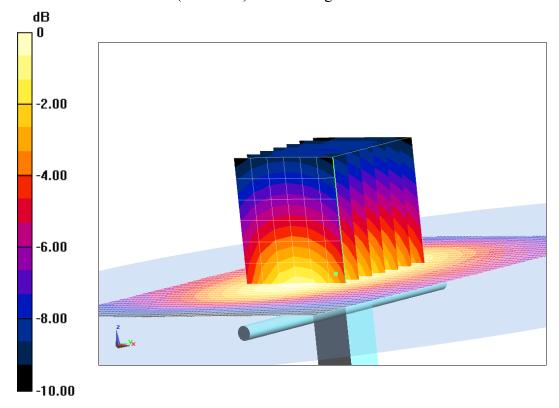
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 60.21 V/m; Power Drift = -0.01

Fast SAR: SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (interpolated) = 3.33 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =60.21 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (measured) = 3.29 W/kg

0 dB = 3.29 W/kg = 5.17 dB W/kg

Fig.B.2 validation 835 MHz 250mW

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.408 \text{ mho/m}$; $\varepsilon_r = 40.74$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.1,8.1,8.1)

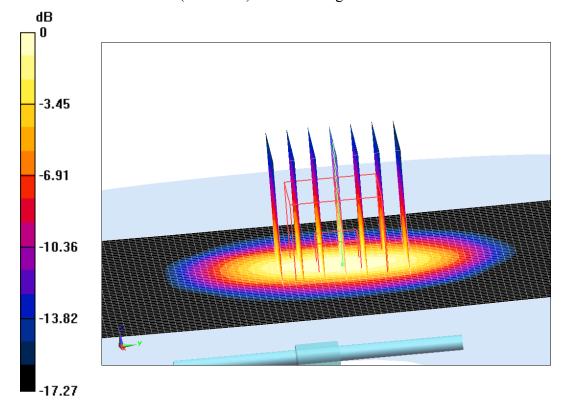
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 109.73 V/m; Power Drift = -0.01

Fast SAR: SAR(1 g) = 10.38 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (interpolated) = 15.43 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =109.73 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 18.98 W/kg

SAR(1 g) = 10.19 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (measured) = 16.02 W/kg

0 dB = 16.02 W/kg = 12.05 dB W/kg

Fig.B.3 validation 1900 MHz 250mW

Date: 1/2/2017

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.515 \text{ mho/m}$; $\varepsilon_r = 52.48$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.67,7.67,7.67)

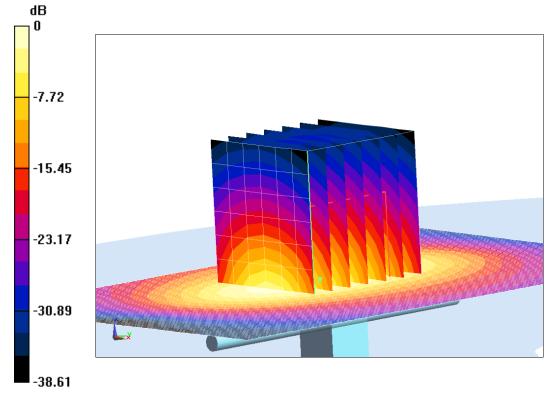
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 104.7 V/m; Power Drift = -0.02

Fast SAR: SAR(1 g) = 10.12 W/kg; SAR(10 g) = 5.27 W/kg

Maximum value of SAR (interpolated) = 14.77 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.7 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.35 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (measured) = 15.2 W/kg

0 dB = 15.2 W/kg = 11.82 dB W/kg

Fig.B.4 validation 1900 MHz 250mW

Date: 1/3/2017

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.836 \text{ mho/m}$; $\varepsilon_r = 39.19$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.36,7.36,7.36)

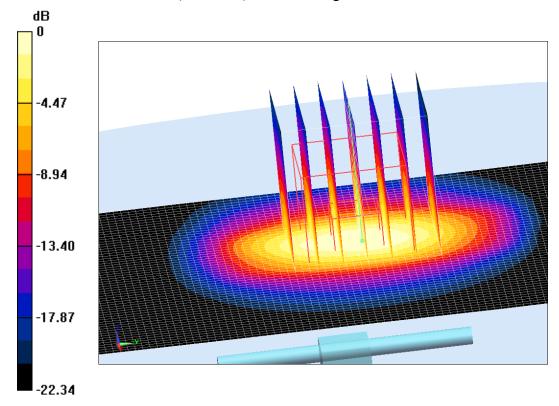
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 115.9 V/m; Power Drift = 0

Fast SAR: SAR(1 g) = 13.16 W/kg; SAR(10 g) = 6.08 W/kg

Maximum value of SAR (interpolated) = 22.25 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =115.9 V/m; Power Drift = 0 dB

Peak SAR (extrapolated) = 27.85 W/kg

SAR(1 g) = 13.19 W/kg; SAR(10 g) = 6.25 W/kg

Maximum value of SAR (measured) = 22.02 W/kg

0 dB = 22.02 W/kg = 13.43 dB W/kg

Fig.B.5 validation 2450 MHz 250mW

Date: 1/3/2017

Electronics: DAE4 Sn1331 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.938 \text{ mho/m}$; $\varepsilon_r = 52.52$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.22,7.22,7.22)

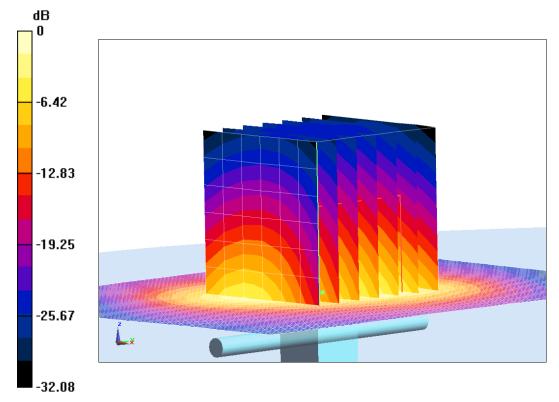
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 106.02 V/m; Power Drift = 0

Fast SAR: SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (interpolated) = 21.73 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =106.02 V/m; Power Drift = 0 dB

Peak SAR (extrapolated) = 26.34 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.12 W/kg

Maximum value of SAR (measured) = 21.42 W/kg

0 dB = 21.42 W/kg = 13.31 dB W/kg

Fig.B.6 validation 2450 MHz 250mW

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.938 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.21,7.21,7.21)

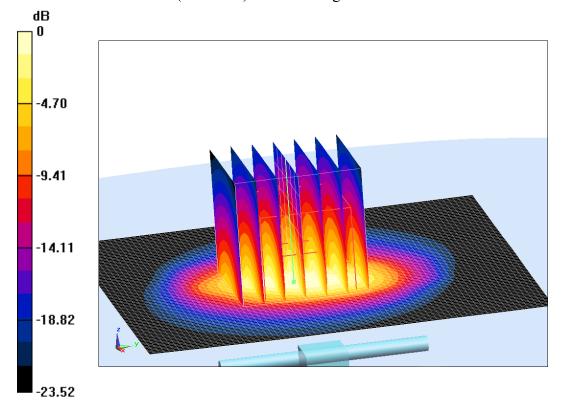
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 115.2 V/m; Power Drift = 0.01

Fast SAR: SAR(1 g) = 13.98 W/kg; SAR(10 g) = 6.23 W/kg

Maximum value of SAR (interpolated) = 24 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =115.2 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.04 W/kg

SAR(1 g) = 13.93 W/kg; SAR(10 g) = 6.37 W/kg

Maximum value of SAR (measured) = 24.66 W/kg

0 dB = 24.66 W/kg = 13.92 dB W/kg

Fig.B.7 validation 2600 MHz 250mW

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Body 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.167 \text{ mho/m}$; $\varepsilon_r = 53.29$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.03,7.03,7.03)

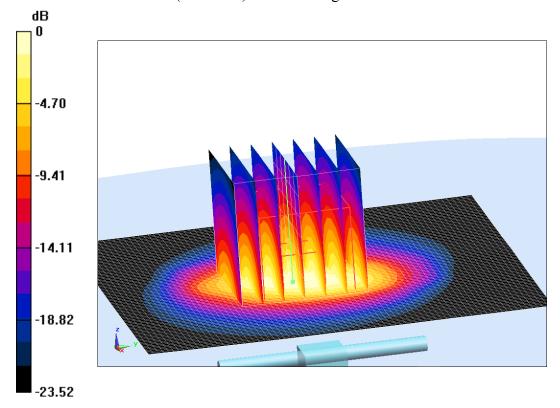
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 107.45 V/m; Power Drift = 0.01

Fast SAR: SAR(1 g) = 14.25 W/kg; SAR(10 g) = 6.42 W/kg

Maximum value of SAR (interpolated) = 23.06 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.45 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.23 W/kg

SAR(1 g) = 13.93 W/kg; SAR(10 g) = 6.27 W/kg

Maximum value of SAR (measured) = 23.14 W/kg

0 dB = 23.14 W/kg = 13.64 dB W/kg

Fig.B.8 validation 2600 MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification

Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2017-1-1	835	Head	2.34	2.33	0.43
	835	Body	2.34	2.39	-2.09
2017-1-2	1900	Head	10.38	10.19	1.86
	1900	Body	10.12	10.35	-2.22
2017-1-3	2450	Head	13.16	13.19	-0.23
	2450	Body	13.2	13.3	-0.75
2017-1-4	2600	Head	13.98	13.93	0.36
	2600	Body	14.25	13.93	2.30

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.