

FCC RF Test Report

Product Name: HSPA Module

Product Model: MU609

Report Number: SYBH(Z-RF)018022013-2001

FCC ID: QISMU609

Reliability Laboratory of Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

- 1. The laboratory has Passed the accreditation by China National Accreditation Service for Conformity Assessment (CNAS). The accreditation number is L0310.
- 2. The laboratory has Passed the accreditation by The American Association for Laboratory Accreditation (A2LA). The accreditation number is 2174.01.
- 3. The laboratory has been listed by the US Federal Communications Commission to perform electromagnetic emission measurements. The site recognition number is 97456.
- 4. The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 6369A-2.
- 5. The laboratory has been listed by the VCCI to perform EMC measurements. The accreditation numbers of test site No.1 are R-2364, G-415, C-2583, and T-256, and the accreditation numbers of test site No.2 are R-3760, G-485, C-4210 and T-1237.
- 6. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 7. The test report is invalid if there is any evidence of erasure and/or falsification.
- 8. The test report is only valid for the test samples.
- 9. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

Applicant: Huawei Technologies Co., Ltd.

Address: Administration Building, Headquarters of Huawei Technologies Co., Ltd.,

Bantian, Longgang District, Shenzhen, 518129, P.R.C

Product Name: HSPA Module

Product Model: MU609

Date of Receipt Sample:2013-03-05Start Date of Test:2013-03-08End Date of Test:2013-03-15

Test Result: Pass

Approved by Senior2013-03-18Dai LinjunEngineer:DateNameSignature

Prepared by:

2013-03-18 Ling Kaiyun

Date Name Signature

Modification Record

No.	Last Report No.	Modification Description	
1		First report.	

CONTENT

1	Gener	al Information	6		
	1.1	Applied Standard	6		
	1.2	Test Location	6		
	1.3	Test Environment Condition	6		
2	Test S	Summary	7		
	2.1	Cellular Band (824-849 MHz paired with 869-894 MHz)	7		
	2.2	PCS Band (1850-1915 MHz paired with 1930-1995 MHz)	8		
3	Descri	ption of the Equipment under Test (EUT)	9		
	3.1	General Description	g		
	3.2	EUT Identity	9		
	3.3	Technical Specification	g		
4	Gener	al Test Conditions / Configurations	11		
	4.1	Test Modes	11		
	4.2	Test Environment	11		
	4.3	Test Frequency	11		
	4.4	DESCRIPTION OF TESTS	13		
	4.5	Test Setups	16		
	4.6	Test Conditions	18		
5	Main 7	Fest Instruments	20		
6	Maggurament Uncertainty				

1 General Information

1.1 Applied Standard

Applied Rules: 47 CFR FCC Part 02:2012

47 CFR FCC Part 22: 2012 47 CFR FCC Part 24: 2012

Test Method: FCC KDB 971168 D01 Power Meas License Digital Systems v02

FCC KDB 662911 D01 Multiple Transmitter Output v01r2

1.2 Test Location

Test Location 1: Reliability Laboratory of Huawei Technologies Co., Ltd.

Address: Administration Building, Headquarters of Huawei Technologies Co., Ltd.,

Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.3 Test Environment Condition

Ambient Temperature: 19.5 to 25 °C

Ambient Relative Humidity: 40 to 55 %

Atmospheric Pressure: Not applicable

2 Test Summary

2.1 Cellular Band (824-849 MHz paired with 869-894 MHz)

Test Item	FCC Rule No.	Requirements	Test Result	Verdict
				(NOTE 2)
Output Power Data	§2.1046,	FCC: ERP ≤ 7 W	Appendix A	Pass
	§22.913			
Modulation	§2.1047	Digital modulation	Appendix C	Pass
Characteristics	32.1047	Digital modulation	Appendix C	1 033
Bandwidth	§2.1049,	OBW: No limit.	Appendix D	Pass
	§22.917	EBW: No limit.		
Band Edges	§2.1051,	≤ -13 dBm/1%*EBW, in 1 MHz bands	Appendix E	Pass
Compliance	§22.917	immediately outside and adjacent to the		
		frequency block.		
Spurious Emission at	§2.1051,	FCC: ≤ -13 dBm/100 kHz, from 9 kHz to	Appendix F	Pass
Antenna Terminals	§22.917	10 th harmonics but outside authorized		
		operating frequency ranges.		
Field Strength of	§2.1053,	FCC: ≤ -13 dBm/100 kHz.	Appendix G	Pass
Spurious Radiation	§22.917			
Frequency Stability	§2.1055,	≤ ±2.5ppm.	Appendix H	Pass
	§22.355			

NOTE 1: For Receiver Spurious Emissions, If the receiver has a detachable antenna of known impedance, antenna conducted spurious emissions measurement is permitted as an alternative to radiated measurement. However, the radiated method is recommended. The antenna conducted test shall be performed with the antenna disconnected and the receiver antenna terminals connected to a measuring instrument having equal impedance to that specified for the antenna.

NOTE 2: For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested".

2.2 PCS Band (1850-1915 MHz paired with 1930-1995 MHz)

Test Item	FCC Rule No.	Requirements	Test Result	Verdict (NOTE 2)
Output Power	§2.1046,	EIRP ≤ 2 W	Appendix A	Pass
Data	§24.232			
Peak-Average	§2.1046,	Book Average Batio < 12 dB	Annondiy D	Pass
Ratio	§24.232	Peak-Average Ratio ≤ 13 dB	Appendix B	Pass
Modulation Characteristics	§2.1047	Digital modulation	Appendix C	Pass
Bandwidth	§2.1049,	OBW: No limit.	Appendix D	Pass
	§22.917	EBW: No limit.		
Band Edges	§2.1051,	≤ -13 dBm/1%*EBW, in 1 MHz bands	Appendix E	Pass
Compliance	§24.238	immediately outside and adjacent to		
		the frequency block.		
Spurious	§2.1051,	\leq -13 dBm/1 MHz, from 9 kHz to 10 th	Appendix F	Pass
Emission at	§24.238	harmonics but outside authorized		
Antenna		operating frequency ranges.		
Terminals				
Field Strength of	§2.1053,	≤ -13 dBm/1 MHz.	Appendix G	Pass
Spurious	§24.238			
Radiation				
Frequency	§2.1055,	FCC: within authorized frequency	Appendix H	Pass
Stability	§24.235	block.		

NOTE 1: For Receiver Spurious Emissions, If the receiver has a detachable antenna of known impedance, antenna conducted spurious emissions measurement is permitted as an alternative to radiated measurement.

However, the radiated method is recommended. The antenna conducted test shall be performed with the antenna disconnected and the receiver antenna terminals connected to a measuring instrument having equal impedance to that specified for the antenna.

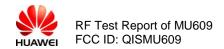
NOTE 2: For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested".

3 <u>Description of the Equipment under Test (EUT)</u>

3.1 General Description

MU609 HSPA/WCDMA(UMTS)/GSM/GPRS/EDGE dual mode Wireless Module is subscriber equipment in the UMTS/GSM system. MU609 implement such functions as RF signal receiving/transmitting, HSPA/WCDMA and EDGE/GPRS/GSM protocol processing, data service etc. Externally it provides LGA interface.

3.2 EUT Identity


NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

3.2.1 **Board**

Board			
Hardware Version	Description		
MD1MU609M01	11.103.59.00.00	Main board	

3.3 Technical Specification

Characteristics	Description			
Radio System Type	⊠ GSM			
	☑ UMTS			
Supported Frequency Range	GSM850		Transmission (TX):	824-849 MHz
	GSIVIOSO		Receiving (RX):	869-894 MHz
	GSM1900		Transmission (TX):	1850-1910 MHz
	GSW1900		Receiving (RX):	1930-1990 MHz
	WCDMA850		Transmission (TX):	824-849 MHz
	WCDIVIA650		Receiving (RX):	869-894 MHz
	WCDMA1900		Transmission (TX):	1850-1910 MHz
	WCDIVIA 1900		Receiving (RX):	1930-1990 MHz
TX and RX Antenna Ports	TX & RX port:		1	
Target TX Output Power	GSM850:	32.5dBm		
	GSM1900:	29.5dBm		
	UMTS1900:	23.5dBm		
	UMTS850:	23.5dBm		
Supported Channel Bandwidth	GSM system:			
	UMTS system:		⊠ 5 MHz	
Designation of Emissions	GSM850:		247KGXW, 247KG7W	I
(Note: the necessary bandwidth of	GSM1900:		245KGXW, 245KG7W	I
which is the worst value from the	UMTS 850:		4M14F9W	
measured occupied bandwidths for	UMTS 1900:		4M15F9W	

Characteristics	Description	
each type of channel bandwidth		
configuration.)		

4 General Test Conditions / Configurations

4.1 Test Modes

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description	
GSM/TM1	GSM system, GSM/GPRS, GMSK modulation	
GSM/TM2	GSM system, EDGE, 8PSK modulation	
UMTS/TM1	WCDMA system, QPSK modulation	
UMTS/TM2	HSDPA system, QPSK modulation	
UMTS/TM3	HSUPA system, QPSK modulation	

4.2 Test Environment

Environment Parameter	Selected Values During Tests	
Relative Humidity	Ambient	
Temperature	TN	Ambient
	VL	3.3V
Voltage	VN	3.8V
	VH	4.2V

NOTE1: VL= lower extreme test voltage

VN= nominal voltage

VH= upper extreme test voltage

TN= normal temperature

4.3 Test Frequency

Test Mode	TX/RX	RF Channel			
rest wode		Low (L)	Middle (M)	High (H)	
	TX	Channel 128	Channel 190	Channel 251	
GSM/TM1&	17	824.2MHz	836.6MHz	848.8MHz	
GSM/TM2	RX	Channel 128	Channel 190	Channel 251	
		869.2MHz	881.6MHz	893.8MHz	
GSM/TM1&	TX	Channel 512	Channel 661	Channel 810	

Took Mode	TV / DV	RF Channel			
Test Mode	TX/RX	Low (L)	Middle (M)	High (H)	
GSM/TM2		1850.2MHz	1880.0MHz	1909.8MHz	
	D.V.	Channel 512	Channel 661	Channel 810	
	RX	1930.2 MHz	1960.0 MHz	1989.8 MHz	
	TV	Channel 4132	Channel 4182	Channel 4233	
UMTS/TM1&	TX	826.4MHz	836.4MHz	846.6MHz	
UMTS/TM2& UMTS/TM3	RX	Channel 4357	Channel 4407	Channel 4458	
	, KA	871.4MHz	881.4MHz	891.6MHz	
	TX	Channel 9262	Channel 9400	Channel 9538	
UMTS/TM1& UMTS/TM2&	17	1852.4MHz	1880.0MHz	1907.6MHz	
UMTS/TM2&		Channel 9662	Channel 9800	Channel 9938	
	RX	1932.4 MHz	1960.0 MHz	1987.6 MHz	

4.4 DESCRIPTION OF TESTS

4.4.1 Radiated Power and Radiated Spurious Emissions

Radiated spurious emissions are investigated indoors in a semi-anechoic chamber to determine the frequencies producing the worst case emissions. Final measurements for radiated power and radiated spurious emissions are performed on the 3 meter OATS per the guidelines of ANSI/TIA-603-C-2004. The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Emissions are also investigated with the receive antenna horizontally and vertically polarized.

A portable or small unlicensed wireless device shall be placed on a non-metallic test fixture or other non-metallic support during testing. The supporting fixture shall permit orientation of the EUT in each of three orthogonal (x, y, z) axis positions such that emissions from the EUT are maximized. Measure the EUT maximum RF power and record the result.

A half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi]

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg [dBm] – cable loss [dB].

The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]).

Note: Reference test setup 3

4.4.2 Occupied Bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.

Note: Reference test setup 1.

4.4.3 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

Note: Reference test setup 1.

4.4.4 Peak-Average Ratio

A peak to average ratio measurement is performed at the conducted port of the EUT. For WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth. The traces are generated with the spectrum analyzer set to zero span mode.

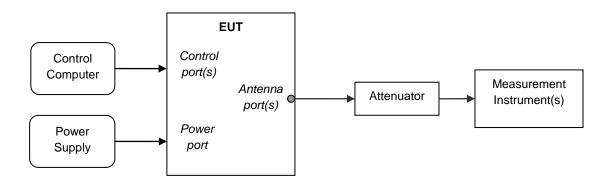
Note: Reference test setup 1.

4.4.5 Frequency Stability / Temperature Variation

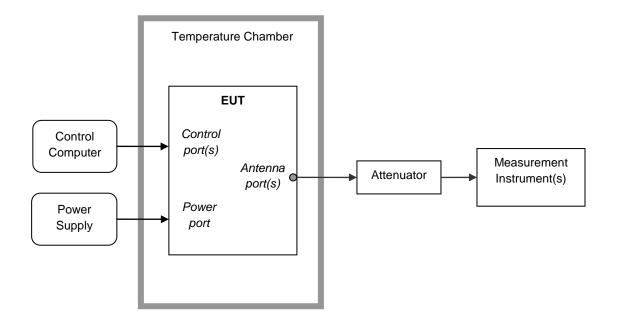
Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency.

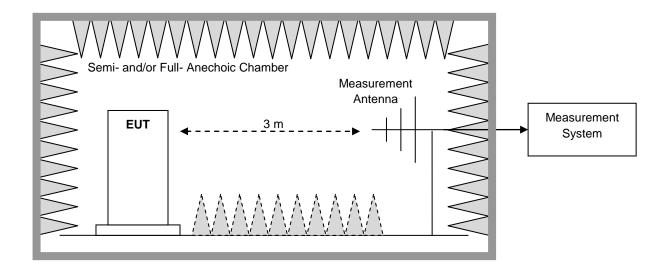

Time Period and Procedure:

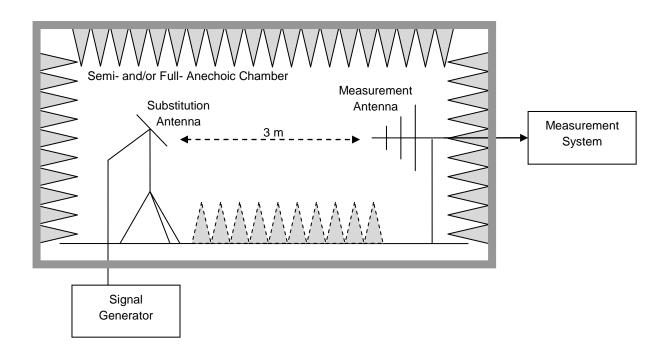
- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.


Note: Reference test setup 2.

4.5 Test Setups

4.5.1 Test Setup 1


4.5.2 Test Setup 2


4.5.3 Test Setup 3

NOTE: Effective radiated power (ERP) refers to the radiation power output of the EUT, assuming all emissions are radiated from half-wave dipole antennas.

4.5.3.1 Step 1: Pre-test

4.5.3.2 Step 2: Substitution method to verify the maximum ERP

4.6 Test Conditions

Test Case		Test Condition	s
Transmitter	Average Power,	Test Env.	Ambient Climate & Rated Voltage
Output	Total	Test Setup	Test Seup 1
Power		RF Channels	L, M, H
		(TX)	(L= low channel, M= middle channel, H= high channel)
		Test Mode	GSM/TM1& GSM/TM2&UMTS/TM1
	Peak-to-Average	Test Env.	Ambient Climate & Rated Voltage
	Ratio	Test Setup	Test Seup 1
	(if required)	RF Channels	L, M, H
		(TX)	(L= low channel, M= middle channel, H= high channel)
		Test Mode	GSM/TM1& GSM/TM2&UMTS/TM1
Bandwidth	Occupied	Test Env.	Ambient Climate & Rated Voltage
	Bandwidth	Test Setup	Test Seup 1
		RF Channels	L, M, H
		(TX)	(L= low channel, M= middle channel, H= high channel)
		Test Mode	GSM/TM1& GSM/TM2&UMTS/TM1
	Emission	Test Env.	Ambient Climate & Rated Voltage
	Bandwidth	Test Setup	Test Seup 1
	(if required)	RF Channels	L, M, H
		(TX)	(L= low channel, M= middle channel, H= high channel)
		Test Mode	GSM/TM1& GSM/TM2&UMTS/TM1
Band Edges (Compliance	Test Env.	Ambient Climate & Rated Voltage
		Test Setup	Test Seup 1
		RF Channels	L, M, H
		(TX)	(L= low channel, M= middle channel, H= high channel)
		Test Mode	GSM/TM1& GSM/TM2&UMTS/TM1
Spurious Emi	ssion at Antenna	Test Env.	Ambient Climate & Rated Voltage
Terminals		Test Setup	Test Seup 1
		RF Channels	L, M, H
		(TX)	(L= low channel, M= middle channel, H= high channel)
		Test Mode	GSM/TM1& GSM/TM2&UMTS/TM1
Field Strength of Spurious Test Env.		Test Env.	Ambient Climate & Rated Voltage
Radiation Test Setup		Test Setup	Test Seup 3
	Test Mod		GSM/TM1& GSM/TM2&UMTS/TM1&UMTS/TM2&UMTS/TM3
			NOTE: If applicable, the EUT conf. that has maximum power
			density (based on the equivalent power level) is
			selected.
		RF Channels	L, M, H
		(TX)	(L= low channel, M= middle channel, H= high channel)

Test Case	Test Conditions		
Frequency Stability	Test Env.	(1) -30 °C to +50 °C with step 10 °C at Rated Voltage;	
		(2) 85%, 100% and 115% of Rated Voltage at Ambient Climate.	
	Test Setup	Test Seup 2	
	RF Channels	L, M, H	
	(TX)	(L= low channel, M= middle channel, H= high channel)	
	Test Mode	GSM/TM1& GSM/TM2&UMTS/TM1	

5 <u>Main Test Instruments</u>

Equipment Name	Manufacturer	Model	Serial Number	Cal Date	Cal. Due
Power supply	KEITHLEY	2303	1288003	2012-11-19	2014-11-18
Universal Radio Communication Tester	R&S	CMU200	123299	2012-09-20	2013-09-19
Spectrum Analyzer	Agilent	E4440A	MY48250119	2012-08-20	2013-08-19
Signal Analyzer	R&S	FSQ31	200021	2012-11-09	2013-11-08
Universal Radio Communication Tester	Agilent	E5515C	MY50260239	2012-11-09	2013-11-08
Temperature Chamber	WEISS	WKL64	562460029400 10	2013-01-29	2014-01-28
Signal generator	Agilent	E8257D	MY49281095	2012-09-14	2013-09-13
Vector Signal Generator	R&S	SMU200A	104162	2012-10-16	2013-10-15
Spectrum analyzer	R&S	FSU3	200474	2013-01-29	2014-01-28
Spectrum analyzer	R&S	FSU43	100144	2013-01-29	2014-01-28
Double-Ridged Waveguide Horn Antenna (1G~18GHz)	R&S	HF907	100304	2013-02-02	2014-02-01
Double-Ridged Waveguide Horn Antenna (1G~18GHz)	R&S	HF907	100391	2011-10-12	2013-10-11
Trilog Broadband Antenna (30M~3GHz)	SCHWARZB ECK	VULB 9163	9163-521	2011-12-09	2013-12-08
Pyramidal Horn Antenna(18GHz-26. 5GHz)	ETS-Lindgren	3160-09	00091989	2011-10-20	2013-10-19

6 <u>Measurement Uncertainty</u>

For a 95% confidence level (k = 2), the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Test Item		Extended Uncertainty	
RF Power Output	Power [dBm]	U = 0.39 dB	
Bandwidth	Magnitude [%]	U = 0.2%	
Band Edge Compliance	Disturbance Power [dBm]	U = 2.0 dB	
Spurious Emissions, Conducted	Disturbance Power [dBm]	U = 2.0 dB	
Field Strength of Spurious Radiation	ERP [dBm]	For 3 m Chamber:	
		U = 4.6 dB (30 MHz to 1GHz)	
		U = 3.0 dB (above 1 GHz)	
		For 10 m Chamber:	
		U = 4.6 dB (30 MHz to 1GHz)	
		U = 3.0 dB (above 1 GHz)	
Frequency Stability	Frequency Accuracy [ppm]	U = 0.21 ppm	

END