Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Client

Auden

Certificate No: Z15-97104

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3071

Calibration Procedure(s)

FD-Z11-2-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 28, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

01919 01547 01548 BN50W-10dB BN50W-20dB N 7307 N 771	01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15)	Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16
01548 BN50W-10dB BN50W-20dB N 7307	01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15)	Jun-16 Mar-16 Mar-16 Feb-16
BN50W-10dB BN50W-20dB N 7307	13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15)	Mar-16 Mar-16 Feb-16
BN50W-20dB N 7307	13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15)	Mar-16 Feb-16
N 7307	27-Feb-15(SPEAG,No.EX3-7307_Feb15)	Feb-16
N 771		lan 10
		Jan -16
#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
01052605	01-Jul-15 (CTTL, No.J15X04255)	Jun-16
Y46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16
ne	Function	Signature
Zongying	SAR Test Engineer	and the second
Dianyuan	SAR Project Leader	& BR
Bingsong	Deputy Director of the laboratory	be into
Y	01052605 /46110673 e Zongying Dianyuan	01052605 01-Jul-15 (CTTL, No.J15X04255) (46110673 03-Feb-15 (CTTL, No.J15X00728) e Function Zongying SAR Test Engineer Dianyuan SAR Project Leader

Issued: September 30, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97104

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ of rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z15-97104 Page 2 of 11

Probe ES3DV3

SN: 3071

Calibrated: September 28, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3071

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	1.09	1.18	0.98	±10.8%
DCP(mV) ^B	103.9	103.6	102.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)	
0 CW	CW	X	0.0	0.0	1.0	0.00	287.7	±2.4%	
			Y	0.0	0.0	1.0		298.3	
			Z	0.0	0.0	1.0		269.1	7

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). B Numerical linearization parameter: uncertainty not required.

Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3071

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	5.83	5.83	5.83	0.56	1.21	±12%
850	41.5	0.92	5.59	5.59	5.59	0.35	1.58	±12%
900	41.5	0.97	5.71	5.71	5.71	0.26	1.99	±12%
1450	40.5	1.20	5.12	5.12	5.12	0.29	1.65	±12%
1750	40.1	1.37	4.75	4.75	4.75	0.58	1.31	±12%
1900	40.0	1.40	4.71	4.71	4.71	0.44	1.56	±12%
2000	40.0	1.40	4.56	4.56	4.56	0.37	1.77	±12%
2450	39.2	1.80	4.33	4.33	4.33	0.75	1.18	±12%
2600	39.0	1.96	4.17	4.17	4.17	0.84	1.11	±12%

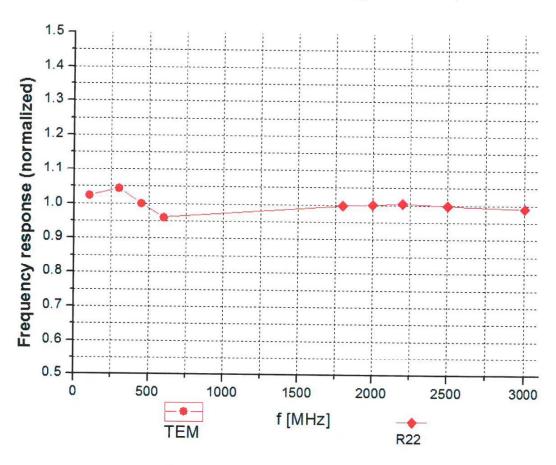
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3071

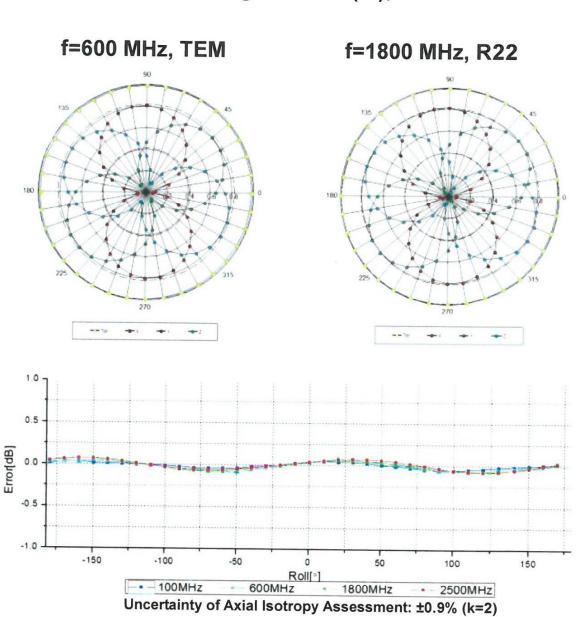
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	5.82	5.82	5.82	0.33	1.50	±12%
850	55.2	0.99	5.74	5.74	5.74	0.38	1.60	±12%
900	55.0	1.05	5.63	5.63	5.63	0.42	1.52	±12%
1450	54.0	1.30	4.92	4.92	4.92	0.38	1.61	±12%
1750	53.4	1.49	4.55	4.55	4.55	0.56	1.34	±12%
1900	53.3	1.52	4.26	4.26	4.26	0.58	1.35	±12%
2000	53.3	1.52	4.37	4.37	4.37	0.58	1.39	±12%
2450	52.7	1.95	4.03	4.03	4.03	0.76	1.23	±12%
2600	52.5	2.16	3.88	3.88	3.88	0.84	1.13	±12%

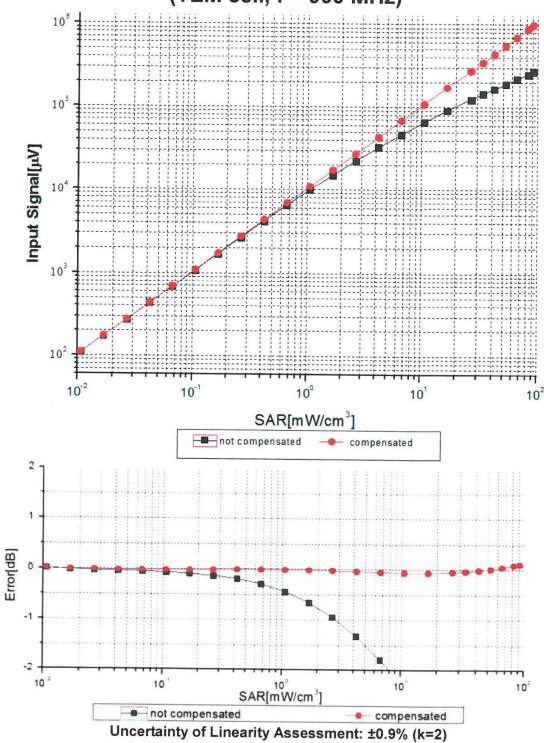

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

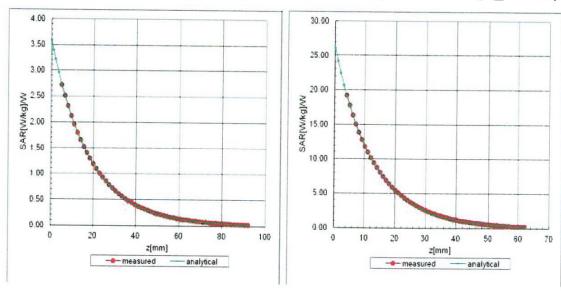
Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

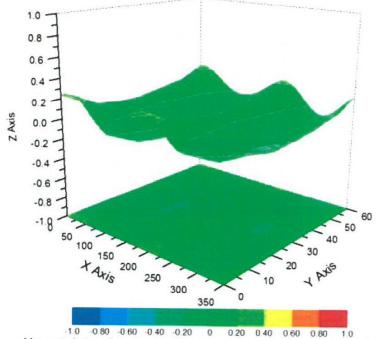


Receiving Pattern (Φ), θ=0°

Dynamic Range $f(SAR_{head})$ (TEM cell, f = 900 MHz)

Certificate No: Z15-97104


Page 9 of 11


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2)

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3071

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	70.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm