10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.77	66.73	16.68	0.46	130.0	± 9.6 %
	Joo, Jopa day Joio,	Y	4.75	66.92	16.84		130.0	
<u> </u>		Z	4.68	66.67	16.50		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	4.91	67.06	16.81	0.46	130.0	± 9.6 %
7001	most, sept and system	Y	4.89	67.25	16.97		130.0	
		Z	4.81	66.98	16.63		130.0	
10593- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	Х	4.83	66.95	16.68	0.46	130.0	± 9.6 %
		Y	4.81	67.13	16.83		130.0	
		Z	4.73	66.86	16.49		130.0	
10594- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	Х	4.89	67.12	16.84	0.46	130.0	± 9.6 %
		Y	4.87	67.32	17.00		130.0	
		Z	4.79	67.04	16.65		130.0	
10595- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	Х	4.85	67.08	16.74	0.46	130.0	± 9.6 %
		Y	4.83	67.28	16.90		130.0	
		Z	4.75	67.00	16.55		130.0	
10596- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.79	67.07	16.74	0.46	130.0	± 9.6 %
		Υ	4.77	67.26	16.90		130.0	
		Z	4.68	66.97	16.55		130.0	
10597- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	Х	4.74	66.96	16.61	0.46	130.0	± 9.6 %
		Y	4.72	67.14	16.76		130.0	
		Z	4.63	66.85	16.41		130.0	
10598- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.72	67.19	16.88	0.46	130.0	± 9.6 %
		Y	4.71	67.41	17.06		130.0	
100000000000000000000000000000000000000		Z	4.62	67.09	16.68		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.45	67.25	16.90	0.46	130.0	± 9.6 %
		Y	5.44	67.41	17.04		130.0	
		Z	5.35	67.14	16.71		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.60	67.73	17.11	0.46	130.0	± 9.6 %
		Y	5.59	67.89	17.25		130.0	
		Z	5.47	67.54	16.89		130.0	
10601- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.48	67.44	16.98	0.46	130.0	± 9.6 %
		Y	5.46	67.59	17.12		130.0	
		Z	5.37	67.30	16.79		130.0	
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.60	67.56	, 16.96	0.46	130.0	± 9.6 %
		Y	5.59	67.73	17.10		130.0	
		Z	5.50	67.48	16.79		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	Х	5.66	67.82	17.23	0.46	130.0	± 9.6 %
		Y	5.66	68.02	17.39		130.0	
	*	Z	5.57	67.76	17.07		130.0	
10604- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.51	67.41	17.01	0.46	130.0	± 9.6 %
		Y	5.53	67.68	17.20		130.0	
		Z	5.45	67.41	16.88		130.0	
10605- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	Х	5.59	67.64	17.11	0.46	130.0	± 9.6 %
		Y	5.58	67.78	17.24		130.0	
		Z	5.47	67.46	16.90		130.0	
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.30	66.84	16.57	0.46	130.0	± 9.6 %
		Y	5.29	66.99	16.70		130.0	

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.62	66.08	16.32	0.46	130.0	± 9.6 %
		Y	4.61	66.32	16.51		130.0	
		Z	4.53	66.01	16.14		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.79	66.47	16.49	0.46	130.0	± 9.6 %
		Y	4.78	66.70	16.67		130.0	
		Z	4.69	66.38	16.30		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	Х	4.68	66.31	16.32	0.46	130.0	± 9.6 %
		Y	4.67	66.53	16.49		130.0	
10010	IEEE 000 11 NUEL (001 III)	Z	4.58	66.21	16.12	SAME IN COLUMN	130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.73	66.47	16.48	0.46	130.0	± 9.6 %
		Y	4.72	66.71	16.67		130.0	
10011		Z	4.63	66.37	16.29		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	Х	4.64	66.27	16.33	0.46	130.0	± 9.6 %
		Y	4.63	66.50	16.50		130.0	10
40046	UEEE 000 11	Z	4.54	66.17	16.13		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.65	66.42	16.37	0.46	130.0	± 9.6 %
		Y	4.63	66.64	16.54		130.0	
10010		Z	4.54	66.31	16.16		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.65	66.28	16.24	0.46	130.0	± 9.6 %
		Y	4.63	66.48	16.40		130.0	
		Z	4.54	66.15	16.03		130.0	
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.60	66.49	16.49	0.46	130.0	± 9.6 %
		Y	4.60	66.74	16.69		130.0	
		Z	4.50	66.37	16.28		130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.64	66.10	16.10	0.46	130.0	± 9.6 %
		Y	4.62	66.29	16.25		130.0	
	9 (g) 50 Th	Z	4.54	65.99	15.89		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.27	66.50	16.51	0.46	130.0	± 9.6 %
		Y	5.26	66.67	16.66		130.0	
		Z	5.17	66.39	16.33		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	Х	5.35	66.73	16.60	0.46	130.0	± 9.6 %
		Y	5.34	66.90	16.75		130.0	
		Z	5.24	66.59	16.40		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	Х	5.24	66.73	16.61	0.46	130.0	± 9.6 %
		Y	5.23	66.94	16.78		130.0	
		Z	5.14	66.62	16.43		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	Х	5.24	66.51	16.43	0.46	130.0	± 9.6 %
		Y	5.23	66.68	16.58		130.0	
	*	Z	5.14	66.39	16.25		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	Х	5.33	66.54	16.50	0.46	130.0	± 9.6 %
		Υ	5.32	66.70	16.64		130.0	
		Z	5.22	66.41	16.31		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	Х	5.34	66.68	16.69	0.46	130.0	± 9.6 %
		Y	5.33	66.87	16.86		130.0	
	10.000000000000000000000000000000000000	Z	5.24	66.56	16.51		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	Х	5.35	66.85	16.77	0.46	130.0	± 9.6 %
		Y	5.35	67.07	16.95		130.0	

10623-	IEEE 802.11ac WiFi (40MHz, MCS7,	Х	5.22	66.35	16.39	0.46	130.0	± 9.6 %
AAA	90pc duty cycle)	Y	E 00	66.48	16.51		130.0	
			5.20					
	1777 000 11 1117 (101 III 110 000	Z	5.11	66.21	16.18	0.40	130.0	1060/
10624- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	Х	5.41	66.56	16.55	0.46	130.0	± 9.6 %
		Y	5.40	66.72	16.70		130.0	
		Z	5.31	66.44	16.37		130.0	
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	Х	5.72	67.36	17.01	0.46	130.0	± 9.6 %
		Y	5.65	67.35	17.07		130.0	
		Z	5.51	66.93	16.67		130.0	
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	Х	5.58	66.55	16.46	0.46	130.0	± 9.6 %
		Y	5.58	66.69	16.59		130.0	
		Z	5.49	66.45	16.29		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	Х	5.84	67.20	16.75	0.46	130.0	± 9.6 %
		Y	5.84	67.37	16.90		130.0	
		Z	5.73	67.04	16.55		130.0	
10628- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.60	66.61	16.38	0.46	130.0	± 9.6 %
		Υ	5.59	66.71	16.50		130.0	
		Z	5.50	66.46	16.19		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	Х	5.69	66.69	16.42	0.46	130.0	± 9.6 %
		Y	5.68	66.83	16.55		130.0	
		Z	5.58	66.57	16.24		130.0	- 274 110
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	Х	6.13	68.22	17.18	0.46	130.0	± 9.6 %
7001	oopo daty oyolo)	Y	6.09	68.28	17.27		130.0	
		Z	5.91	67.74	16.83		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.00	67.93	17.23	0.46	130.0	± 9.6 %
7001	oope daty eyele)	Y	5.99	68.09	17.38		130.0	
560,000,000	1	Z	5.85	67.68	17.00		130.0	
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.81	67.26	16.92	0.46	130.0	± 9.6 %
7001	oope daty oyeley	Y	5.82	67.49	17.10		130.0	
		Z	5.71	67.16	16.75		130.0	
10633- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.66	66.78	16.50	0.46	130.0	± 9.6 %
		Υ	5.66	66.93	16.64		130.0	
		Z	5.57	66.67	16.33		130.0	
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.65	66.80	. 16.57	0.46	130.0	± 9.6 %
		Υ	5.64	66.96	16.72		130.0	
		Z	5.55	66.70	16.40		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	Х	5.52	66.10	15.95	0.46	130.0	± 9.6 %
		Υ	5.49	66.16	16.03		130.0	
		Z	5.42	65.97	15.76		130.0	
10636- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	Х	6.01	66.91	16.54	0.46	130.0	± 9.6 %
		Y	6.01	67.05	16.67		130.0	
		Z	5.92	66.81	16.37		130.0	
10637- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	Х	6.17	67.33	16.74	0.46	130.0	± 9.6 %
		Υ	6.17	67.46	16.86		130.0	
		Z	6.06	67.17	16.54		130.0	
10638- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	Х	6.17	67.29	16.69	0.46	130.0	± 9.6 %
		Υ	6.17	67.42	16.81		130.0	
			0.11					

10639- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.13	67.20	16.69	0.46	130.0	± 9.6 %
7001	Jope daty cycle)	Y	6.13	67.33	16.81		130.0	
		Z	6.03	67.07	16.51		130.0	
10640-	IEEE 1602.11ac WiFi (160MHz, MCS4,	X	6.13	67.21	16.64	0.46	130.0	± 9.6 %
AAA	90pc duty cycle)				10.04	0.46	130.0	± 9.0 %
		Y	6.12	67.31	16.74		130.0	
		Z	6.03	67.06	16.44		130.0	
10641- AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.20	67.18	16.64	0.46	130.0	± 9.6 %
		Υ	6.20	67.31	16.76		130.0	
		Z	6.10	67.04	16.46		130.0	
10642- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	Х	6.22	67.38	16.91	0.46	130.0	± 9.6 %
		Y	6.22	67.52	17.04		130.0	
		Z	6.12	67.26	16.74		130.0	
10643- IEEE 1602.11ac WiFi (160MHz, MCS7, AAA 90pc duty cycle)	Х	6.07	67.09	16.66	0.46	130.0	± 9.6 %	
		Y	6.07	67.21	16.78		130.0	
Second Province		Z	5.97	66.96	16.48		130.0	
10644- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	Х	6.19	67.47	16.87	0.46	130.0	± 9.6 %
		Y	6.17	67.53	16.96		130.0	
		Z	6.06	67.25	16.64		130.0	
10645- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	Х	6.36	67.63	16.91	0.46	130.0	± 9.6 %
		Υ	6.32	67.64	16.97		130.0	
		Z	6.19	67.29	16.63		130.0	
10646- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	Х	10.25	97.21	32.85	9.30	60.0	± 9.6 %
		Y	7.85	91.41	30.98		60.0	
		Z	8.65	93.98	31.65		60.0	
10647- AAA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	Х	8.96	94.81	32.17	9.30	60.0	± 9.6 %
		Y	6.94	89.26	30.34		60.0	
		Z	7.50	91.40	30.88		60.0	
10648- AAA	CDMA2000 (1x Advanced)	Х	0.80	65.94	12.17	0.00	150.0	± 9.6 %
		Y	0.91	68.29	13.16		150.0	
		Z	0.66	63.89	10.52		150.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Huawei-SZ (Auden)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d143_Sep14

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d143

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

September 23, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	2210 100 CH
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06 Network Analyzer HP 8753E	100005 US37390585 S4206	04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	In house check: Oct-16 In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Man Et Vacuera
Approved by:	Katja Pokovic	Technical Manager	Sel UL

Issued: September 23, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d143_Sep14

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

le following parameters and balculations were appri	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		***

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were appri	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	2020	2022

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 6.3 jΩ
Return Loss	- 23.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.9 \Omega + 6.2 j\Omega$	
Return Loss	- 24.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns
Ziodiidai Zoili) (circ	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 11, 2011	

Certificate No: D1900V2-5d143_Sep14

DASY5 Validation Report for Head TSL

Date: 22.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d143

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;

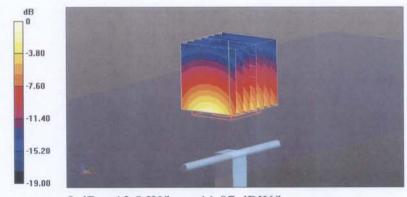
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

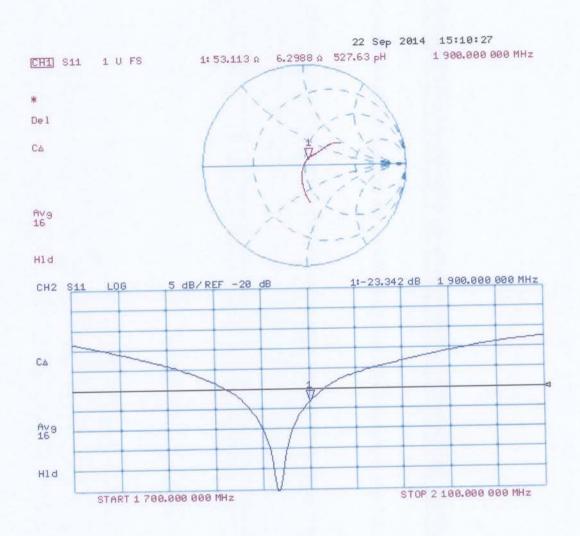
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.53 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 18.4 W/kg


SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d143

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ S/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

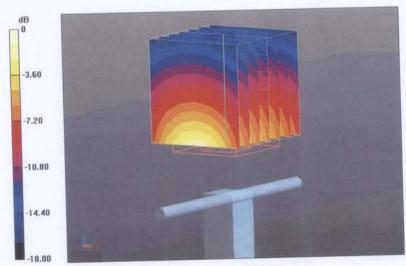
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;

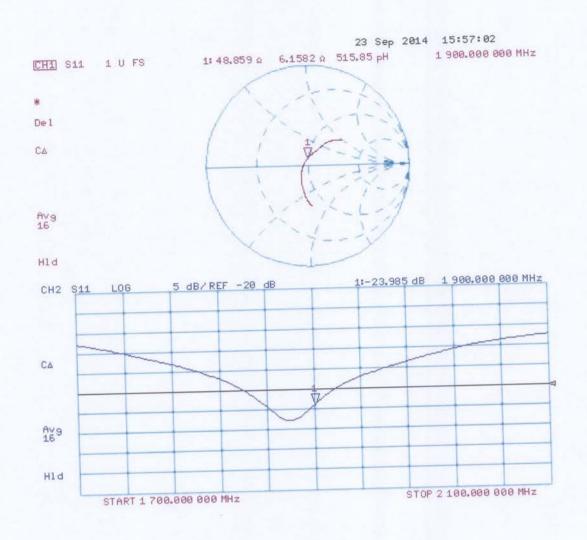
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014


Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.72 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.32 W/kg

Maximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg = 11.04 dBW/kg

Impedance Measurement Plot for Body TSL

Justification of the extended calibration of Dipole D1900V2 SN:5d143

Per KDB 865664, we have Measured the Impedance and Return Loss as below, and the return loss is <-20dB, with 20% of prior calibration; the real or imaginary parts of the impedance is with 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Impedance transformed to feed point Return Loss Dipole 1900 Body TST Impedance transformed to feed point Return Loss Measured Date Impedance Tes Impedance Tes	53.1Ω+6.3jΩ -23.3dB Target Value 48.9Ω+6.2jΩ -24.0dB 2014-09-23	51.92Ω+6.23jΩ -23.22dB Measured Value 48.91Ω+6.12jΩ -24.46dB 2015-09-21 Return Loss T	R=-1.18Ω, X=-0.07Ω 0.34% Difference R=-0.01Ω, X=-0.08Ω -1.92% est-Head	
Dipole 1900 Body TST Impedance transformed to feed point Return Loss Measured Date Impedance Tes	Target Value 48.9Ω+6.2jΩ -24.0dB 2014-09-23	Measured Value 48.91Ω+6.12jΩ -24.46dB 2015-09-21 Return Loss T	Difference R=-0.01Ω, X=-0.08Ω -1.92%	
Impedance transformed to feed point Return Loss Measured Date Impedance Tes	48.9Ω+6.2jΩ -24.0dB 2014-09-23	48.91Ω+6.12jΩ -24.46dB 2015-09-21 Return Loss T	R=-0.01Ω, X=-0.08Ω -1.92%	
feed point Return Loss Measured Date Impedance Tes	-24.0dB 2014-09-23	-24.46dB 2015-09-21 Return Loss T	-1.92% 	
Measured Date Impedance Tes	2014-09-23	2015-09-21 Return Loss T Tell T		
Impedance Tes		Return Loss T First S11 Log Mag 10.00dB/ Ref -20.00dB [F1]	est-Head	
▶ 1771 S11 Smith (R+jx) Scale 1.000U [F1]	st-Head	Final S11 Log Mag 10.00dB/ Ref -20.00dB [F1] 30.00 >1 1.9000000 GHz -23.215 dB	est-Head	
		30.00 >1 1.9000000 GHz -23.215 dB		
		30.00 >1 1.9000000 GHz -23.215 dB		
Impedance Tes	st-Body	Return Loss T	est- Body	
>1 1.9000000 GHz 48.912 n 6.1247 n 513:01 pH		30.00 >1 1.900000 GHz -24.437 db 20.00 10.00 -10.00 -20.00 -30.00 -40.00 -50.00 -60.00		

Justification of the extended calibration of Dipole D1900V2 SN:5d143

Per KDB 865664, we have Measured the Impedance and Return Loss as below, and the return loss is <-20dB, with 20% of prior calibration; the real or imaginary parts of the impedance is with 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Target Value	Measured Value	Difference
53.1Ω+6.3jΩ	55.72Ω+6.24jΩ	R=2.62Ω, X=-0.06Ω
-23.3dB	-21.99dB	5.62%
Target Value	Measured Value	Difference
48.9Ω+6.2jΩ	46.59Ω+6.94jΩ	R=-2.31Ω, X=-0.74Ω
-24.0dB	-23.23dB	3.21%
2014-09-23	2016-09-20	
st-Head	Return Loss	Test-Head
	40.00 30.00 20.00 10.00 -10.00 -20.00 -30.00 -40.00	
st-Body	Return Loss	Test- Body
	53.1Ω+6.3jΩ -23.3dB Target Value 48.9Ω+6.2jΩ -24.0dB	53.1Ω+6.3jΩ 55.72Ω+6.24jΩ -23.3dB -21.99dB Target Value Measured Value $48.9\Omega+6.2j\Omega$ $46.59\Omega+6.94j\Omega$ -24.0dB -23.23dB 2014-09-23 2016-09-20 st-Head Return Loss 100.00 10.00

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Huawei (Auden)

Certificate No: D2450V2-978_Feb16

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 978

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 08, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	J-U
Approved by:	Katja Pokovic	Technical Manager	All C

Issued: February 8, 2016

Certificate No: D2450V2-978_Feb16

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-978_Feb16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.0 \Omega + 3.6 j\Omega$
Return Loss	- 26.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 5.8 jΩ
Return Loss	- 24.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 30, 2014

Certificate No: D2450V2-978_Feb16

DASY5 Validation Report for Head TSL

Date: 08.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 978

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.67, 7.67, 7.67); Calibrated: 30.12.2014;

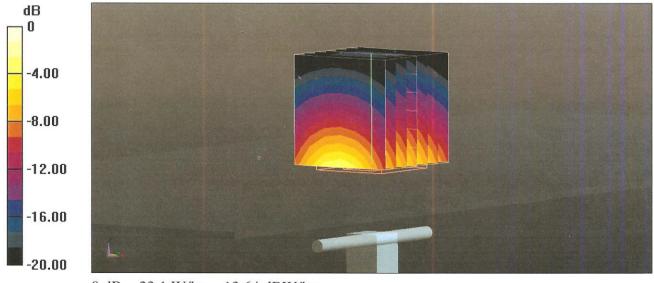
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 17.08.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7372)

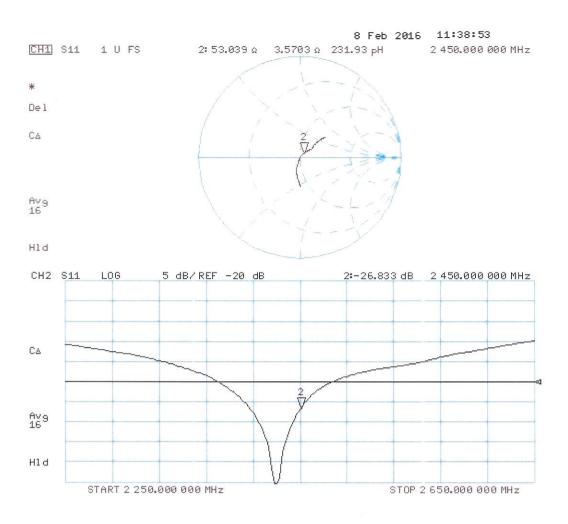
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.7 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.34 W/kg


Maximum value of SAR (measured) = 23.1 W/kg

0 dB = 23.1 W/kg = 13.64 dBW/kg

Certificate No: D2450V2-978 Feb16

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 978

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.53, 7.53, 7.53); Calibrated: 30.12.2014;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 17.08.2015

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.7 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 21.7 W/kg

0 dB = 21.7 W/kg = 13.36 dBW/kg