

EMC TEST REPORT

Report No.: SET2015-03023

Product Name: LTE Wingle

FCC ID: QISE8372H-511

IC: 6369A-E8372H511

Model No.: E8372h-511

Applicant: Huawei Technologies Co., Ltd.

Address: Administration Building, Headquarters of Huawei Technologies

Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

Received Date: 2015-03-02

Tested Date: 2015-03-02—2015-03-11

Issued by: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd.

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan District,

Shenzhen, 518055, P. R. China

This test report consists of **22** pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 20 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CCIC-SET/T (00) Page 1 of 22

Test Report

Product Name: LTE Wingle

Model No.: : E8372h-511

Applicant: Huawei Technologies Co., Ltd.

Applicant Address...... Administration Building, Headquarters of Huawei

Technologies Co., Ltd., Bantian, Longgang District,

Shenzhen, 518129, P.R.C

Manufacturer....: Huawei Technologies Co., Ltd.

Manufacturer Address: Administration Building, Headquarters of Huawei

Technologies Co., Ltd., Bantian, Longgang District,

Shenzhen, 518129, P.R.C

Test Standards 47 CFR Part 15 :2013 ,Subpart B

ICES-003 Issue 5 August 2012

Test Result: PASS

Tested by: Xao long 2hang 2014

2015.03.12

Xiaolong Zhang, Test Engineer

Reviewed by: Shuangwen zhang

2015.03.12

Shuangwen Zhang, Senior Engineer

Approved by:

2015.03.12

Wu Li'an, Manager

CCIC-SET/T (00) Page 2 of 22

		TA	BLE OF CONTENTS		
1.	. GENERAL INFORMATION				
1.1	EUT I		4		
1.2					
1.3	Facilit		7		
1.3.1	Faci	lities		7	
1.3.2	e Test	Environment Conditions		7	
1.3.3	Mea	surement Uncertainty		7	
2.	TEST	CONDITIONS SETTIN	G	8	
2.1	Test P	eripherals		8	
2.2	Test M	Iode		8	
2.3	Test S	etup and Equipments Lis	st	9	
2.3.1	Con	ducted Emission		9	
2.3.2	2.3.2 Radiated Emission				
3.	47 CF	R PART 15B AND ICES	-003 REQUIREMENTS	12	
3.1	Condu	icted Emission		12	
3.1.1	Requ	uirement		12	
3.1.2	2 Test	Description		12	
3.1.3	Test	Result		12	
3.2	Radia	ted Emission		15	
3.2.1	Requ	uirement		15	
3.2.2	2 Test	Description		16	
3.2.3	Test	Result		16	
4.	РНОТ	OGRAPHS OF THE EU	T	20	
5.	РНОТ	OGRAPHS OF THE TE	ST SET-UP	21	
			Change History		
	Issue	Date	Reason for change		
	1.0	2015.03.12	First edition		

1. GENERAL INFORMATION

1.1 **EUT Description**

EUT Name: LTE Wingle

Serial No....: X5T0115124000182 IMEI No. : 866783020001818 FCC ID QISE8372H-511 IC....: 6369A-E8372H511

Trade Name....: Huawei Brand Name....: Huawei

Hardware Version....: **CL1E8372HM** Software Version: 22.521.00.00.00 Ancillary Equipment: AC Adapter

> Brand Name: **HUAWEI**

Model No: HW-050100U4W HW-050100E4W

HW-050100B4W

Rated Input: 100-240V, 50/60Hz ,0.2A

Rated Output: 5V=1.0A Serial No.:B53867EBE00100 Serial No.:HWUEA01EC3003667

CAR CHARGE

Brand Name: HUAWEI Model No.: HWCC02 Rated Input: 12V-24V, 1.0A Rated Output: 5V=1.0A

Serial No.:HWUEA03E92300250 Serial No.:HWBYA28E51100376

Note1: E8372h-511 LTE/DC-HSDPA/HSPA+/HSPA/WCDMA/GSM ternary mode is subscriber equipment in the LTE/UMTS/GSM system. E8372h-511 implement such functions as RF signal receiving/ transmitting, LTE/DC-HSDPA/ HSPA+/WCDMA/GSM protocol processing, data service etc, and it can act as a Wi-Fi hotspot for user accessing to internet. Externally it provides USIM card interface and Micro SD card interface.

Note 2: The EUT support the work frequency as below:

		Work Frequency			
	Mode	Transmitt	Receive	Bandwiths	
		Frequency	Frequency	(including wifi	
		(MHz)	(MHz)	chanels)	
GSM	GSM850	824-849	869-894		

CCIC-SET/T (00) Page 4 of 22

	PCS1900	1850-1910	1930-1990	
WCDMA	WCDMA1900	1850-1910	1930-1990	
	WCDMA 1700	1710-1755	2110-2155	
	WCDMA850	824-849	869-894	
LTE	LTE1900(2)	1850-1910	1930-1990	5,10,15,20
	LTE AWS(4)	1710-1755	2110-2155	5,10,15,20
	LTE850 (5)	824-849	869-894	5,10
	LTE (12)	699-716	729-746	5,10
	LTE (17)	704-716	734-746	5,10
WiFi	2.4G	2412-2462	2412-2462	20MCH1-11
				40M CH3-9

Note3: The EUT is equipped with a T-Flash card slot; equipped with a USB port which can be connected to the ancillary equipments.

Note 4: The EUT equips with two travel chargers (which is made by different Manufacturer) and two car chargers (which is made by different Manufacturer), two USB cables.

Note 5: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

CCIC-SET/T (00) Page 5 of 22

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B 2013 and ICES-003 Issue5 August 2012:

005 155466	05 155400 1148450 2012.					
No.	Identity	Document Title				
1	47 CFR Part 15	Radio Frequency Devices				
	Subpart B 2013					
2	ICES-003 Issue5	Information Technology Equipment(ITE) -Limits				
	August 2012	and methods of measurement				

Test detailed items/section required by FCC rules and results are as below:

No.	Section		Description	Result
	FCC	IC		
1	15.107	6.1	Conducted Emission	PASS
2	15.109	6.2	Radiated Emission	PASS

NOTE:

(1) The EUT has been tested according to 47 CFR Part 15 Subpart B 2013 and ICES-003 Issue5 August 2012. The test procedure is according to ANSI C63.4:2014.

CCIC-SET/T (00) Page 6 of 22

1.3 Facilities and Accreditations

1.3.1 Facilities

CNAS-Lab Code: L1659

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. CCIC is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659. A 12.8*6.8*6.4 (m) fully anechoic chamber was used for the radiated spurious emissions test.

FCC-Registration No.: 406086

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 406086, valid time is until October 28, 2017.

IC-Registration No.: 11185A-1

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measure ments with Registration No. 11185A-1 on July. 15, 2013, valid time is until July. 15, 2016.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15°C - 35°C
Relative Humidity (%):	25% -75%
Atmospheric Pressure (kPa):	86kPa-106kPa

1.3.3 Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission:	Uc = 3.6 dB (k=2)
Uncertainty of Radiated Emission:	Uc = 4.5 dB (k=2)

CCIC-SET/T (00) Page 7 of 22

2. TEST CONDITIONS SETTING

2.1 Test Peripherals

The following is a listing of the EUT and peripherals utilized during the performance of EMC test:

Description	Manufacturer	Model	Serial No.	FCCID /DOC
Notebook	ThinkPad	E430C	A131101550	/
Micro SD card	4GB	SanDisk	/	/
Mouse	Microsoft	1068	/	DOC

2.2 Test Mode

All the test modes were carried out with the EUT under normal operation, which were shown in this report and defined as below.

Test Mode				
Mode 1	Adapter +Idle			
Mode 2	Adapter +Traffic			
Mode 3	USB Copy(EUT with PC)+Idle			

Traffic Mode:

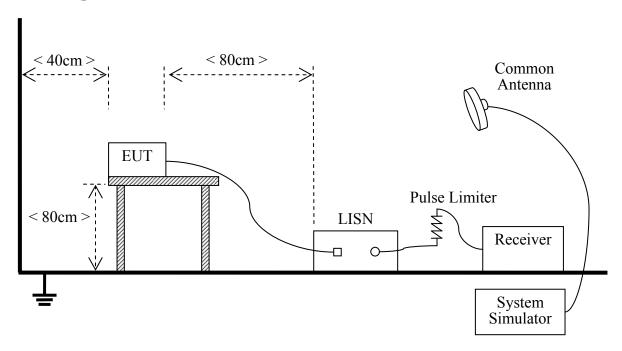
The EUT state is switch on and with Radio Resource Control connection established.

Idle Mode:

The EUT state is switch on But without Radio Resource Control connection established.

NOTE:

- 1. There is one kind of accessories with different models, each one should be applied throughout the compliance test respectively, however, only the worst case will be recorded in this report.
- 2. All test modes are performed, only the worst case is recorded in this report.


CCIC-SET/T (00) Page 8 of 22

2.3 Test Setup and Equipments List

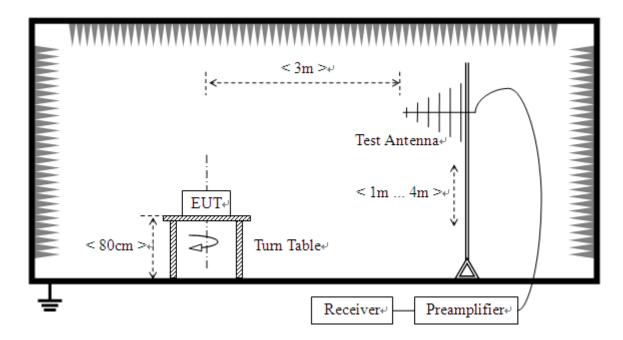
2.3.1 Conducted Emission

A. Test Setup:

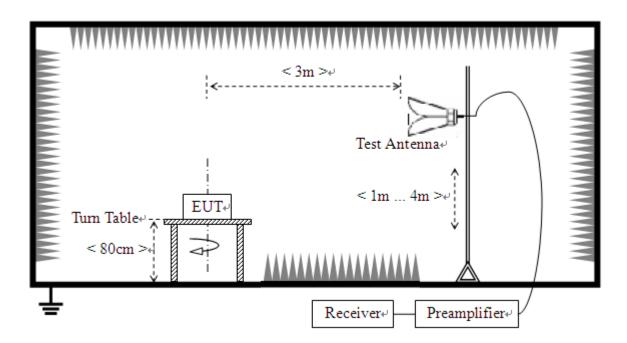
The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu H$ of coupling impedance for the measuring instrument. The Common Antenna is used for the call between the EUT and the System Simulator (SS). A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Calibration	Calibration
Description	Manufacturer		Seriai No.	Date	Due. Date
Test Receiver	ROHDE&SCHWARZ	ESCI	A130901475	2014.09.09	2015.09.08
LISN	ROHDE&SCHWARZ	ENV216	/	2014.04.28	2015.04.27
Cable	MATCHING PAD	W7	/	2014.06.05	2015.06.04


2.3.2 Radiated Emission

A. Test Setup:


CCIC-SET/T (00) Page 9 of 22

1) For radiated emissions from 30MHz to1GHz

2) For radiated emissions above 1GHz

B. Test Procedure

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a

CCIC-SET/T (00) Page 10 of 22

variable-height antenna master tower.

For the test Antenna:

1) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

C. Equipments List:

Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due. Date
Test Receiver	ROHDE&SCHWARZ	ESIB7	A0501375	2014.06.10	2015.06.09
Test Receiver	ROHDE&SCHWARZ	ESIB26	A0304218	2014.06.10	2015.06.09
Semi-Anechoic Chamber	Albatross	9m*6m*6m	A0412372	2014.03.22	2015.03.21
Test Antenna - Bi-Log	НР	CBL6111A	A9704202	2014.06.10	2015.06.09
Test Antenna – Horn	ROHDE&SCHWARZ	HF906	A0304225	2014.06.10	2015.06.09
Anechoic Chamber	Albatross	SAC-5MAC 12.8x6.8x6.4m	A0304210	2014.03.22	2015.03.21
Amplifier 1G~18GHz	ROHDE&SCHWARZ	MITEQ AFS42-001018 00	A0509366	2014.06.10	2015.06.09
Amplifier 20M~3GHz	Compliance Direction System	PAP-0203H	A0509377	2014.06.10	2015.06.09
Cable	SUNHNER	SUCOFLEX 100	/	2014.06.10	2015.06.09
Cable	SUNHNER	SUCOFLEX 104	MY1758/4	2014.06.10	2015.06.09

CCIC-SET/T (00) Page 11 of 22

3. 47 CFR PART 15B AND ICES-003 REQUIREMENTS

3.1 Conducted Emission

3.1.1 Requirement

According to FCC section 15.107 and ICES-003, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).

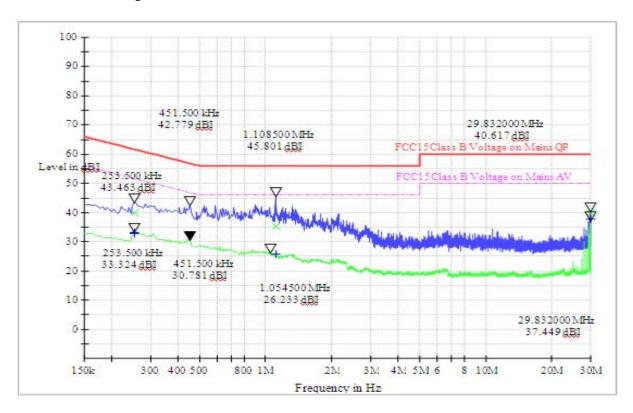
Eraguanay ranga (MHz)	Conducted Limit (dBμV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5 - 30	60	50	

NOTE:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.1.2 Test Description

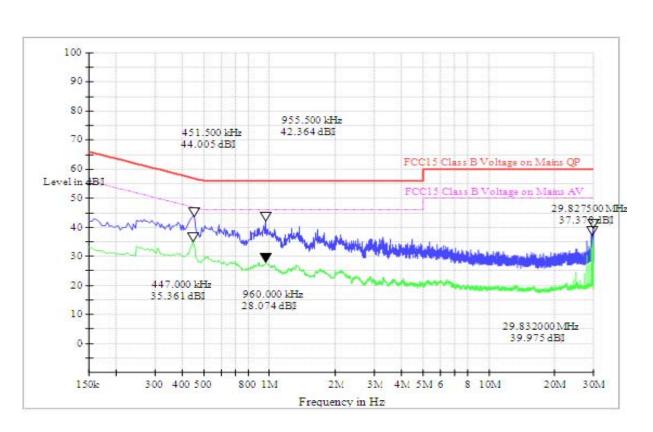
See section 2.3.1 of this report.


3.1.3 Test Result

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below.

CCIC-SET/T (00) Page 12 of 22

A. Test Plot and Suspicious Points:



(Plot A: L Phase)

	Conducted Disturbance at Mains Terminals									
	L Test Data									
	QP AV									
Frequen cy (MHz)	Limits (dBµV)	Measurem ent Value (dBμV)	Margin (dB)	Frequen cy (MHz)	Limits (dBµ V)	Measurem ent Value (dBµV)	Margin (dB)			
0.2535	61.60	39.90	21.70	0.2535	51.60	33.00	18.60			
1.1085	56.00	35.30	20.70	1.1085	46.00	25.80	20.20			
29.8320	60.00	40.00	20.00	29.8320	50.00	37.70	12.30			

CCIC-SET/T (00) Page 13 of 22

(Plot B: N Phase)

Conducted Disturbance at Mains Terminals											
	N Test Data										
	QP AV										
Frequen cy (MHz)	Limits (dBµV)	Measureme nt Value (dBµV)	Margin (dB)	Frequency (MHz) Limits (dBμV) Measureme nt Value (dB							
0.4515	56.80	43.02	13.78	0.4470	46.90	33.26	13.64				
0.9555	56.00	41.26	14.74	0.9600	46.00	26.57	19.43				
29.8275	60.00	38.82	21.18	29.8275	50.00	36.40	13.60				

Test Result: PASS

CCIC-SET/T (00) Page 14 of 22

3.2 Radiated Emission

3.2.1 Requirement

According to FCC section 15.109 and ICES-003, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Radiated Emissions Limits below 1GHz

Eraguanay ranga (MIIz)	ClassB Radiated Limit (dBµV/m)
Frequency range (MHz)	Quasi-peak
30 to 88	40
88 to 216	43.5
216 to 960	46
960 to 1000	54

Radiated Emissions Limits above 1GHz

Eraguanay ranga (MUz)	ClassB Radiated Limit (dBµV/m)				
Frequency range (MHz)	Linear Average Detector	Peak Detector			
>1000	54	74			

- a) As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.
- b) Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.
- c) For below 1G: QP detector RBW 120kHz, VBW 300kHz.
- d) For Above 1G: PK detector RBW 1MHz,VBW 3MHz for PK value ;PK detector RBW 1MHz, VBW 10Hz for AV value.

Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in dBuV/m is calculated by 20log Emission Level(uV/m).
- 3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of Ld1 = Ld2 * $(d2/d1)^2$.

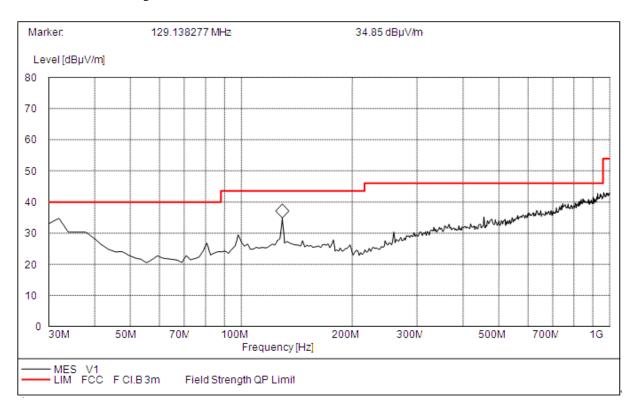
Example:

F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as $Ld1 = L1 = 30uV/m * (10)^2 = 100 * 30uV/m$.

CCIC-SET/T (00) Page 15 of 22

3.2.2 Test Description

See section 2.3.2 of this report.

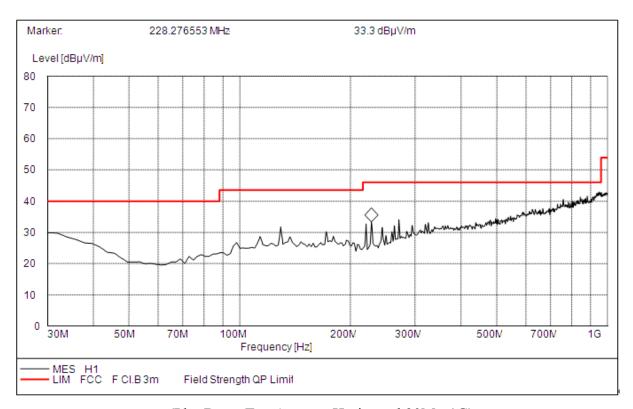

3.2.3 Test Result

The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests. All test modes are considered, refer to recorded points and plots below.

The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

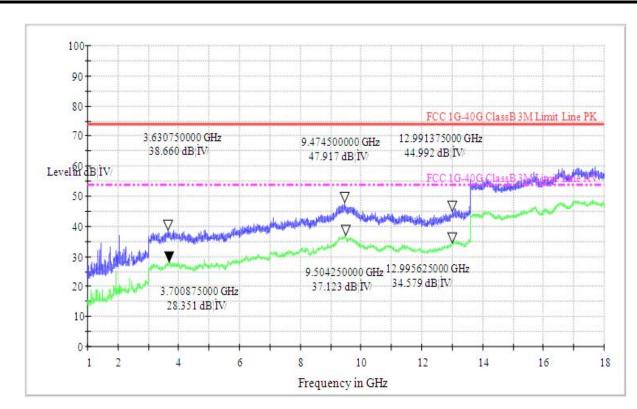
Note: All radiated emission tests were performed in X, Y, Z axis direction, and only the worst axis test condition was recorded in this test report.

B. Test Plots and Suspicious Points:


(Plot C: Test Antenna Vertical 30M - 1G)

CCIC-SET/T (00) Page 16 of 22

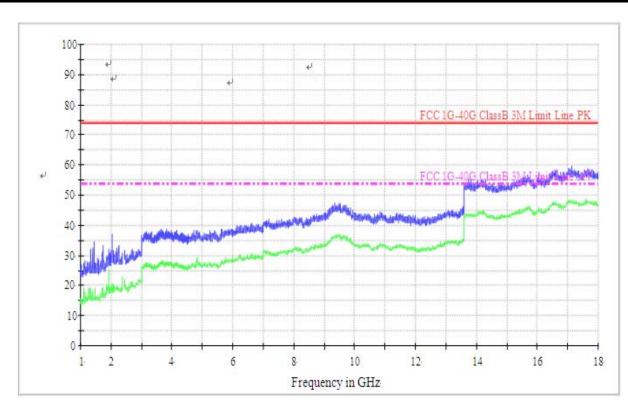
Frequency (MHz)	QuasiPeak (dB µ V/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dB µ V/m)	Margin (dB)	Antenna	Verdict
32.01000	31.39	120.000	100.0	40.00	8.61	Vertical	Pass
129.36000	32.67	120.000	150.0	43.50	10.83	Vertical	Pass
455.23000	32.26	120.000	200.0	46.00	13.74	Vertical	Pass



(Plot D: Test Antenna Horizontal 30M - 1G)

Frequency (MHz)	QuasiPeak (dBμV/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dBµV/m)	Margin (dB)	Antenna	Verdict
30.36000	28.27	120.000	100.0	40.00	11.73	Horizontal	Pass
129.29000	29.15	120.000	100.0	43.50	14.35	Horizontal	Pass
228.30000	32.20	120.000	100.0	46.00	13.80	Horizontal	Pass

CCIC-SET/T (00) Page 17 of 22



(Plot E: Test Antenna Horizontal 1G – 18G)

Frequency (MHz)	PK/AV (dBμV/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dBµV/m)	Margin (dB)	Antenna	Verdict
3603.10090	28.79	1000.000	100.0	54.00	25.21	Horizontal	Pass
9474.76352	36.16	1000.000	150.0	54.00	17.84	Horizontal	Pass
12991.7145	34.08	1000.000	120.0	54.00	19.92	Horizontal	Pass
3603.10090	37.29	1000.000	100.0	74.00	36.71	Horizontal	Pass
9474.76352	46.15	1000.000	150.0	74.00	27.85	Horizontal	Pass
12991.7145	44.11	1000.000	120.0	74.00	29.89	Horizontal	Pass

CCIC-SET/T (00) Page 18 of 22

(Plot F: Test Antenna Vertical 1G – 18G)

Frequency (MHz)	PK/AV (dBμV/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dBµV/m)	Margin (dB)	Antenna	Verdict
3660.20124	27.69	1000.000	100.0	54.00	26.31	Vertical	Pass
9421.76124	36.06	1000.000	150.0	54.00	17.94	Vertical	Pass
11516.1410	33.18	1000.000	120.0	54.00	20.82	Vertical	Pass
3660.20124	38.26	1000.000	100.0	74.00	35.74	Vertical	Pass
9421.76124	46.25	1000.000	150.0	74.00	27.75	Vertical	Pass
11516.1410	44.05	1000.000	120.0	74.00	29.95	Vertical	Pass

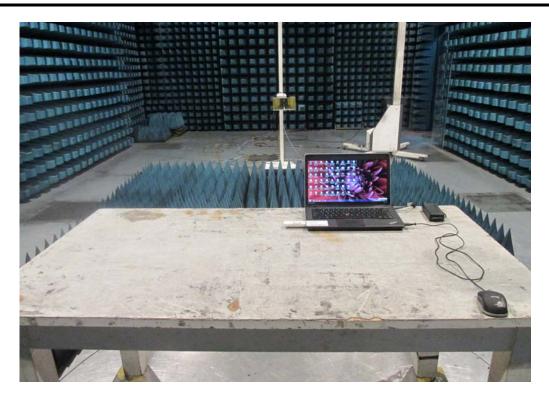
Test Result: PASS

CCIC-SET/T (00) Page 19 of 22

4. PHOTOGRAPHS OF THE EUT

CCIC-SET/T (00) Page 20 of 22

5. PHOTOGRAPHS OF THE TEST SET-UP


Conducted Emission

Radiated Emission of 30M-1G

CCIC-SET/T (00) Page 21 of 22

Radiated Emission of 1-18G

** END OF REPORT **

CCIC-SET/T (00) Page 22 of 22