SAR-Laboratory Fax: +86-755-36834474

Accredited testing laboratory

CNAS Registration number: L0310

Report On SAR Test of HSPA USB Stick M/N: E173u-81

Test report no. : SYBH(Z-SAR)018042011-2

Type identification: E173u-81

: QISE173U-81 FCC ID

Test specification: ANSI C95.1-1999

: EEE 1528-2003

: RSS-102 issue 4 (2010)

: OET Bulletin 65 Supplement C

As of 2011-04-18 Page 1 of 80

Test report no.: SYBH(Z-SAR)018042011-2

Table of Contents

1 General Information	:
1.1 Notes	
1.1.1 Statement of Compliance	
5 ,	
· · · · · · · · · · · · · · · · · · ·	
1.4 Details of Test Date	
1.5 Test Item	
1.5.1 EUT Description	
1.6 Test specification(s)	
1.6.1 RF exposure limits	
1.7 Operating conditions during test	
1.7.1 General description of test procedures	
1.7.2 GSM/GPRS/EGPRS Test Configurations	
1.7.3 WCDMA/HSPDA/HSUPA Test Configurations	
2 Technical test	
2.1 Summary of test results	
2.2 Test environment	
2.3 Measurement and test set-up	
2.4 Measurement system	
2.4.1 System Description	
2.4.2 Test environment	
2.4.3 Probe description	
2.4.4 Phantom description	
2.4.5 Device holder description	
2.4.6 Scanning procedure	
2.4.7 Spatial Peak SAR Evaluation	
2.4.8 Data Storage and Evaluation	19
2.4.9 Test equipment utilized	21
2.4.10 Tissue simulating liquids: dielectric properties	22
2.4.11 Tissue simulating liquids: parameters	22
2.4.12 Measurement uncertainty evaluation for SAR test	
2.4.13 Measurement uncertainty evaluation for system validation	24
2.4.14 System validation	
2.4.15 Validation procedure	
2.5 Conducted Power Test	26
2.5.1 Conducted power measurements	26
2.5.2 Conducted power results	27
2.6 Test Results	30
2.7 Summary of Extrapolated SAR Values	
Annex 1 System performance verification	
Annex 2 Measurement results (printout from DASY TM)	3 c
Annex 2.1 GSM 850 MHz body	3 c
Annex 2.2 GSM 1900 MHz body	
Annex 2.3 WCDMA 1900MHz body	
Annex 3 Photo documentation	39
Annex 3.1 Test Facility	
Annex 3.2 Test Positions	
Annex 3.3 Liquid depth	
Annex 4 Calibration parameters	
Annex 4.1 Calibration report "Probe ES3DV3"	
Annex 4.2 Calibration report "Data Acquisition Unit (DAE)"	
Annex 4.3 Calibration report "1900 MHz System validation dipole"	
Annex 4.4 Calibration report "835 MHz System validation dipole"	
Annex 4.5 Application Note System Performance Check	
The state of the s	

1 General Information

1.1 Notes

Test engineer:

The test results of this test report relate exclusively to the test item specified in 1.5. The HUAWEI does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of HUAWEI.

1.1.1 Statement of Compliance

The SAR values found for the E173u-81 are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure.

The measurement together with the test system set-up is described in chapter 2.3 of this test report. A detailed description of the equipment under test can be found in chapter 1.5.

Goo Weidiamy **Gao Weigiang** 2011-04-18 Date Name Signature 2011-04-18 Dw Hongbun **Hu Zhongxun** Date Name Signature Approved by: Lin Chunlin 2011-04-18 Liu Chunlin Date Name Signature

As of 2011-04-18 Page 3 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

1.2 Testing laboratory

Lab Name: Global Compliance & Testing Center (GCTC) of Huawei Technologies Co., Ltd.

Sub-lab Name: SAR Lab of Terminal Reliability Lab Street: Section K3, Bantian, Longgang District, Shenzhen

Country: P.R.China

Telephone: +86-755-28785513 Fax: +86-755-36834474

E-mail: huzhongxun@huawei.com

Internet: www.huawei.com

State of accreditation: The Test laboratory (area of testing) is accredited according to

ISO/IEC 17025.

CNAS Registration number: L0310

1.3 Applicant and Manufacturer

Company: HUAWEI TECHNOLOGIES CO., LTD Street: Huawei Base, Bantian, Longgang District

Town: Shenzhen Country: P.R.China

Contact: Mr. Gao Yuan Telephone: +86-755-36835392

1.4 Details of Test Date

Date of receipt of application:2011-04-13Date of receipt of test item:2011-04-13Start/Date of test:2011-04-14End of test:2011-04-15

As of 2011-04-18 Page 4 of 80

1.5 Test Item

Device Information:						
DUT Name:	HSPA USB Stick					
Type Identification:	E173u-81					
FCC ID:	QISE173U-81					
Serial Number:	T5Z4CA10B16001	18				
IMEI No:	355759040010417					
Device Type :	portable device					
Exposure Category:	uncontrolled enviro	nment / general pop	pulation			
Test device Production Information	production unit					
Device Operating Configurations:						
Operating Mode(s)	GSM,PCS,UMTS/HSPA					
Modulation	GMSK,8-PSK,QPSK					
Device Class	В					
	Max Number of Tir		4			
GPRS/EGPRS Multislot Class (12)	Max Number of Timeslots in Downlink: 4					
	Max Total Timeslot: 5					
	Band	Tx (MHz)	Rx (MHz)			
Operating Frequency Range(s)	GSM 850	824.2 ~ 848.8	869.2 ~893.8			
	GSM 1900	1850.2 ~1909.8	1930.2 ~1989.8			
	WCDMA Band II		1932.4 ~1987.6			
	1,tested with powe	r level 0 (GSM 1900))			
Power Class :	4,tested with powe	r level 5 (GSM 850)				
	3, tested with power control all up bits(WCDMA Band II)					
	512-661-810 (GSM	/ 1900)				
Test Channels (low-mid-high):	128-190-251(GSM 850)					
	9262-9400-9538(WCDMA Band II)					
Hardware Version:	CD1E153M					
Software Version:	11.126.15.14.00					
Antenna Type :	Internal Antenna					
Tested with host laptop:	Lenovo ThinkPad	T61				
	Lenovo ThinkPad	X301				

Table 1: Device information and operating configurations

As of 2011-04-18 Page 5 of 80

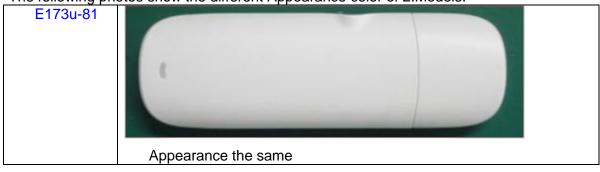
1.5.1 EUT Description

E173u-81 HSPA/WCDMA/EDGE/GPRS/GSM dual mode 7 bands USB Stick is subscriber equipment in the UMTS/GSM system. E173u-81 implement such functions as RF signal receiving/transmitting, HSPA/WCDMA and EDGE/GPRS/GSM protocol processing, data service etc. Externally it provides USB interface (to connect to the notebook etc.), USIM card interface and Micro SD card interface. E173u-81 has an internal antenna as default

The difference of E173u-81 and E173u-63:

- 1. E173u-63 is a HSPA/WCDMA/EDGE/GPRS/GSM dual mode USB Stick. The GSM supports four bands. The WCDMA supports WCDMA1900 and W900.
- 2. E173u-81 is the USB Stick which changed some components from E173u-63. The PCB of E173u-81 and E173u-63 is the same.

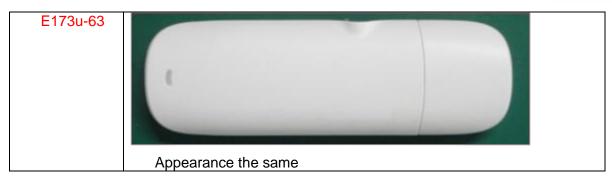
The differences between E173u-81 and E173u-63 are: E173u-81 added the WCDMA2100 based on E173u-63.


The Appearance is the same.

E173u-81 will get a new FCC ID: QISE173U-81.

The followed table is show the different between the 2 Modules.

	E173u-81	E173u-63
GSM four band	support	support
WCDMA 2100M	support	No
WCDMA 1900M	support	support
WCDMA 850M	No	No
WCDMA 900M	support	support
FLASH	Support 128M	Support 128M
Antenna	the same	the same
PCB	the same	the same
Appearance	the same	the same


The following photos show the different Appearance color of 2. Models.

As of 2011-04-18 Page 6 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

E173u-81

E173u-81

E173u-81

E173u-81 support all the bands, added W2100 PA based on E173u-63.

E173u-63 support all the bands

As of 2011-04-18 Page 7 of 80

1.6 Test specification(s)

IEEE Std C95.1 – 1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.

IEEE 1528-2003 (April 21, 2003): Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

Supplement C, Edition 01-01 to OET Bulletin 65, Edition 97-01 June 2001: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.

RSS-102: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010).

Canada's Safety Code 6: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)

FCC KDB 447498 D02 SAR Procedures for Dongle Xmtr v02, Published on Nov 16 2009

1.6.1 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in **bold** letters.

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

As of 2011-04-18 Page 8 of 80

1.7 Operating conditions during test

1.7.1 General description of test procedures

Connection to the EUT is established via air interface with CMU200, and the EUT is set to maximum output power by CMU200. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

Since the EUT only has the data transfer function, but does not have the voice transfer function, the tests in the band of GSM850 and GSM1900 are performed in the mode of GPRS and EGPRS. The measurements were performed in combination with two host laptops (Lenovo ThinkPad X301 and Lenovo ThinkPad T61). Lenovo ThinkPad T61 laptop has horizontal and vertical USB slot, Lenovo ThinkPad X301 Laptop has horizontal USB slot.

1.7.2 GSM/GPRS/EGPRS Test Configurations

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM 850 and GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

GSM850	Reduction of maximum output power, (dB)					
Number of timeslots in uplink assignment	GPRS (GMSK)	EGPRS (8PSK)	EGPRS (GMSK)			
1	0	0	0			
2	3	0.5	3			
3	4	2.5	4			
4	6	4.5	6			

Table 3: The allowed power reduction in the multi-slot configuration of GSM850

GSM1900	Reduction of maximum output power, (dB)					
Number of timeslots in uplink assignment	GPRS (GMSK)	EGPRS (8PSK)	EGPRS (GMSK)			
1	0	0	0			
2	2.4	1	2.4			
3	4	3	4			
4	5.5	5	5.5			

Table 4: The allowed power reduction in the multi-slot configuration of GSM1900

As of 2011-04-18 Page 9 of 80

1.7.3 WCDMA/HSPDA/HSUPA Test Configurations

1) WCDMA

As the SAR body tests for WCDMA Band II and WCDMA Band V, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to 'all 1'.
- 2) Test loop Mode 1.

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

9 9 9 9 1 1				1	
	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
DPDCH₁	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640
DPDCH _n	960	960	4	1, 2, 3	640

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCHn, when supported by the EUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCHn configuration, are less than ¼ dB higher than those measured in 12.2 RMC.

2) HSDPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to UE category of a test device. The number of HS-DSCH/ HS-PDSCHs, HAPRQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the below table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ ACK, Δ NACK, Δ CQI = 8. The variation of the β_c / β_d ratio causes a power reduction at sub-tests 2 - 4.

Sub-test	$eta_{ m c}$	β_{d}	β_d (SF)	β_c / β_d	$\beta_{hs}(1)$	CM(dB)(2)
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 . $A_{hs} = \beta_{hs}/\beta_c = 30/15$. $\beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$

Table 5: Sub-tests for UMTS Release 5 HSDPA

As of 2011-04-18 Page 10 of 80

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 6: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

HS-DSCH Category	Maximum HS- DSCH Codes Received	Minimum Inter-TTI Interval	Maximum HS-DSCH Transport Block Bits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 7: HSDPA UE category

3) HSUPA

Body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-set 1 and QPSK for FRC and 12.2kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

As of 2011-04-18 Page 11 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

Due to inner loop power control requirements in HSDPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSDPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Device' sections of 3G device.

Sub- test	βε	β_d	β _d (SF)	$\beta_{\text{o}}/\beta_{\text{d}}$	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β _{ec} (SF)	β _{ed} (code)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} :47/15 β_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ ACK, Δ NACK and Δ CQI = 8 . $A_{hs} = \beta_{hs}/\beta_c = 30/15$. $\beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3 : For subtest 1 the β_{σ}/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=10/15$ and $\beta_d=15/15$

Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=14/15$ and $\beta_d=15/15$

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g

Note 6: $\beta_{\text{ed}} \, \text{can}$ not be set directly; it is set by Absolute Grant Value.

Table 8: Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4502
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	10	2SF2&2SF4	11484	5.76
(No DPDCH)	4	4	2	2352&2354	20000	2.00
7	4	8	2	2002 % 2004	22996	?
(No DPDCH)	4	4	10	2SF2&2SF4	20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4. UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0)

Table 9: HSUPA UE category

As of 2011-04-18 Page 12 of 80

2 Technical test

2.1 Summary of test results

Band	Channel Position SAF		SAR _{1g} (W/kg)	Test Result
GSM 850	251	Rear Side	0.239	
GSM 1900	512	Rear Side	0.96	PASS
WCDMA Band II	9262	Rear Side	1.06	

Table 10: From report: FCC ID/QISE173U-63

Band	Channel	Position	SAR _{1g} (W/kg)	Test Result
GSM 850	251	Rear Side	0.402	
GSM 1900	512	Rear Side	0.904	PASS
WCDMA Band II	9262	Rear Side	0.997	

Table 11: The Maximum SAR_{1g} Values of E173u-81

Band		Maximum Conducted Power (dBm)	Maximum Average Power (dBm)	
	GPRS,3 time-slots	27.78	23.53	
GSM 850	EGPRS (8PSK),2 time-slots	25.48	19.48	
	EGPRS (GMSK), 3 time-slots	27.81	23.56	
	GPRS,3 time-slots	25.16	20.91	
GSM 1900	EGPRS (8PSK),2 time-slots	25.16	19.16	
	EGPRS (GMSK), 3 time-slots	25.16	20.91	
WCDMA Band II		20.84	/	

Table 12: The Maximum Power

2.2 Test environment

General Environment conditions in the test area are as follows:

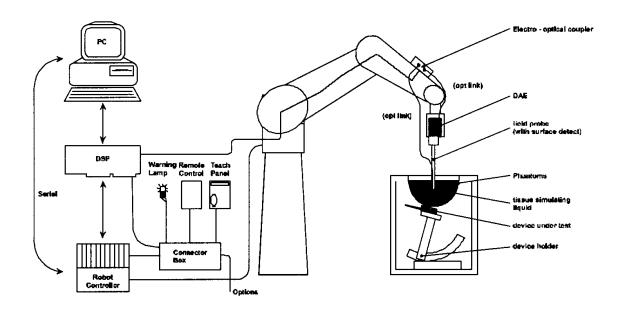
Ambient temperature: $20^{\circ}\text{C} - 24^{\circ}\text{C}$ Tissue simulating liquid: $20^{\circ}\text{C} - 24^{\circ}\text{C}$ Humidity: 30% - 70%

Exact temperature values for each test are shown in the table(s) under 2.6.or on the measurement plots.

2.3 Measurement and test set-up

The measurement system is described in chapter 2.4.

The test setup for the system validation can be found in chapter 2.4.14.


A description of positioning and test signal control can be found in chapter 2.5 together with the test results.

As of 2011-04-18 Page 13 of 80

2.4 Measurement system

2.4.1 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows XP.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

As of 2011-04-18 Page 14 of 80

2.4.2 Test environment

The DASY5 measurement system is placed at the head end of a room with dimensions:

4.5 x 4 x 3 m³, the SAM phantom is placed in a distance of 1.3 m from the side walls and 1.1m from the rear wall.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

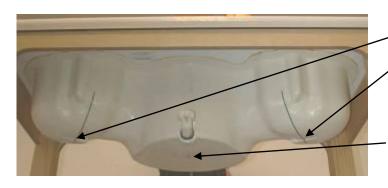
2.4.3 Probe description

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

ODE EXCEPT FOI Desiriotile Medical Cinetic
Technical data according to manufacturer information
Symmetrical design with triangular core
Built-in optical fiber for surface detection system
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g.,
glycolether)
In air from 10 MHz to 2.5 GHz
In head tissue simulating liquid (HSL) at 900 (800-1000) MHz and 1.8
GHz (1700-1910 MHz) (accuracy ± 11%; k=2) Calibration for other
liquids and frequencies upon request
10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)
± 0.2 dB in HSL (rotation around probe axis)
± 0.4 dB in HSL (rotation normal to probe axis)
5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB
± 0.2 mm repeatability in air and clear liquids over diffuse reflecting
surfaces (EX3DV4 only)
Overall length: 337 mm
Tip length: 9 mm
Body diameter: 10 mm
Tip diameter:2.5 mm
Distance from probe tip to dipole centers: 1.0 mm
General dosimetry up to 3 GHz
Compliance tests of mobile phones
Fast automatic scanning in arbitrary phantoms (EX3DV4)

Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements

Total Picture Land Land Land Land Land Land Land Land							
	Technical data according to manufacturer information						
Construction	Symmetrical design with triangular core						
	Interleaved sensors						
	Built-in shielding against static charges						
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)						
Calibration	ISO/IEC 17025 calibration service available.						
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)						
Directivity	± 0.2 dB in HSL (rotation around probe axis)						
	± 0.3 dB in tissue material (rotation normal to probe axis)						
Dynamic range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB						
Dimensions	Overall length: 330 mm (Tip: 20 mm)						
	Tip diameter: 3.9 mm (Body: 12 mm)						
	Distance from probe tip to dipole centers: 2.0 mm						
Application	General dosimetry up to 4 GHz						
	Dosimetry in strong gradient fields						
	Compliance tests of mobile phones						


As of 2011-04-18 Page 15 of 80

2.4.4 Phantom description

The used SAM Phantom meets the requirements specified in Edition 01-01 of Supplement C to OET Bulletin 65 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

rear reference point right hand side

ear reference point left hand

reference point flat position

2.4.5 Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

As of 2011-04-18 Page 16 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

2.4.6 Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex 2.
- A "7x7x7 zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY5 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see chapter 1.6.) are shown in table form in chapter 2.5.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.

As of 2011-04-18 Page 17 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

2.4.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of $7 \times 7 \times 7$ points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated.
 This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe
 and the distance between the surface and the lowest measuring point is about 1 mm (see probe
 calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting
 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum
 the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline
 interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the
 boundary of the measurement area) the evaluation will be started on the corners of the bottom plane
 of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

As of 2011-04-18 Page 18 of 80

2.4.8 Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i
 Diode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

As of 2011-04-18 Page 19 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i (i = x, y, z) Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^{2} \circ \sigma) / (\rho \circ 1000)$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

 $P_{pwe} = E_{tot}^2 / 3770$ or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

As of 2011-04-18 Page 20 of 80

2.4.9 Test equipment utilized

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described in chapter 2.5. are marked ⊠

	Manufacturer	Device Device	Туре	Serial number	Date of last calibration)*
\boxtimes	Schmid & Partner Engineering AG	Dosimetric E-Field Probe	ES3DV3	3168	2010-12-23
\boxtimes	Schmid & Partner Engineering AG	835 MHz System Validation Dipole	D835V2	4d095	2011-02-23
	Schmid & Partner Engineering AG	900 MHz System Validation Dipole	D900V2	1d063	2011-02-23
	Schmid & Partner Engineering AG	1800 MHz System Validation Dipole	D1800V2	2d157	2011-02-23
\boxtimes	Schmid & Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d091	2011-02-23
	Schmid & Partner Engineering AG	2000 MHz System Validation Dipole	D2000V2	1036	2011-02-23
	Schmid & Partner Engineering AG	Data acquisition electronics	DAE4	851	2010-06-30
\boxtimes	Schmid & Partner Engineering AG	Data acquisition electronics	DAE4	852	2010-12-24
\boxtimes	Schmid & Partner Engineering AG	Software	DASY 5	N/A	N/A
\boxtimes	Schmid & Partner Engineering AG	Twin Phantom	SAM1	TP-1475	N/A
\boxtimes	Schmid & Partner Engineering AG	Twin Phantom	SAM2	TP-1474	N/A
\boxtimes	Rohde & Schwarz	Universal Radio Communication Tester	CMU 200	111379	2010-08-11
\boxtimes	Agilent)*	Network Analyser 300 kHz to 8.5 GHz	E5071B	MY42404956	2011-02-22
\boxtimes	Agilent	Dielectric Probe Kit	85070E	2484	N/A
\boxtimes	Agilent	Signal Generator	N5181A	MY47420989	2011-02-22
	MINI-CIRCUITS	Amplifier	ZHL-42W	QA0746001	N/A
\boxtimes	Agilent	Power Meter	E4417A	MY45101339	2011-02-22
\boxtimes	Agilent	Power Meter Sensor	E9321A	MY44420359	2011-02-22

Note

- 1) Per KDB 450824 D02 requirements for dipole calibration, HUAWEI GCTC SAR lab has adopted three years calibration interval. But each measured dipole is expected to evaluate with the following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System validation with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

As of 2011-04-18 Page 21 of 80

2.4.10 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(liquids used for tests described in chapter 2.5. are marked with \boxtimes):

Ingredients (% of weight)	Frequency (MHz)						
frequency band	<u></u> 450	⊠ 835	900	<u> </u>	⊠ 1900	<u>2450</u>	
Tissue Type	Body	Body	Body	Body	Body	Body	
Water	51.16	52.4	56.0	69.91	69.91	73.2	
Salt (NaCl)	1.49	1.40	0.76	0.13	0.13	0.04	
Sugar	46.78	45.0	41.76	0.0	0.0	0.0	
HEC	0.52	1.0	1.21	0.0	0.0	0.0	
Bactericide	0.05	0.1	0.27	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	0.0	29.96	29.96	26.7	

Table 13: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Note: Due to their availability body tissue simulating liquids as defined by FCC OET Bulletin 65 Supplement C are generally used for body worn SAR testing.

2.4.11 Tissue simulating liquids: parameters

Used Target Frequency	Target Body Tissue		Mea Body	Measured Date	
[MHz]	Permittivity (+/-5%)	Conductivity [S/m] (+/-5%)	Permittivity	Conductivity [S/m]	YYYY-MM-DD
835	55.2 (52.44~57.96)	0.97 (0.92~1.02)	54.25	0.966	2011-04-15
1900	53.3 (50.64~55.97)	1.52 (1.44~1.60)	53.40	1.524	2011-04-15

Table 14: Parameter of the body tissue simulating liquid

Note: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2°C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

As of 2011-04-18 Page 22 of 80

2.4.12 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is \pm 10.7% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 21.4%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertain ty Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertaint y 1g	Standard Uncertaint y10g	v _i ² or v _{eff}
Measurement System								
Probe calibration	± 5.9%	Normal	1	1	1	± 5.9%	± 5.9%	8
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	8
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 3.9%	± 3.9%	8
Spatial resolution	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Readout electronics	± 0.3%	Normal	1	1	1	± 0.3%	± 0.3%	8
Response time	± 0.8%	Rectangular	√3	1	1	± 0.5%	± 0.5%	8
Integration time	± 2.6%	Rectangular	√3	1	1	± 1.5%	± 1.5%	8
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	8
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Test Sample Related								
Device positioning	± 2.9%	Normal	1	1	1	± 2.9%	± 2.9%	145
Device holder uncertainty	± 3.6%	Normal	1	1	1	± 3.6%	± 3.6%	5
Power drift	± 5.0%	Rectangular	√3	1	1	± 2.9%	± 2.9%	8
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	8
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	8
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	8
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	8
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	8
Combined Uncertainty						± 10.9%	± 10.7%	387
Expanded Std. Uncertainty						± 21.9%	± 21.4%	

Table 15: Measurement uncertainties

As of 2011-04-18 Page 23 of 80

2.4.13 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is \pm 9.2% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 18.4%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertain ty Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertaint y 1g	Standard Uncertaint y10g	v _i ² or v _{eff}
Measurement System								
Probe calibration	± 5.9%	Normal	1	1	1	± 5.9%	± 5.9%	8
Axial isotropy	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 0.0%	± 0.0%	∞
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Readout electronics	± 0.3%	Normal	1	1	1	± 0.3%	± 0.3%	∞
Response time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	∞
Integration time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	∞
RF ambient conditions	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	∞
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Dipole								
Deviation of experimental dipole	± 5.5%	Rectangular	√3	1	1	± 3.2%	± 3.2%	∞
Dipole axis to liquid distance	± 2.0%	Rectangular	1	1	1	± 1.2%	± 1.2%	∞
Power drift	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	∞
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	∞
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	∞
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	∞
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	8
Combined Uncertainty						± 9.5%	± 9.2%	
Expanded Std. Uncertainty						± 18.9%	± 18.4%	

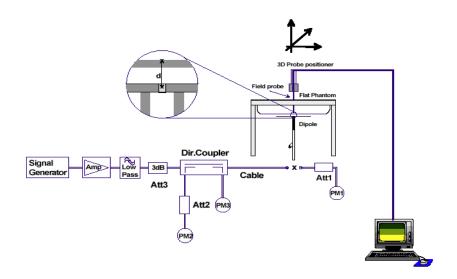
Table 16: Measurement uncertainties

As of 2011-04-18 Page 24 of 80

2.4.14 System validation

The system validation is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests of the test item described in chapter 1.5. (graphic plot(s) see annex 1).

System	Target SAR (250 mW) (+/- 10%)			asured 250mW)	Liquid	Test Date
Check	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	Test Date
D830V2 Body	2.47 (2.22~2.72)	1.61 (1.45~1.77)	2.63	1.74	22.1°C	2011-4-15
D1900V2 Body	10.20 (9.18~11.22)	5.24 (4.72~5.76)	10.10	5.23	22.1°C	2011-4-15


Table 17: Results system validation

2.4.15 Validation procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

As of 2011-04-18 Page 25 of 80

2.5 Conducted Power Test

2.5.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was also checked before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below.

Note: CMU200 measures GSM peak and average output power for active timeslots.

For SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

on the daty eyele of the remit eight.							
No. of timeslots	1	2	3	4			
Duty Cycle	1:8	1: 4	1:2.66	1:2			
Timebased avg. power compared to slotted avg. power	- 9 dB	- 6 dB	- 4.25 dB	- 3 dB			

The signalling modes differ as follows:

mode	coding scheme	modulation
GPRS	CS1 to CS4	GMSK
EDGE	MCS1 to MCS4	GMSK
EDGE	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

As of 2011-04-18 Page 26 of 80

2.5.2 Conducted power results

GSM850 [GPRS/ EGPRS]

	SSM850		ucted power ((dBm)	Avera	aged power(d	dBm)
	GPRS GMSK)	Channel 128	Channel 190	Channel 251	Channel 128	Channel 190	Channel 251
1 tx	Before test	31.65	31.92	31.98	22.65	22.92	22.98
slot	After test	31.64	31.93	31.97	22.64	22.93	22.97
2 tx	Before test	28.43	28.72	28.83	22.43	22.72	22.83
slots	After test	28.45	28.71	28.82	22.45	22.71	22.82
3 tx	Before test	27.45	27.66	27.78	23.20	23.41	23.53
slots	After test	27.44	27.67	27.77	23.19	23.42	23.52
4 tx	Before test	25.48	25.75	25.90	22.48	22.75	22.90
slots	After test	25.49	25.74	25.91	22.49	22.74	22.91
C	SM850	Condu	ucted power ((dBm)	Averaged power(dBm)		dBm)
+ EGPRS (8PSK)		Channel 128	Channel 190	Channel 251	Channel 128	Channel 190	Channel 251
1 tx	Before test	25.68	25.93	26.08	16.68	16.93	17.08
slot	After test	25.67	25.92	26.07	16.67	16.92	17.07
2 tx	Before test	25.11	25.34	25.48	19.11	19.34	19.48
slots	After test	25.12	25.35	25.47	19.12	19.35	19.47
3 tx	Before test	23.15	23.34	23.54	18.90	19.09	19.29
slots	After test	23.16	23.35	23.53	18.91	19.10	19.28
4 tx	Before test	21.17	21.34	21.47	18.17	18.34	18.47
slots	After test	21.18	21.35	21.48	18.18	18.35	18.48
C	SSM850	Condu	ucted power ((dBm)	Averaged power(dBm)		
	EGPRS (GMSK)	Channel 128	Channel 190	Channel 251	Channel 128	Channel 190	Channel 251
1 tx	Before test	31.66	31.92	31.96	22.66	22.92	22.96
slot	After test	31.65	31.91	31.95	22.65	22.91	22.95
2 tx	Before test	28.42	28.67	28.85	22.42	22.67	22.85
slots	After test	28.41	28.66	28.84	22.41	22.66	22.84
3 tx	Before test	27.42	27.64	27.80	23.17	23.39	23.55
slots	After test	27.41	27.65	27.81	23.16	23.40	23.56
4 tx	Before test	25.47	25.73	25.84	22.47	22.73	22.84
slots	After test	25.48	25.72	25.83	22.48	22.72	22.83

Table 18: Conducted power measurement result (GSM850)

As of 2011-04-18 Page 27 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

GSM1900 [GPRS/ EGPRS]

(GMSK) 512 661 810 512 661 8 1 tx slot Before test 29.30 29.37 29.30 20.30 20.37 20 2 tx slot Before test 26.63 26.73 26.62 20.63 20.73 20 3 tx slots Before test 25.07 25.15 25.02 20.82 20.90 20 3 tx slots After test 25.08 25.16 25.04 20.83 20.91 20 4 tx Before test 23.56 23.61 23.53 20.56 20.61 20	.30 .31 .62 .61 .77 .79 .53
slot After test 29.31 29.35 29.31 20.31 20.35 20 2 tx Before test 26.63 26.73 26.62 20.63 20.73 20 slots After test 26.62 26.70 26.61 20.62 20.7 20 3 tx Before test 25.07 25.15 25.02 20.82 20.90 20 slots After test 25.08 25.16 25.04 20.83 20.91 20 4 tx Before test 23.56 23.61 23.53 20.56 20.61 20	.31 .62 .61 .77 . 79 .53
2 tx Before test 26.63 26.73 26.62 20.63 20.73 20 slots After test 26.62 26.70 26.61 20.62 20.7 20 3 tx Before test 25.07 25.15 25.02 20.82 20.90 20 slots After test 25.08 25.16 25.04 20.83 20.91 20 4 tx Before test 23.56 23.61 23.53 20.56 20.61 20	.62 .61 .77 .79 .53
slots After test 26.62 26.70 26.61 20.62 20.7 20 3 tx Before test 25.07 25.15 25.02 20.82 20.90 20 slots After test 25.08 25.16 25.04 20.83 20.91 20 4 tx Before test 23.56 23.61 23.53 20.56 20.61 20	.61 .77 . 79 .53
3 tx Before test 25.07 25.15 25.02 20.82 20.90 20 slots After test 25.08 25.16 25.04 20.83 20.91 20 4 tx Before test 23.56 23.61 23.53 20.56 20.61 20	.77 .79 .53
slots After test 25.08 25.16 25.04 20.83 20.91 20 4 tx Before test 23.56 23.61 23.53 20.56 20.61 20	. 79 .53 .52
4 tx Before test 23.56 23.61 23.53 20.56 20.61 20	.53 .52
	.52
slots After test 23.56 23.62 23.52 20.56 20.62 20	
GSM1900 Conducted power (dBm) Averaged power(dBm)	
+ EGPRS Channel Channe	innel 10
1 tx Before test 25.91 26.01 25.85 16.91 17.01 16	.85
slot After test 25.92 26.00 25.84 16.92 17.00 16	.84
2 tx Before test 25.08 25.16 25.08 19.08 19.16 19	.08
slots After test 25.06 25.15 25.09 19.06 19.15 19	.09
3 tx Before test 22.68 22.75 22.65 18.43 18.50 18	.40
slots After test 22.67 22.74 22.64 18.42 18.49 18	.39
4 tx Before test 21.12 21.08 21.01 18.12 18.08 18	.01
	.02
GSM1900 Conducted power (dBm) Averaged power(dBm)	
+ EGPRS Channel Channel Channel Channel Channel Channel	nnel 10
1 tx Before test 29.30 29.38 29.30 20.30 20.38 20	.30
	.31
2 tx Before test 26.62 26.73 26.62 20.62 20.73 20	.62
	.64
3 tx Before test 25.06 25.15 25.09 20.81 20.90 20	.84
	.83
4 tx Before test 23.57 23.64 23.55 20.57 20.64 20	.55
slots After test 23.56 23.63 23.54 20.56 20.63 20	54

Table 19: Conducted power measurement result (GSM1900)

As of 2011-04-18 Page 28 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

WCDMA Band II [HSDPA/ HSUPA]

WCDMA Band II		Conducted Power (dBm)				
WCDMA	Band II	Channel 9262	Channel 9400	Channel 9538		
40 Older - DMC	Before test	20.75	20.84	20.56		
12.2kbps RMC	After test	20.74	20.83	20.55		
CAldere DMC	Before test	20.65	20.74	20.44		
64kbps RMC	After test	20.66	20.75	20.45		
1.4.4khma DMC	Before test	20.63	20.68	20.39		
144kbps RMC	After test	20.64	20.67	20.38		
20 Alabara DMC	Before test	20.68	20.74	20.42		
384kbps RMC	After test	20.67	20.75	20.43		
WCDMA	Band II	Con	ducted Power (dB	m)		
+HSI	PA	Channel 9262	Channel 9400	Channel 9538		
Cub Toot 4	Before test	20.40	20.70	20.59		
Sub Test - 1	After test	20.41	20.68	20.58		
Cub Toot 2	Before test	19.61	19.96	19.96		
Sub Test - 2	After test	19.62	19.95	19.97		
Cub Toot 2	Before test	18.44	19.94	19.76		
Sub Test - 3	After test	18.45	19.93	19.75		
Sub Test - 4	Before test	19.56	19.98	19.70		
Sub Test - 4	After test	19.55	19.97	19.72		
WCDMA	Band II	Conducted Power (dBm)				
+HSl	JPA	Channel 9262	Channel 9400	Channel 9538		
Sub Test - 1	Before test	19.13	19.19	18.73		
Sub rest - r	After test	19.14	19.18	18.72		
Sub Test - 2	Before test	18.07	18.61	18.26		
Sub Test - Z	After test	18.06	18.62	18.25		
Sub Toot 2	Before test	18.85	19.25	18.91		
Sub Test - 3	After test	18.84	19.24	18.92		
Sub Test - 4	Before test	18.32	18.78	18.30		
Sub Test - 4	After test	18.31	18.77	18.31		
Sub Toot F	Before test	19.04	19.14	18.71		
Sub Test - 5	After test	19.05	19.13	18.72		

Table 20: Conducted power measurement result (WCDMA 1900)

Note: 1) Average power numbers: The maximum power numbers are marks in **bold**.

- 2) To verify if the output changes within the tolerance before and after each SAR test, please see the power drift of each test in chapter 2.6.
- 3) For SAR testing the EUT was set to multislot class based on the maximum averaged conducted power.

As of 2011-04-18 Page 29 of 80

2.6 Test Results

GSM 850 (GSM/GPRS/EGPRS)

The table contains the measured SAR values averaged over a mass of 1 g								
Channel / frequency	Position	Body worn	Power Drift(dB)	Limit	Liquid temperature			
E173u-63 GPRS from report of FCC ID: QISE173U-63								
190 / 836.6 MHz	front 1TS	0.145 W/kg	0.079	1.6 W/kg	22.1 °C			
190 / 836.6 MHz	front 2TS	0.145 W/kg	0.113	1.6 W/kg	22.1 °C			
190 / 836.6 MHz	front 3TS	0.171 W/kg	0.123	1.6 W/kg	22.1 °C			
190 / 836.6 MHz	front 4TS	0.146 W/kg	0.070	1.6 W/kg	22.1 °C			
E	173u-63 GP	RS from report of FCC II	D: QISE173L	J-63				
190 / 836.6 MHz	rear 3TS	0.191 W/kg	-0.050	1.6 W/kg	22.1 °C			
190 / 836.6 MHz	left 3TS	0.060 W/kg	0.081	1.6 W/kg	22.1 °C			
190 / 836.6 MHz	right 3TS	0.091 W/kg	-0.116	1.6 W/kg	22.1 °C			
E173u-63 GPRS from report of FCC ID: QISE173U-63								
251 / 848.8MHz	rear 3TS	0.239 W/kg	0.017	1.6 W/kg	22.1 °C			
128 / 824.2MHz	rear 3TS	0.152 W/kg	-0.021	1.6 W/kg	22.1 °C			
E	E173u-63 EGPRS from report of FCC ID: QISE173U-63							
190 / 836.6 MHz	rear 1TS	0.153 W/kg	0.056	1.6 W/kg	22.1 °C			
190 / 836.6 MHz	rear 2TS	0.155 W/kg	-0.016	1.6 W/kg	22.1 °C			
190 / 836.6 MHz	rear 3TS	0.183 W/kg	0.002	1.6 W/kg	22.1 °C			
190 / 836.6 MHz	rear 4TS	0.159 W/kg	0.030	1.6 W/kg	22.1 °C			
E173u-63 EGPRS from report of FCC ID: QISE173U-63								
251 / 848.8MHz	rear 3TS	0.236 W/kg	-0.070	1.6 W/kg	22.1 °C			
128 / 824.2MHz	rear 3TS	0.147 W/kg	-0.030	1.6 W/kg	22.1 °C			
E173u-81 tested at worst case of E173u-63								
251 / 848.8MHz	rear 3TS	0.402 W/kg	-0.180	1.6 W/kg	22.1			

Table 21: Test results (GSM 850)

As of 2011-04-18 Page 30 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

GSM 1900 (GSM/GPRS/EGPRS)

The table contains the measured SAR values averaged over a mass of 1 g							
Channel / frequency	Position	Body worn	Power Drift	Limit	Liquid		
(db) temperature							
E173u-63 GPRS from report of FCC ID: QISE173U-63							
661 / 1880.0 MHz	front 1TS	0.590 W/kg	0.099	1.6 W/kg	22.1 °C		
661 / 1880.0 MHz	front 2TS	0.613 W/kg	0.123	1.6 W/kg	22.1 °C		
661 / 1880.0 MHz	front 3TS	0.621 W/kg	-0.075	1.6 W/kg	22.1 °C		
661 / 1880.0 MHz	front 4TS	0.544 W/kg	0.162	1.6 W/kg	22.1 °C		
E	173u-63 GP	RS from report of FC0	C ID: QISE173l	J-63			
661 / 1880.0 MHz	rear 3TS	0.960 W/kg	-0.180	1.6 W/kg	22.1 °C		
661 / 1880.0 MHz	left 3TS	0.232 W/kg	-0.147	1.6 W/kg	22.1 °C		
661 / 1880.0 MHz	right 3TS	0.384 W/kg	-0.191	1.6 W/kg	22.1 °C		
E173u-63 GPRS from report of FCC ID: QISE173U-63							
810 / 1909.8 MHz	rear 3TS	0.732 W/kg	-0.076	1.6 W/kg	22.1 °C		
512 / 1850.2 MHz	rear 3TS	0.715 W/kg	-0.066	1.6 W/kg	22.1 °C		
E.	173u-63 EGF	PRS from report of FC	C ID: QISE173	U-63			
661 / 1880.0 MHz	rear 1TS	0.848 W/kg	-0.070	1.6 W/kg	22.1 °C		
661 / 1880.0 MHz	rear 2TS	0.867 W/kg	0.010	1.6 W/kg	22.1 °C		
661 / 1880.0 MHz	rear 3TS	0.888 W/kg	-0.022	1.6 W/kg	22.1 °C		
661 / 1880.0 MHz	rear 4TS	0.791 W/kg	-0.139	1.6 W/kg	22.1 °C		
E173u-63 EGPRS from report of FCC ID: QISE173U-63							
810 / 1909.8 MHz	rear 3TS	0.671 W/kg	-0.056	1.6 W/kg	22.1 °C		
512 / 1850.2 MHz	rear 3TS	0.645 W/kg	0.026	1.6 W/kg	22.1 °C		
E173u-81 tested at worst case of E173u-63							
661 / 1880.0 MHz	rear 3TS	0.904 W/kg	-0.177	1.6 W/kg	22.1 °C		

Table 22: Test results (GSM 1900)

Note:

- 1) The value with blue colour is the maximum SAR value of E173u-63 and E173u-81...
- 2) The E173u-81 was tested at the worst case position of E173u-63.
- 3) Upper and lower frequencies were measured at the worst position.
- 4) The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

As of 2011-04-18 Page 31 of 80

WCDMA Band II (WCDMA/HSDPA/HSUPA)

The table contains the measured SAR values averaged over a mass of 1 g							
Channel / frequency	Position	Body worn	Power Drift(dB)	Limit	Liquid temperature		
E173u-63 RMC from report of FCC ID: QISE173U-63							
9400 / 1880 MHz	front	0.726 W/kg	-0.110	1.6 W/kg	22.1 °C		
9400 / 1880 MHz	rear	1.060 W/kg	-0.037	1.6 W/kg	22.1 °C		
9400 / 1880 MHz	left	0.265 W/kg	-0.037	1.6 W/kg	22.1 °C		
9400 / 1880 MHz	right	0.428 W/kg	0.022	1.6 W/kg	22.1 °C		
E173u-63 RMC from report of FCC ID: QISE173U-63							
9538 / 1907.6 MHz	rear	0.766 W/kg	0.015	1.6 W/kg	22.1 °C		
9262 / 1852.4 MHz	rear	0.759 W/kg	0.007	1.6 W/kg	22.1 °C		
E173u-63 HSDPA from report of FCC ID: QISE173U-63							
9400 / 1880 MHz	rear	1.000 W/kg	0.016	1.6 W/kg	22.1 °C		
E173u-63 HSUPA from report of FCC ID: QISE173U-63							
9400 / 1880 MHz	rear	1.010 W/kg	-0.181	1.6 W/kg	22.1 °C		
E173u-81 tested at worst case of E173u-63							
9400 / 1880 MHz	rear	0.997 W/kg	-0.196	1.6 W/kg	22.1 °C		

Table 23: Test results (WCDMA1900)

Note:

- 1) The value with blue colour is the maximum SAR value of E173u-63 and E173u-81.
- 2) The E173u-81 was tested at the worst case position of E173u-63.
- 3) Upper and lower frequencies were measured at the worst position.
- 4) The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.
- 4) Tests in body position were performed with 5 mm air gap between DUT and SAM.

As of 2011-04-18 Page 32 of 80

2.7 Summary of Extrapolated SAR Values

1: :: (045 4)	A / / 1	Conducted	1g Average		1g Average			
Limit of SAR (V	V/kg)	Power	1.6	Tune-up procedures	1.6			
Worst Case		Measurement	Measurement	maximum	Extrapolated			
Test Position	Channel	Result(dBm)	Result(W/kg)	Power(dBm)	Result (W/kg)			
GSM 850 [GPRS (3 timeslots uplink)] /From report of FCC ID: QISE173U-63								
The front of EUT	251	27.78	0.239	28.7	0.295			
GSM 850 [E	GPRS(GMS	SK) (3 timeslots up	olink)] / From repo	rt of FCC ID: QISI	E173U-63			
The front of EUT	251	27.81	0.236	28.7	0.292			
GSM 19	00 [GPRS	(3 timeslots uplink))] / From report of	FCC ID: QISE173	BU-63			
The front of EUT	661	25.16	0.960	25.7	1.087			
GSM 1900 [EGPRS(GMSK) (3 timeslots uplink)] / From report of FCC ID: QISE173U-63								
The front of EUT	661	25.16	0.888	25.7	1.006			
WCDMA Band II/ From report of FCC ID: QISE173U-63								
The front of EUT	9400	20.84	1.060	22.1	1.417			
W	/CDMA Bar	nd II HSDPA/F Fro	m report of FCC II	D: QISE173U-63				
The front of EUT	9400	20.70	1.000	21.3	1.148			
V	VCDMA Ba	nd II HSUPA/ Fror	m report of FCC ID): QISE173U-63				
The front of EUT	9400	19.25	1.010	20.3	1.286			
		E17	73u-81					
		GSM 850 [GPRS	(3 timeslots uplin	k)]				
The front of EUT	251	27.78	0.402	28.7	0.497			
GSM 1900 [GPRS (3 timeslots uplink)]								
The front of EUT	661	25.16	0.904	25.7	1.024			
WCDMA Band II								
The front of EUT	9400	20.84	0.997	22.1	1.333			

Table24: Extrapolated SAR Values of highest measured SAR (GPRS/EGPRS/ WCDMA/HSDPA/HSUPA)

Note:

1) The value with blue colour is the maximum extrapolated SAR value of each test band.

As of 2011-04-18 Page 33 of 80

Annex 1 System performance verification

Date/Time: 4/15/2011 14:16:18, Date/Time: 4/15/2011 14:23:03

Test Laboratory: Terminal SAR Lab

SystemPerformanceCheck-D835-ES-Body

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d059

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.966$ mho/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3168; ConvF(5.92, 5.92, 5.92); Calibrated: 12/23/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn852; Calibrated: 12/24/2010

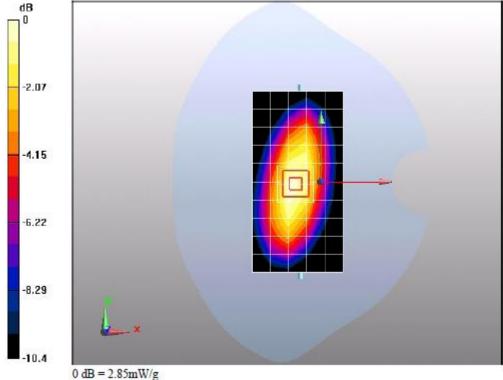
• Phantom: SAM2; Type: SAM; Serial: TP-1474

• Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Configuration/d=15mm, Pin=250mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.59 mW/g

Configuration/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 53.9 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 3.79 W/kg

SAR(1 g) = 2.63 mW/g; SAR(10 g) = 1.74 mW/g

Maximum value of SAR (measured) = 2.85 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.0°C; liquid temperature: 22.1°C

As of 2011-04-18 Page 34 of 80

Test report no.: SYBH(Z-SAR) 018042011-2

Date/Time: 4/15/2011 9:14:05, Date/Time: 4/15/2011 9:19:06

Test Laboratory: Terminal SAR Lab

SystemPerformanceCheck-D1900-ES-Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d091

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3168; ConvF(4.61, 4.61, 4.61); Calibrated: 12/23/2010

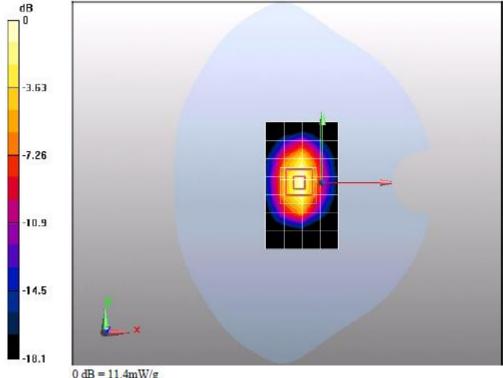
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn852; Calibrated: 12/24/2010

• Phantom: SAM1; Type: SAM; Serial: TP-1475

• Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Configuration/d=10mm, Pin=250mW/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 10.9 mW/g

Configuration/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.5 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.23 mW/gMaximum value of SAR (measured) = 11.4 mW/g

0 dB = 11.4 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.0°C; liquid temperature: 22.1°C

As of 2011-04-18 Page 35 of 80

Annex 2 Measurement results (printout from DASY TM) Annex 2.1 GSM 850 MHz body

Date/Time: 4/15/2011 15:03:55, Date/Time: 4/15/2011 15:12:07

Test Laboratory: Terminal SAR Lab

E173u-81 GSM850 GPRS 251CH 3TS Back side 5mm

DUT: E173u-81; Type: HSPA USB Stick; Serial: T5Z4CA10B1600118 Communication System: HW -GSM/GPRS/EDGE 3TS; Frequency: 848.8 MHz Medium parameters used: f = 849 MHz; $\sigma = 0.994$ mho/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m3

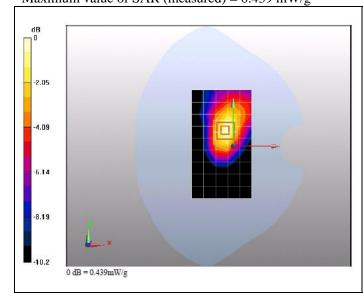
Phantom section: Flat Section

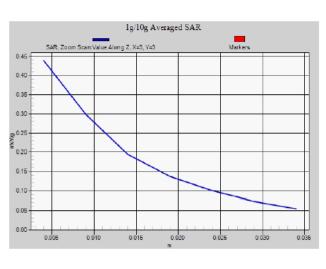
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3168; ConvF(5.92, 5.92, 5.92); Calibrated: 12/23/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn852; Calibrated: 12/24/2010
- Phantom: SAM2; Type: SAM; Serial: TP-1474
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.415 mW/g


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = -0.180 dB

Peak SAR (extrapolated) = 0.604 W/kg

SAR(1 g) = 0.402 mW/g; SAR(10 g) = 0.248 mW/gMaximum value of SAR (measured) = 0.439 mW/g

Additional information:

position or distance of DUT to SAM: 5 mm

ambient temperature: 22.0 °C; liquid temperature: 22.1 °C

As of 2011-04-18 Page 36 of 80

Annex 2.2 GSM 1900 MHz body

Date/Time: 4/15/2011 10:47:00, Date/Time: 4/15/2011 10:53:08

Test Laboratory: Terminal SAR Lab

E173u-81 GSM1900 GPRS 661CH 3TS Back side 5mm

DUT: E173u-81; Type: HSPA USB Stick ; Serial: T5Z4CA10B1600118 Communication System: HW -GSM/GPRS/EDGE 3TS; Frequency: 1880 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3168; ConvF(4.61, 4.61, 4.61); Calibrated: 12/23/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

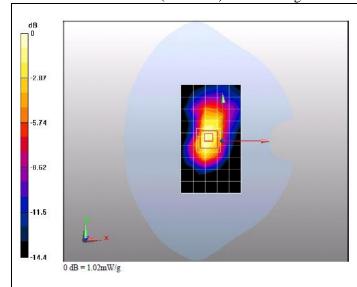
• Electronics: DAE4 Sn852; Calibrated: 12/24/2010

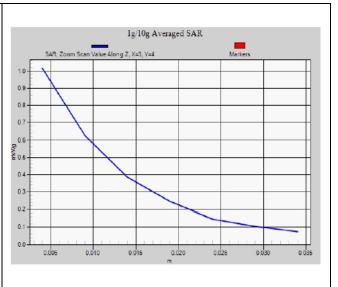
• Phantom: SAM1; Type: SAM; Serial: TP-1475

• Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.912 mW/g


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 27.3 V/m; Power Drift = -0.177 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.904 mW/g; SAR(10 g) = 0.502 mW/g

Maximum value of SAR (measured) = 1.02 mW/g

Additional information:

position or distance of DUT to SAM: 5 mm

ambient temperature: 22.0 °C; liquid temperature: 22.1°C

As of 2011-04-18 Page 37 of 80

Annex 2.3 WCDMA 1900MHz body

Date/Time: 4/15/2011 10:14:04, Date/Time: 4/15/2011 10:20:11

Test Laboratory: Terminal SAR Lab

E173u-81 WCDMA1900 9400CH Back side 5mm

DUT: E173u-81; Type: HSPA USB Stick; Serial: T5Z4CA10B1600118

Communication System: HW -UMTS-FDD; Frequency: 1950 MHz

Medium parameters used: f = 1950 MHz; $\sigma = 1.57 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3168; ConvF(4.56, 4.56, 4.56); Calibrated: 12/23/2010

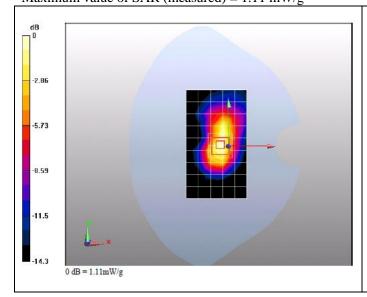
• Sensor-Surface: 4mm (Mechanical Surface Detection)

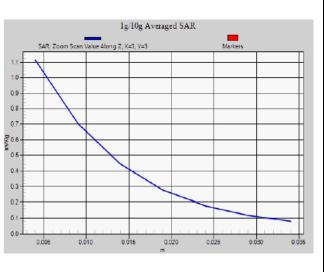
• Electronics: DAE4 Sn852; Calibrated: 12/24/2010

• Phantom: SAM1; Type: SAM; Serial: TP-1475

• Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.06 mW/g


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.2 V/m; Power Drift = -0.196 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 0.997 mW/g; SAR(10 g) = 0.554 mW/gMaximum value of SAR (measured) = 1.11 mW/g

Additional information:

position or distance of DUT to SAM:5 mm

ambient temperature: 22.0 °C; liquid temperature: 22.1°C

As of 2011-04-18 Page 38 of 80

Annex 3 Photo documentation

Test Facility Annex 3.1

As of 2011-04-18 Page 39 of 80