Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97244 Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.72 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 $\ cm^3$ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.64 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	76.6 mW /g ± 23.0 % (k=2)
SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.18 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.9 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97244 Page 3 of 14

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.17 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 $ cm^3 $ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.4 mW /g ± 23.0 % (k=2)
SAR averaged over 10 $$ cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.8 mW /g ± 22.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	5.37 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

1 1 1 0 0 are William 1 1 0 are 0 7 0 0 Mills		
SAR averaged over 1 $ cm^3 $ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.00 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.0 mW /g ± 23.0 % (k=2)
SAR averaged over 10 $$ cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.7 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97244 Page 4 of 14

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.9 ± 6 %	5.44 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 $ cm^3 $ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.6 mW /g ± 23.0 % (k=2)
SAR averaged over 10 $$ cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW /g ± 22.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.9 ± 6 %	5.74 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 $ cm^3 $ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	81.1 mW /g ± 23.0 % (k=2)
SAR averaged over 10 $$ cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.9 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97244 Page 5 of 14

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.91 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5750 MHz

Treedit With Body Tol at 0700 Mile		
SAR averaged over 1 $ cm^3 $ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.8 mW /g ± 23.0 % (k=2)
SAR averaged over 10 $$ cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97244 Page 6 of 14

Appendix

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.1Ω - 6.49jΩ
Return Loss	- 23.6dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.1Ω + 1.72jΩ
Return Loss	- 27.5dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.4Ω - 3.51jΩ	
Return Loss	- 27.6dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	45.7Ω - 4.04jΩ	
Return Loss	- 24.2dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	54.9Ω + 0.69jΩ	
Return Loss	- 26.5dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.3Ω - 3.65jΩ	
Return Loss	- 26.4dB	

Certificate No: Z16-97244 Page 7 of 14

General Antenna Parameters and Design

Electrical Delay (one direction)	1.313 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Mai	nufactured by	SPEAG

Certificate No: Z16-97244 Page 8 of 14

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1165

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Date: 12.12.2016

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.724 mho/m; ϵ r = 36.26; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.172 mho/m; ϵ r = 35.54; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.371 mho/m; ϵ r = 35.17; ρ = 1000 kg/m3,

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(5.32,5.32,5.32); Calibrated: 2016/2/19, ConvF(4.52,4.52,4.52); Calibrated: 2016/2/19, ConvF(4.45,4.45,4.45); Calibrated: 2016/2/19,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016/2/2
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.25 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.92 V/m; Power Drift = -0.01 dB

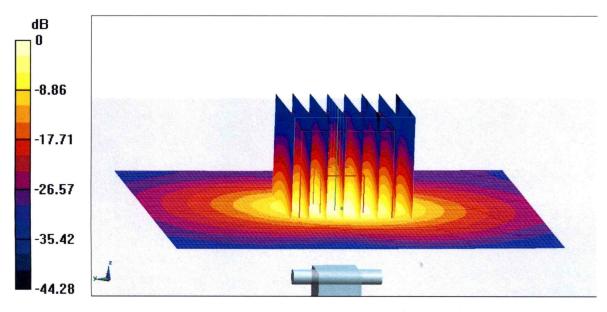
Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: Z16-97244 Page 9 of 14

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

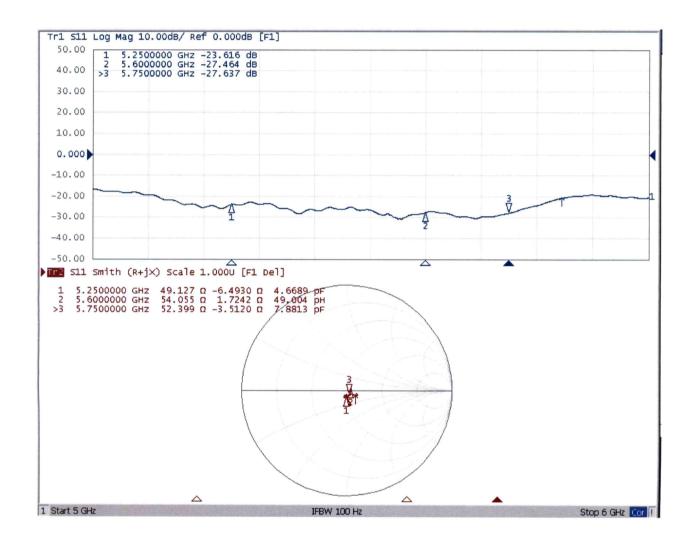

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.79 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.7 W/kg



0 dB = 19.7 W/kg = 12.94 dBW/kg

Certificate No: Z16-97244 Page 10 of 14

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1165

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Date: 12.13.2016

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.442 mho/m; ϵ r = 47.93; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.74 mho/m; ϵ r = 48.92; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.91 mho/m; ϵ r = 48.73; ρ = 1000 kg/m3.

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(4.48,4.48,4.48); Calibrated: 2016/2/19, ConvF(3.72,3.72,3.72); Calibrated: 2016/2/19, ConvF(3.91,3.91,3.91); Calibrated: 2016/2/19,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016/2/2
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 50.01 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.54 V/m; Power Drift = 0.01 dB

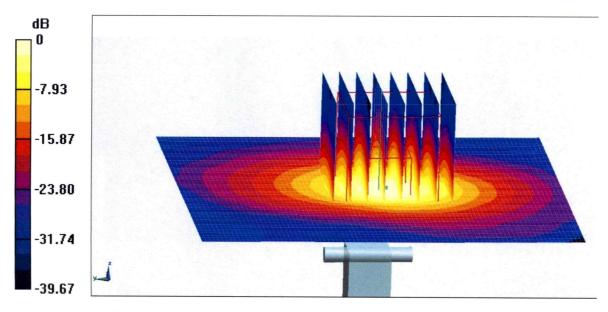
Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Certificate No: Z16-97244 Page 12 of 14

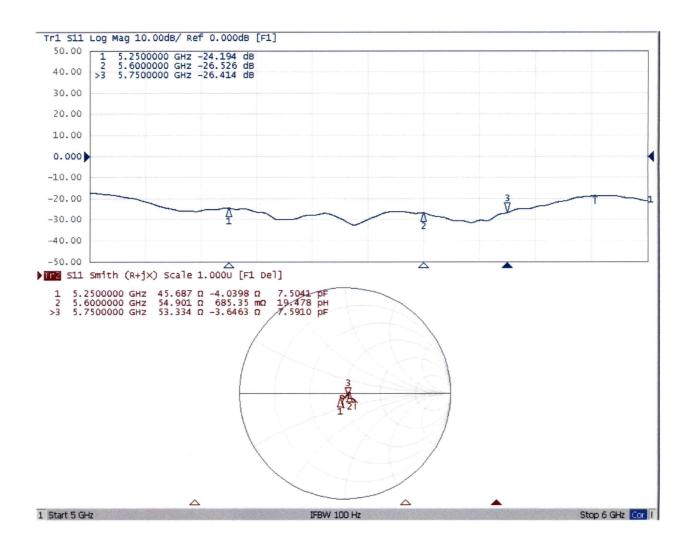
Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.53 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.1 W/kg


Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Certificate No: Z16-97244 Page 13 of 14

Impedance Measurement Plot for Body TSL

国际互认 校准 CALIBRATION CNAS L0570

Client:

SGS(Boce)

Certificate No: Z18-97013

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1428

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

January 17, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	27-Jun-17 (CTTL, No.J17X05859)	June-18
		· · · · · · · · · · · · · · · · · · ·	

Name

Function

Signature

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: January 19, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z18-97013

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209

E-mail: cttl@chinattl.com

Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1 \mu V$,

full range =

-100...+300 mV

1LSB = Low Range: 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y Z	
High Range	405.185 ± 0.15% (k=2)	404.989 ± 0.15% (k=2)	405.005 ± 0.15% (k=2)
Low Range	3.98842 ± 0.7% (k=2)	3.97098 ± 0.7% (k=2)	4.01027 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system 163° ± 1 °
--

Certificate No: Z18-97013 Page 3 of 3

Client :

SGS

Certificate No: Z18-60476

CALIBRATION CERTIFICATE

Object DAE4 - SN: 896

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date: November 08, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)[∞] and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	20-Jun-18 (CTTL, No.J18X05034)	June-19

Name Function
Calibrated by: Vu Zongving SAP Tost

Yu Zongying SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

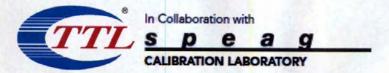
Issued: November 10, 2018

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

DAE data acquisition electronics


Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z18-60476

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.028 ± 0.15% (k=2)	404.279 ± 0.15% (k=2)	404.202 ± 0.15% (k=2)
Low Range	3.98034 ± 0.7% (k=2)	3.99566 ± 0.7% (k=2)	3.97187 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	39° ± 1 °
---	-----------

Certificate No: Z18-60476

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Client

SGS(Boce)

Certificate No: Z17-97271

CALIBRATION CERTIFICATE

Tel: +86-10-62304633-2218

E-mail: cttl@chinattl.com

Object EX3DV4 - SN:3962

Calibration Procedure(s)

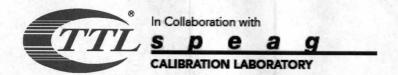
FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

January 11, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.


All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter I	NRP2	101919	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor N	NRP-Z91	101547	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor N	NRP-Z91	101548	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Reference10dBAttenuator		18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuator		18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4		SN 7464	12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Sep-18
DAE4		SN 1524	13-Sep-17(SPEAG, No.DAE4-1524_Sep17)	Sep -18
Secondary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A		6201052605	27-Jun-17 (CTTL, No.J17X05858)	Jun-18
Network Analyze	er E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan -18
		Name	Function	Signature
Calibrated by:		Yu Zongying	SAR Test Engineer	Anth-
Reviewed by:		Lin Hao	SAR Test Engineer	林粉
Approved by:		Qi Dianyuan	SAR Project Leader	and I
				140 0040

Issued: January 13, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z17-97271

Probe EX3DV4

SN: 3962

Calibrated: January 11, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)