No. 2006E02034

Page 33 of 73

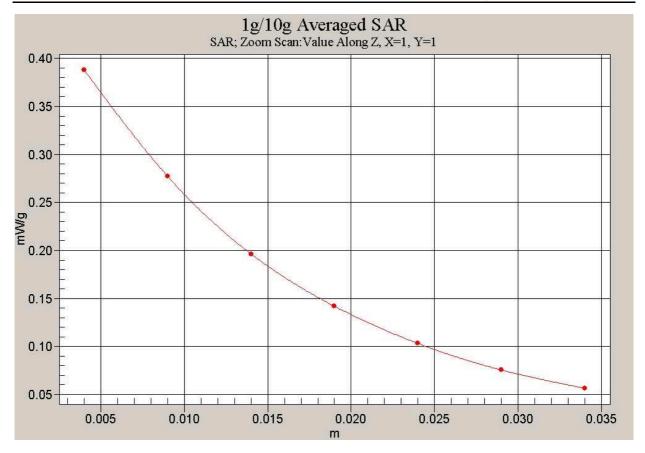


Fig. 12 Z-Scan at power reference point (CDMA 835MHz CH1013)

No. 2006E02034

Page 34 of 73

CDMA 1X Right Cheek High

Date/Time: 2006-12-15 16:37:19

Electronics: DAE3 Sn536

Medium: 835 Head

Medium parameters used (interpolated): $\sigma = 0.88$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature: 21.4°C

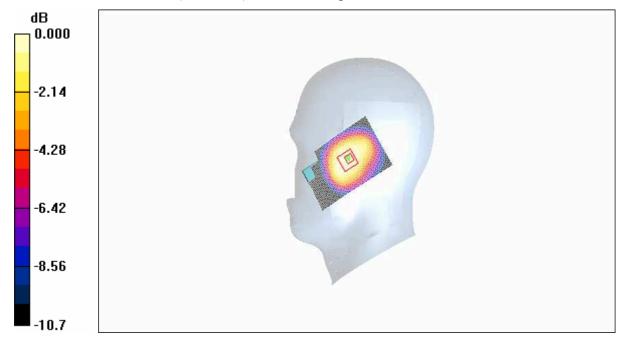
Communication System: CDMA 1X-new Frequency: 848.31 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.51, 6.51, 6.51)

Cheek High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.03 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 25.2 V/m; Power Drift = -0.118 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.911 mW/g; SAR(10 g) = 0.634 mW/g

Maximum value of SAR (measured) = 0.935 mW/g

0 dB = 0.935 mW/g

Fig. 13 Right Hand Touch Cheek CDMA 835MHz CH777

No. 2006E02034

Page 35 of 73

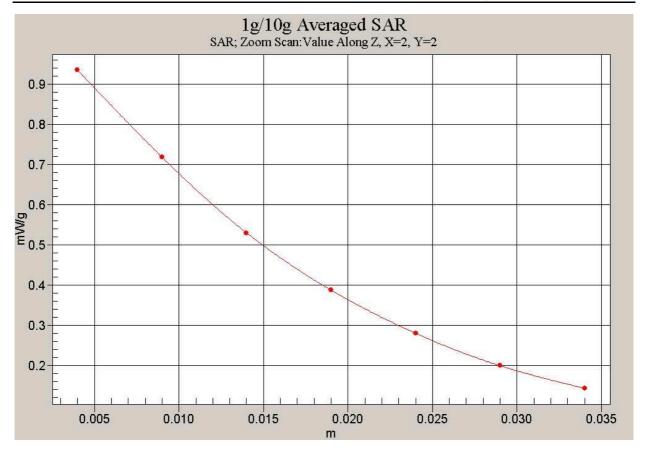


Fig. 14 Z-Scan at power reference point (CDMA 835MHz CH777)

No. 2006E02034

Page 36 of 73

CDMA 1X Right Cheek Middle

Date/Time: 2006-12-15 16:14:14

Electronics: DAE3 Sn536

Medium: 835 Head

Medium parameters used (interpolated): $\sigma = 0.88 \text{ mho/m}$; $\varepsilon_r = 41.7$; $\rho = 1000 \text{ kg/m}^3$

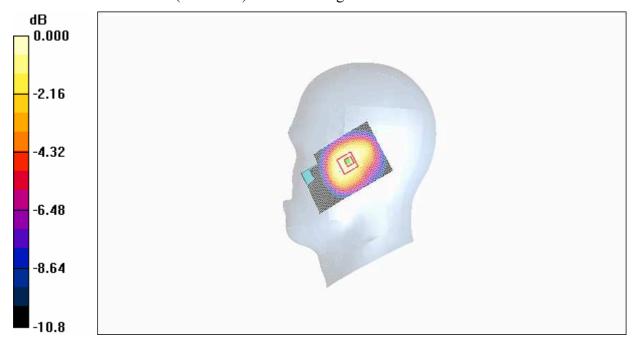
Ambient Temperature: 22.5°C Liquid Temperature: 21.4°C

Communication System: CDMA 1X-new Frequency: 836.52 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.51, 6.51, 6.51)

Cheek Middle/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.733 mW/g


Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 0.864 W/kg

SAR(1 g) = 0.634 mW/g; SAR(10 g) = 0.434 mW/g

Maximum value of SAR (measured) = 0.664 mW/g

0 dB = 0.664 mW/g

Fig.15 Right Hand Touch Cheek CDMA 835MHz CH384

No. 2006E02034

Page 37 of 73

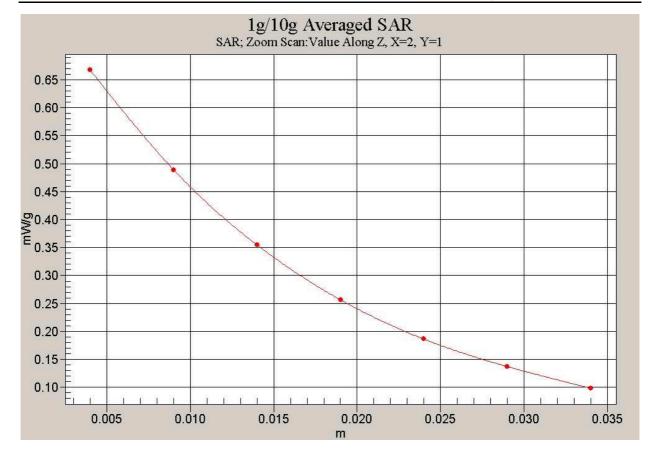


Fig. 16 Z-Scan at power reference point (CDMA 835MHz CH384)

No. 2006E02034

Page 38 of 73

CDMA 1X Right Cheek Low

Date/Time: 2006-12-15 16:59:14

Electronics: DAE3 Sn536

Medium: 835 Head

Medium parameters used (interpolated): $\sigma = 0.88$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

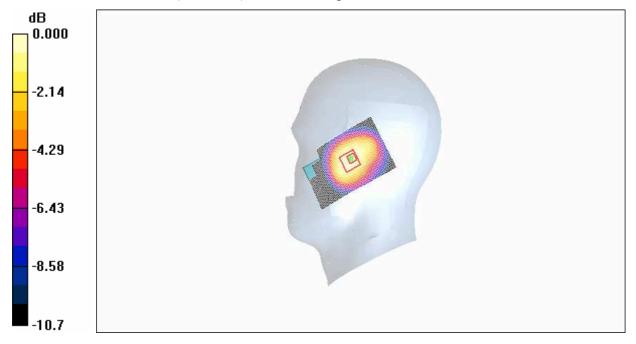
Ambient Temperature: 22.5°C Liquid Temperature: 21.4°C

Communication System: CDMA 1X-new Frequency: 824.7 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.51, 6.51, 6.51)

Cheek Low/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.658 mW/g


Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.3 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 0.815 W/kg

SAR(1 g) = 0.599 mW/g; SAR(10 g) = 0.419 mW/g

Maximum value of SAR (measured) = 0.648 mW/g

0 dB = 0.648 mW/g

Fig. 17 Right Hand Touch Cheek CDMA 835MHz CH1013

No. 2006E02034

Page 39 of 73

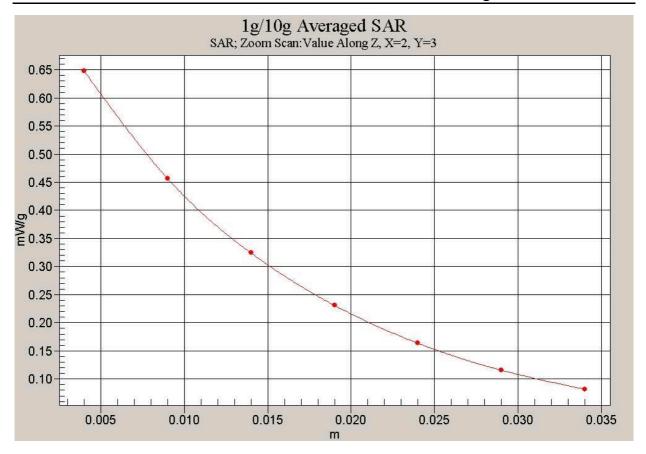


Fig. 18 Z-Scan at power reference point (CDMA 835MHz CH1013)

Page 40 of 73

No. 2006E02034

CDMA 1X Right Tilt High

Date/Time: 2006-12-15 16:47:30

Electronics: DAE3 Sn536

Medium: 835 Head

Medium parameters used (interpolated): $\sigma = 0.88$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

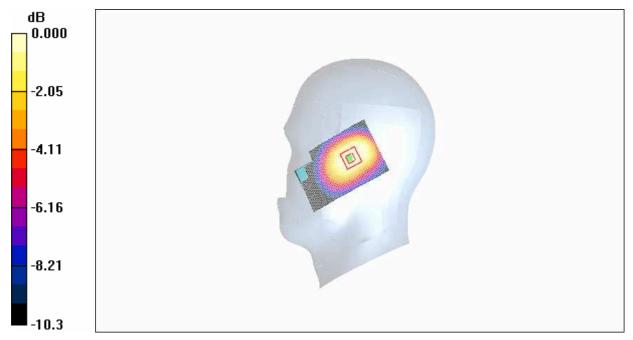
Ambient Temperature: 22.5°C Liquid Temperature: 21.4°C

Communication System: CDMA 1X-new Frequency: 848.31 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.51, 6.51, 6.51)

Tilt High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.628 mW/g


Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.8 V/m; Power Drift = -0.174 dB

Peak SAR (extrapolated) = 0.754 W/kg

SAR(1 g) = 0.569 mW/g; SAR(10 g) = 0.392 mW/g

Maximum value of SAR (measured) = 0.583 mW/g

0~dB = 0.583 mW/g

No. 2006E02034

Page 41 of 73

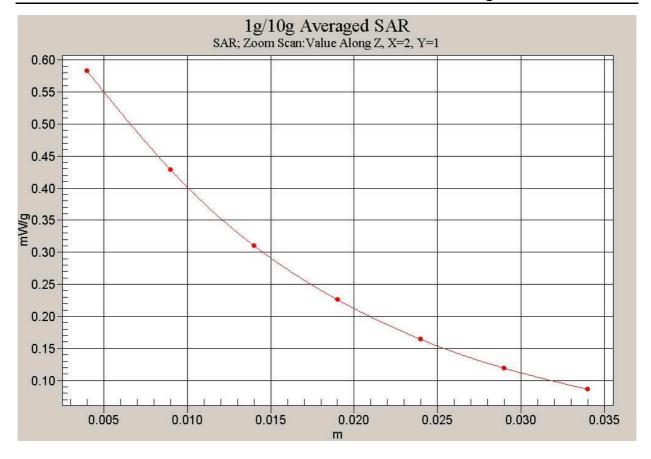


Fig. 20 Z-Scan at power reference point (CDMA 835MHz CH777)

No. 2006E02034

Page 42 of 73

CDMA 1X Right Tilt Middle

Date/Time: 2006-12-15 16:24:28

Electronics: DAE3 Sn536

Medium: 835 Head

Medium parameters used (interpolated): $\sigma = 0.88 \text{ mho/m}$; $\varepsilon_r = 41.7$; $\rho = 1000 \text{ kg/m}^3$

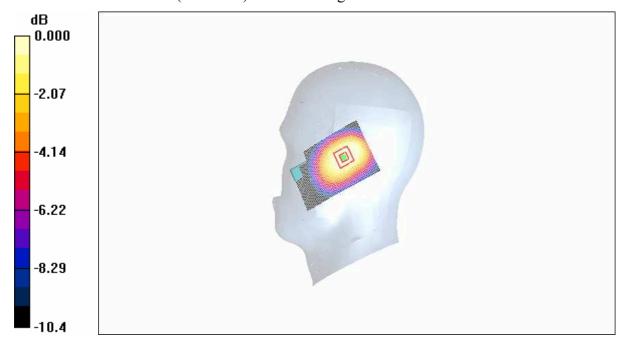
Ambient Temperature: 22.5°C Liquid Temperature: 21.4°C

Communication System: CDMA 1X-new Frequency: 836.52 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.51, 6.51, 6.51)

Tilt Middle/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.415 mW/g


Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.4 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 0.504 W/kg

SAR(1 g) = 0.382 mW/g; SAR(10 g) = 0.263 mW/g

Maximum value of SAR (measured) = 0.386 mW/g

0 dB = 0.386 mW/g

Fig. 21 Right Hand Tilt 15°CDMA 835MHz CH384

No. 2006E02034

Page 43 of 73

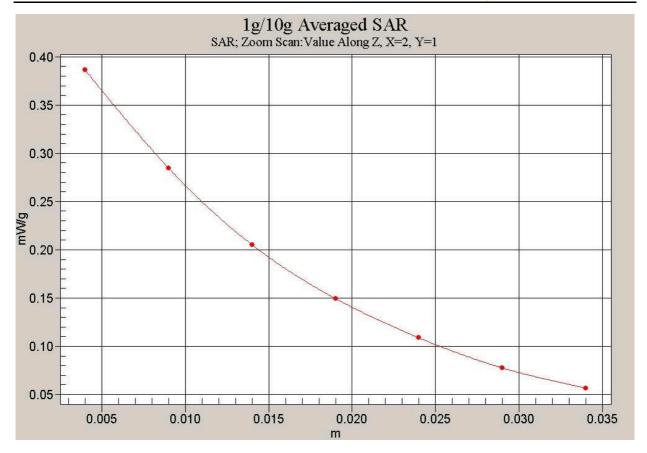


Fig. 22 Z-Scan at power reference point (CDMA 835MHz CH384)

No. 2006E02034 Page 44 of 73

CDMA 1X Right Tilt Low

Date/Time: 2006-12-15 17:09:19

Electronics: DAE3 Sn536

Medium: 835 Head

Medium parameters used (interpolated): $\sigma = 0.88$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

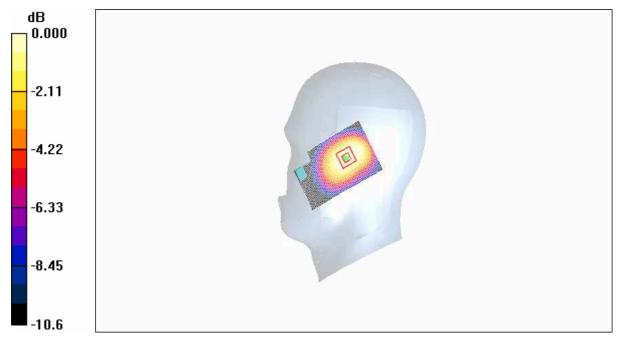
Ambient Temperature: 22.5°C Liquid Temperature: 21.4°C

Communication System: CDMA 1X-new Frequency: 824.7 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.51, 6.51, 6.51)

Tilt Low/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.404 mW/g


Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.1 V/m; Power Drift = -0.074 dB

Peak SAR (extrapolated) = 0.507 W/kg

SAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.261 mW/g

Maximum value of SAR (measured) = 0.388 mW/g

0~dB=0.388mW/g

Fig. 23 Right Hand Tilt 15°CDMA 835MHz CH1013

No. 2006E02034

Page 45 of 73

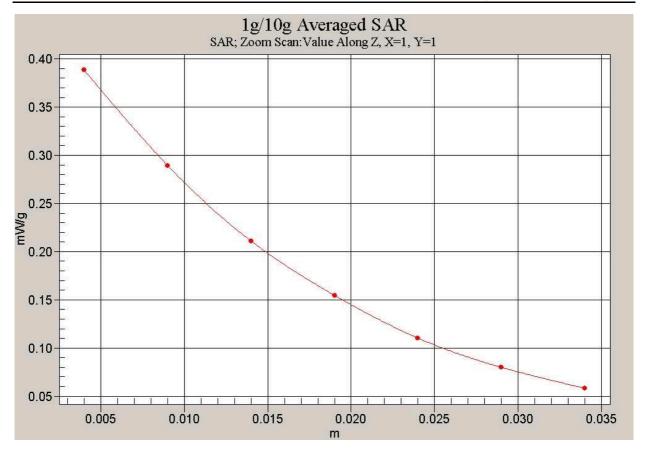


Fig. 24 Z-Scan at power reference point (CDMA 835MHz CH1013)

No. 2006E02034 Page 46 of 73

CDMA 1X Body Toward Phantom High

Date/Time: 2006-12-15 15:09:31

Electronics: DAE3 Sn536

Medium: 835 Body

Medium parameters used (interpolated): $\sigma = 0.95$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

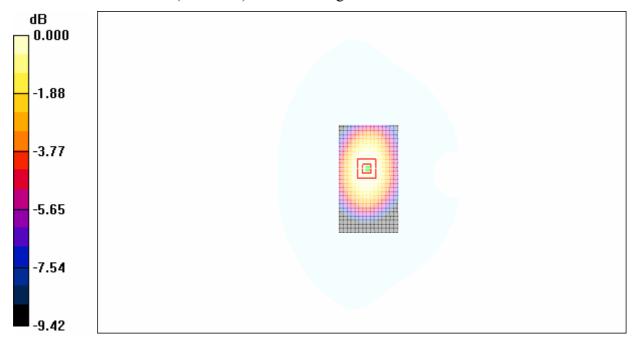
Ambient Temperature: 22.5°C Liquid Temperature: 21.8°C

Communication System: CDMA 1X-new Frequency: 848.31 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.45, 6.45, 6.45)

Toward Phantom High/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.608 mW/g


Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.2 V/m; Power Drift = -0.200 dB

Peak SAR (extrapolated) = 0.639 W/kg

SAR(1 g) = 0.497 mW/g; SAR(10 g) = 0.357 mW/g

Maximum value of SAR (measured) = 0.526 mW/g

0 dB = 0.526 mW/g

Fig. 25 CDMA 835MHz, Body, Towards Phantom, CH777

No. 2006E02034

Page 47 of 73

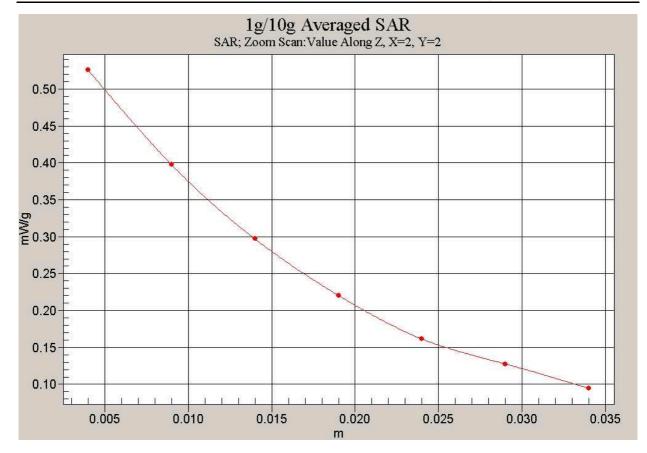


Fig. 26 Z-Scan at power reference point (CDMA 835MHz, Body,Towards Phantom, CH777)

Page 48 of 73 No. 2006E02034

CDMA 1X Body Toward Phantom Middle

Date/Time: 2006-12-15 15:21:34

Electronics: DAE3 Sn536

Medium: 835 Body

Medium parameters used (interpolated): $\sigma = 0.95$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature: 21.8°C

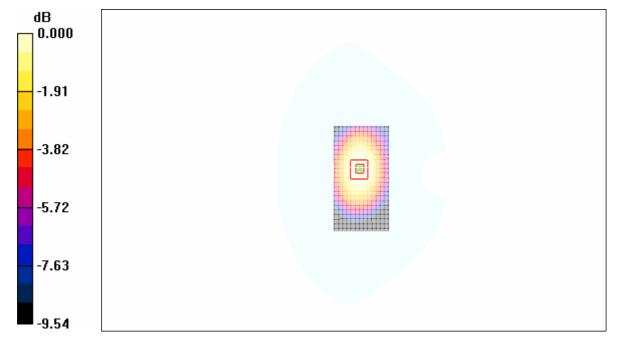
Communication System: CDMA 1X-new Frequency: 836.52 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.45, 6.45, 6.45)

Toward Phantom Middle/Area Scan (71x121x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.368 mW/g


Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.4 V/m; Power Drift = -0.129 dB

Peak SAR (extrapolated) = 0.422 W/kg

SAR(1 g) = 0.329 mW/g; SAR(10 g) = 0.236 mW/g

Maximum value of SAR (measured) = 0.350 mW/g

0 dB = 0.350 mW/g

Fig. 27 CDMA 835MHz, Body, Towards Phantom, CH384

No. 2006E02034

Page 49 of 73

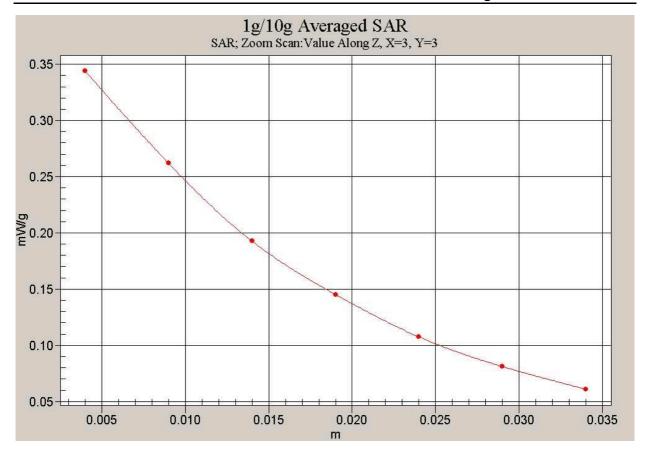


Fig. 28 Z-Scan at power reference point (CDMA 835MHz, Body, Towards Phantom, CH384)

Page 50 of 73

No. 2006E02034

CDMA 1X Body Toward Phantom Low

Date/Time: 2006-12-15 15:35:03

Electronics: DAE3 Sn536

Medium: 835 Body

Medium parameters used (interpolated): $\sigma = 0.95$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature: 21.8°C

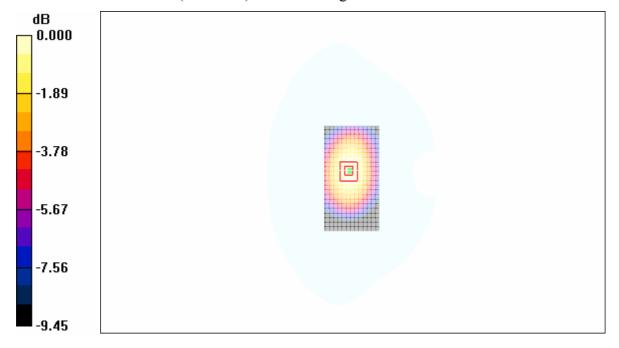
Communication System: CDMA 1X-new Frequency: 824.7 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.45, 6.45, 6.45)

Toward Phantom Low/Area Scan (71x121x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 0.333 mW/g


Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.7 V/m; Power Drift = 0.131 dB

Peak SAR (extrapolated) = 0.431 W/kg

SAR(1 g) = 0.323 mW/g; SAR(10 g) = 0.227 mW/g

Maximum value of SAR (measured) = 0.344 mW/g

0 dB = 0.344 mW/g

No. 2006E02034

Page 51 of 73

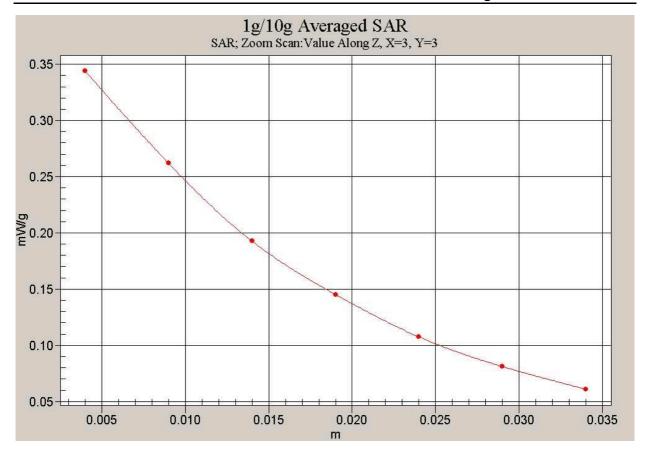


Fig. 30 Z-Scan at power reference point (CDMA 835MHz, Body, Towards Phantom, CH1013)

No. 2006E02034

Page 52 of 73

CDMA 1X Body Toward Ground High

Date/Time: 2006-12-15 14:19:32

Electronics: DAE3 Sn536

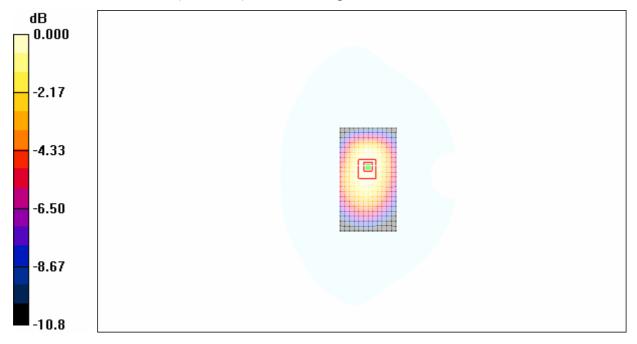
Medium: 835 Body

Medium parameters used (interpolated): $\sigma = 0.95$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 21.8°C

Communication System: CDMA 1X-new Frequency: 848.31 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.45, 6.45, 6.45)


Toward Ground High/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.808 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.2 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.750 mW/g; SAR(10 g) = 0.537 mW/gMaximum value of SAR (measured) = 0.795 mW/g

0 dB = 0.795 mW/g

Fig. 31 CDMA 835MHz, Body, Towards Ground, CH777

No. 2006E02034

Page 53 of 73

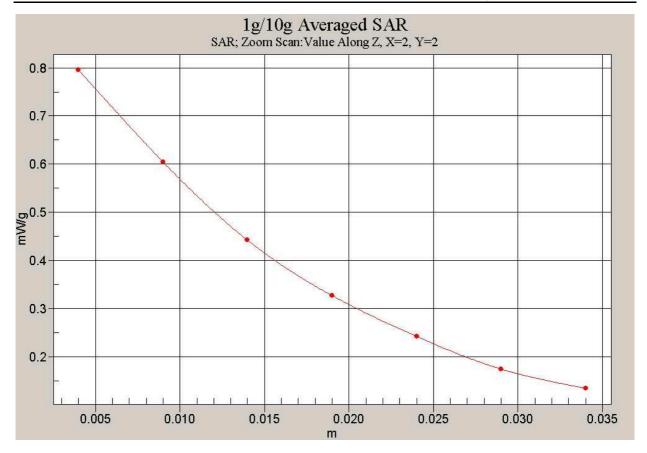


Fig. 32 Z-Scan at power reference point (CDMA 835MHz, Body, Towards Ground, CH777)

No. 2006E02034 Page 54 of 73

CDMA 1X Body Toward Ground Middle

Date/Time: 2006-12-15 14:35:30

Electronics: DAE3 Sn536

Medium: 835 Body

Medium parameters used (interpolated): $\sigma = 0.95$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

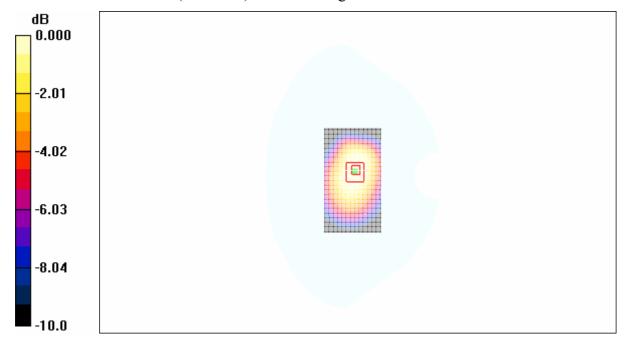
Ambient Temperature: 22.5°C Liquid Temperature: 21.8°C

Communication System: CDMA 1X-new Frequency: 836.52 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.45, 6.45, 6.45)

Toward Ground Middle/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.569 mW/g


Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.7 V/m; Power Drift = -0.083 dB

Peak SAR (extrapolated) = 0.664 W/kg

SAR(1 g) = 0.518 mW/g; SAR(10 g) = 0.373 mW/g

Maximum value of SAR (measured) = 0.550 mW/g

0 dB = 0.550 mW/g

Fig. 33 CDMA 835MHz, Body, Towards Ground, CH384

No. 2006E02034

Page 55 of 73

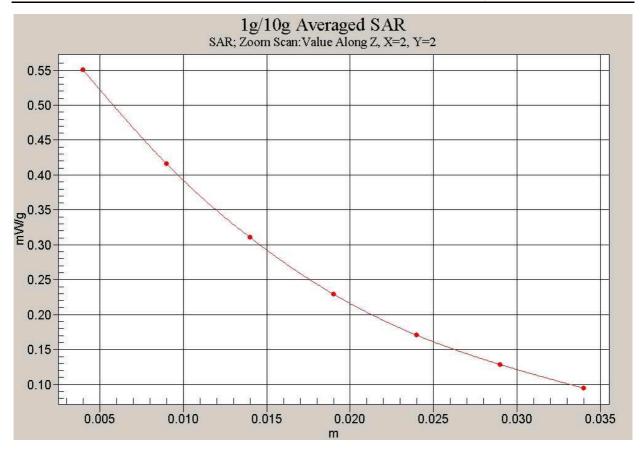


Fig. 34 Z-Scan at power reference point (CDMA 835MHz, Body, Towards Ground, CH384)

Page 56 of 73

No. 2006E02034

CDMA 1X Body Toward Ground Low

Date/Time: 2006-12-15 14:48:05 Electronics: DAE3 Sn536

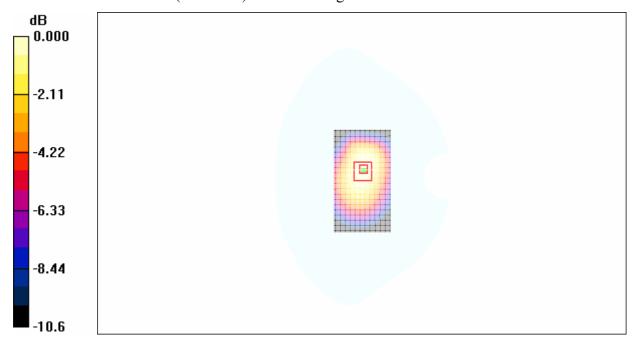
Medium: 835 Body

Medium parameters used (interpolated): $\sigma = 0.95$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 21.8°C

Communication System: CDMA 1X-new Frequency: 824.7 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.45, 6.45, 6.45)


Toward Ground Low/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.574 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.0 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.711 W/kg

SAR(1 g) = 0.546 mW/g; SAR(10 g) = 0.394 mW/gMaximum value of SAR (measured) = 0.579 mW/g

0 dB = 0.579 mW/g

Fig. 35 CDMA 835MHz, Body, Towards Ground, CH1013

No. 2006E02034

Page 57 of 73

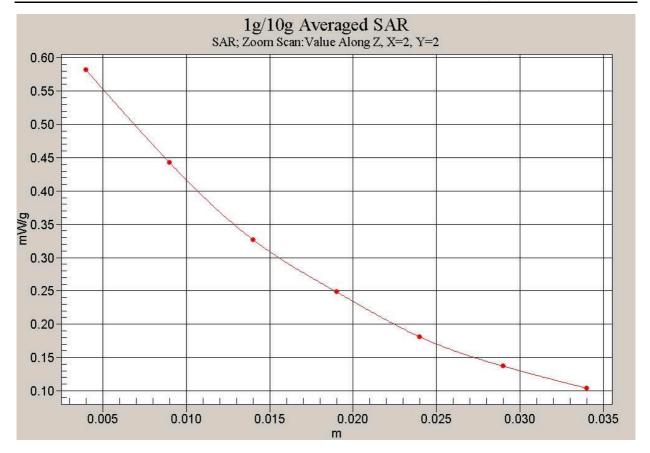


Fig. 36 Z-Scan at power reference point (CDMA 835MHz, Body, Towards Ground, CH1013)

ANNEX D SYSTEM VALIDATION RESULTS

835MHzDAE589Probe1736

Date/Time: 2006-12-15 13:21:45

Electronics: DAE3 Sn536

Medium: 835 Head

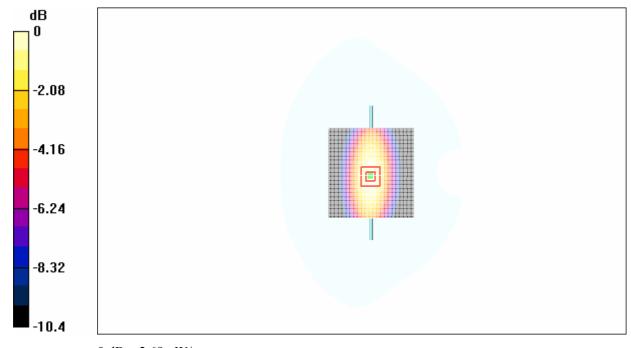
Medium parameters used (interpolated): $\sigma = 0.88$ mho/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 21.4°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ET3DV6 - SN1736 ConvF(6.51, 6.51, 6.51)

835MHz/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 2.68 mW/g


835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.8 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.69 mW/g

0 dB = 2.69 mW/g

No. 2006E02034

Page 59 of 73

ANNEX E PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Swizerland

Accredited by the Swiss Federal Office of metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

ient TMC China CALIBRATION CERT	IFICATE	Serunou	te No: ET3DV6-1736_Dec			
Object		ET3DV6-SN: 1736				
Calibration procedure(s)		QA CAL-01.v5				
	Ca	alibration procedure for dosimetric E-field	d probes			
Calibration date:		December 1, 2006				
Condition of the calibrated in	tem In	Tolerance				
Calibration Equipment used (N	/I&TE critical for ca	alibration) Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration			
Power meter E4419B	GB341293874	22-May-06 (METAS, NO. 251-00466)	May-07			
Power meter E4419B Power sensor E4412A	MY41495277	22-May-06 (METAS, NO. 251-00466)	2012			
Power sensor E4412A Power sensor E4412A	MY41493277	, , , , , , , , , , , , , , , , , , , ,	May-07			
Power sensor E4412A Reference 20 dB Attenuator		22-May-06 (METAS, NO. 251-00466)	May-07 May-07			
Reference Probe ES3DV2	SN:S5086 (20b) SN:S5086 (20b)		May-07			
DAE4	SN:3013	13-Jan-06 (SPEAG, NO. ES3-3013 Jan06)	Jan-07			
Reference Probe ES3DV2	SN: 907	11-Jun-06 (SPEAG, NO.DAE4-907_Jun06)	Jun-07			
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration			
RF generator HP8648C	US3642U01700		In house check: Dec-09			
Network Analyzer HP 8753E	US37390585	10-Nov-05(SPEAG, NO. DAE4-901_Nov-04)	In house check: Nov-09			
	Name	Function	Signature			
Calibrated by:	Nico Vetterli	Laboratory Technician	DISEARCE			
Approved by:	Katja Pokovic	Technical Director	Il Kat			
			Issued: December 1, 200			

Certificate No: ET3DV6-1736_Dec06 Page 1 of 9

No. 2006E02034

Page 60 of 73

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

 $\begin{array}{lll} TSL & tissue simulating liquid \\ NORMx,y,z & sensitivity in free space \\ ConF & sensitivity in TSL / NORMx,y,z \\ DCP & diode compression point \\ Polarization \phi & \phi rotation around probe axis \\ \end{array}$

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3DV6-1736_ Dec06 Page 2 of 9

No. 2006E02034

Page 61 of 73

ET3DV6 SN: 1736 December 1, 2006

Probe ET3DV6

SN: 1736

Manufactured: September 27, 2002

Last calibrated: November 25, 2005

Recalibrated: December 1, 2006

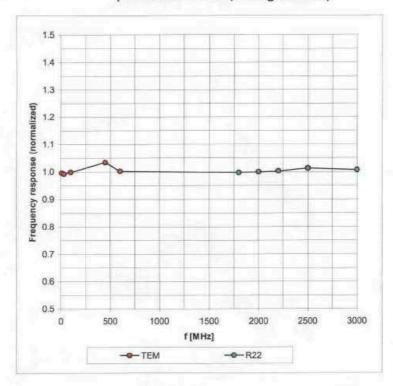
Calibrated for DASY System

Certificate No: ET3DV6-1736_ Dec06 Page 3 of 9

No. 2006E02034

Page 62 of 73

ET3DV6 SN: 1736	December 1, 2006
DASV - Parameters of Prohe: ET3DV6	SN-1736

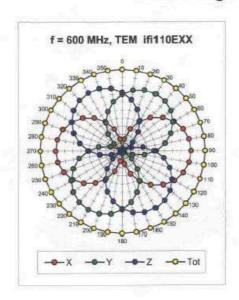

Sensitivity in Fr	ee Spac	e ^A		Di	ode	Compress	ion ^B
NormX	1.9	97 ± 10.1%	$\mu V/(V/m)^2$	DC	PX	93 mV	
NormY	1.7	75 ± 10.1%	$\mu V/(V/m)^2$	DC	PΥ	93 mV	
NormZ	1.9	97 ± 10.1%	μV/(V/m) ²	DC	PΖ	93 mV	
Sensitivity in Tis	ssue Sin	nulating Li	quid (Conv	ersion Fa	ctor	s)	
Please see Page 8.							
Boundary Effec	t						
TSL	900 MHz	Typical SA	AR gradient: 5	% per mm			
Sensor Cent	er to Phant	om Surface D	istance	3.7	mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm				9.6	5.0	
SAR _{be} [%]	With C	orrection Algo	orithm	().1	0.3	
TSL 1	810 MHz	Typical SA	AR gradient: 1	0 % per mm			
Sensor Cent	er to Phante	om Surface D	istance	3.7	mm	4.7 mm	
SAR _{be} [%]	Withou	t Correction A	Mgorithm	1	3.2	8.8	
SAR _{be} [%]	With C	orrection Algo	rithm	(0.6	0.1	

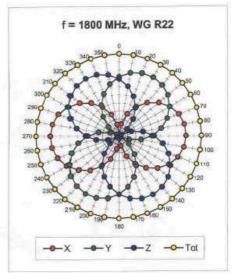
Certificate No: ET3DV6-1736_Dec06 Page 4 of 9

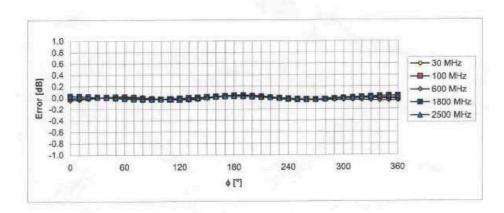
ET3DV6 SN: 1736 December 1, 2006

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)



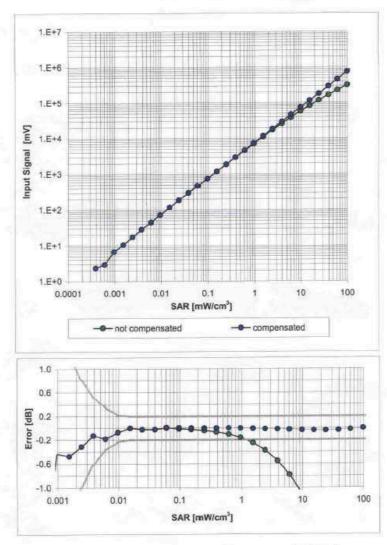

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3DV6-1736_Dec06 Page 5 of 9

ET3DV6 SN: 1736 December 1, 2006

Receiving Pattern (ϕ), θ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

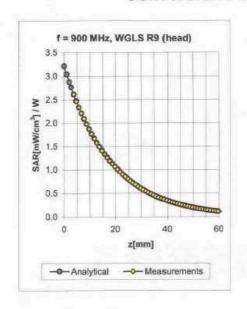

Certificate No: ET3DV6-1736_Dec06 Page 6 of 9

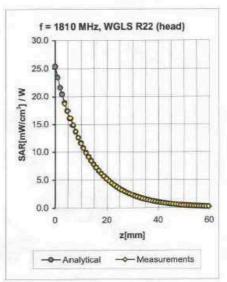
ET3DV6 SN: 1736

December 1, 2006

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3DV6-1736_Dec06 Page 7 of 9

ET3DV6 SN: 1736 December 1, 2006

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.56	1.85	6.51 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.57	2.47	5.40 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.62	2.29	4.67 ± 11.8% (k=2)
450	±50/±100	Body	56.7 ± 5%	0.94 ± 5%	0.12	1.61	7.74 ± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.47	2.15	6.45 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.53	2.78	4.88 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.65	2.11	4.35 ± 11.8% (k=2)


Certificate No: ET3DV6-1736_Dec06 Page 8 of 9

ET3DV6 SN: 1736

December 1, 2006

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3DV6-1736_Dec06

Page 9 of 9

ANNEX F DIPOLE CALIBRATION CERTIFICATE

Engineering AG	. 00
Zeughausstrasse 43, 8004 Zurich, Switzerl	and, Phone +41 1 245 97 00, Fax +41 1 245 97 7
Calibratio	n Certificate
Canbratio	n Certificate
835 MHz System	n Validation Dipole
Type:	D835V2
Serial Number:	443
Place of Calibration:	Zurich
Date of Calibration:	September 3, 2005
	September 3, 2003
Calibration Interval:	24
	24 months
Schmid & Partner Engineering AG hereby cer the date indicated above. The calibration	45-4-4:1:1:1
marcated above. The campiation was r	Defformed in accordance with a con-
Provided of Schilling & Lattilet Engineer	ing AG.
Wherever applicable, the standards used in the international standards. In all other cases the st	andards of the Laborate C ruser
Microwave Electronics at the Swiss Federal In: Switzerland have been applied.	stitute of Technology (ETH) in Zurich,
Colibrate d l	11 101
Calibrated by:	bleavit Raja
Approved by:	X/III
ripproved by.	

Page 69 of 73

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D835V2

Serial: 443

Manufactured: July 26, 2001 Calibrated:

September 3, 2005

No. 2006E02034

Page 70 of 73

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 41.0 \pm 5% Conductivity 0.89 mho/m \pm 5%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.27 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1 W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 10.6 mW/g

averaged over 10 cm³ (10 g) of tissue: 6.80 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

No. 2006E02034

Page 71 of 73

Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.403 ns (one direction)

Transmission factor:

0.995

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz:

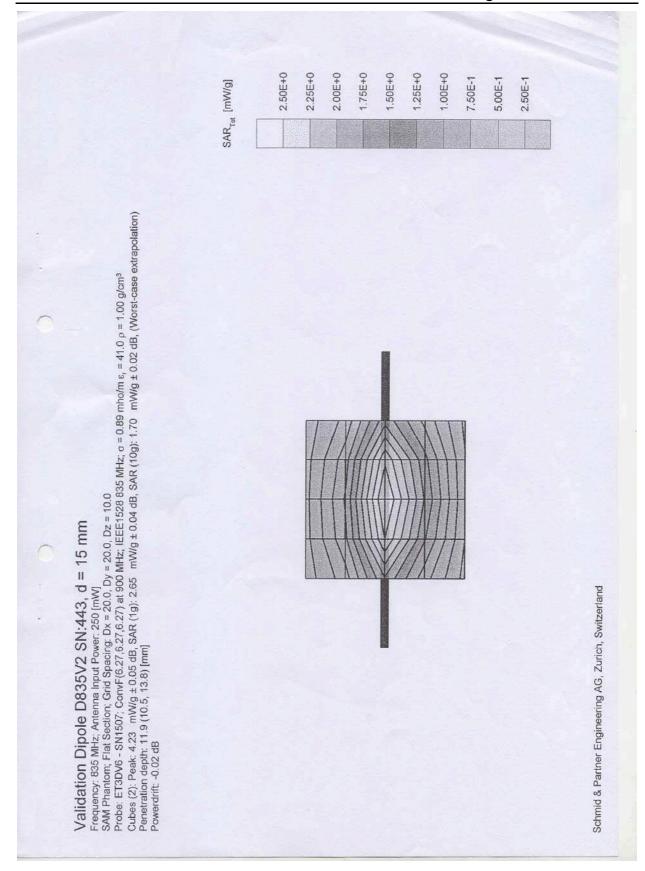
 $Re{Z} = 50.5 \Omega$

Im $\{Z\} = -5.3 \Omega$

Return Loss at 835 MHz

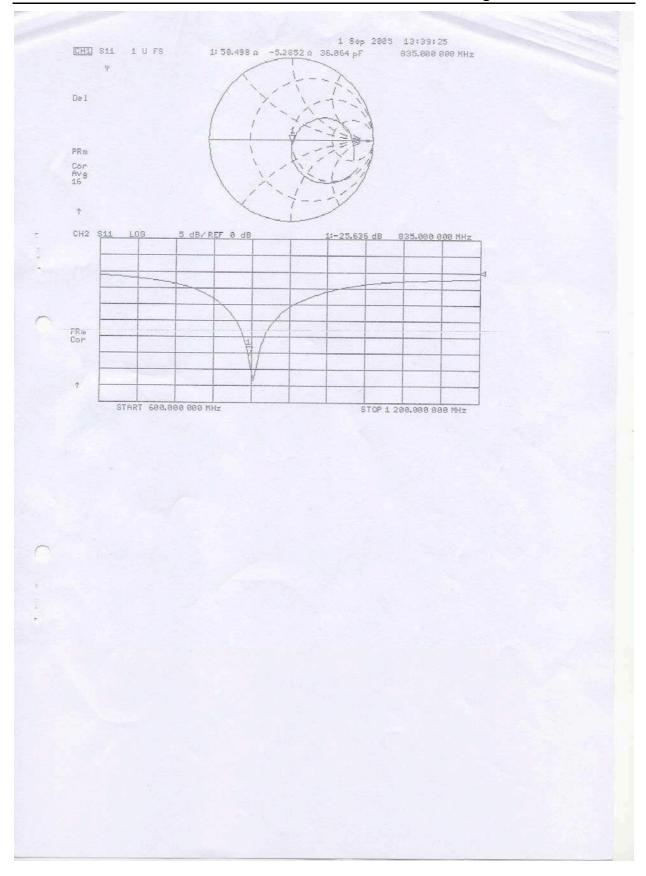
-25.6 dB

Handling


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore shortcircuited for DC-signals.

Do not apply excessive force to the dipole arms, because they might bend. If the dipole arms have to be bent back, take care to release stress to the soldered connections near the feedpoint; they might come off.

After prolonged use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


No. 2006E02034

Page 72 of 73

No. 2006E02034

Page 73 of 73

