

Report No.: RZA2010-0921

OET 65 TEST REPORT

Product Name

CDMA 1X Digital Mobile Telephone

FCC ID

QISC5120

Model

HUAWEI C5120

Client

Huawei Technologies Co., Ltd.

TA Technology (Shanghai) Co., Ltd. 报告专用章

GENERAL SUMMARY

			T
Product Name	CDMA 1X Digital Mobile Telephone	Model	HUAWEI C5120
FCC ID	QISC5120		
Report No.	RZA2010-0921		
Client	Huawei Technologies Co., Ltd.		
Manufacturer	Huawei Technologies Co., Ltd.		
Standard(s)	IEEE Std C95.1, 1999: IEEE Standa Human Exposure to Radio Frequency GHz. IEEE Std 1528™-2003: IEEE Recom Peak Spatial-Average Specific Absorp from Wireless Communications Device SUPPLEMENT C Edition 01-01 to OE 2001 including DA 02-1438, per Compliance with FCC Guidelines for Electromagnetic Fields Additional Info Mobile and Portable Devices with FCC frequency Emissions.	Electromagnetic mended Practice otion Rate (SAR) es: Measurement ET BULLETIN 65 ublished June Human Exposure rmation for Evalu	Fields, 3 kHz to 300 for Determining the in the Human Head Techniques. Edition 97-01 June 2002: Evaluating to Radio frequency lation Compliance of
Conclusion	This portable wireless equipment has by the relevant standards. Test result below limits specified in the relevant standards. General Judgment: Pass	s in Chapter 7	f this test report are
Comment	The test result only responds to the n	neasured sample	

Approved by 和伟中

Revised by 凌敬多

Performed by

Xue Chaofeng

Yang Weizhong

Ling Minbao

TABLE OF CONTENT

1.	Ger	neral Information	5
	1.1.	Notes of the Test Report	5
	1.2.	Testing Laboratory	5
	1.3.	Applicant Information	6
	1.4.	Manufacturer Information	6
	1.5.	Information of EUT	7
	1.6.	The Maximum SAR _{1g} Values of each Tested Band	8
	1.7.	Test Date	
2.	Ope	erational Conditions during Test	9
	2.1.	General Description of Test Procedures	
2	2.2.	Information for the Measurement of CDMA 1x Devices	
	2.2.		
	2.2.	•	
	2.2.		
3.	SAF	R Measurements System Configuration	
(3.1.	SAR Measurement Set-up	
;	3.2.	·	
	3.2.	•	
	3.2.	.2. E-field Probe Calibration	
(3.3.	Other Test Equipment	13
	3.3.	···	
	3.3.	.2. Phantom	14
(3.4.	Scanning Procedure	14
(3.5.	Data Storage and Evaluation	16
	3.5.	.1. Data Storage	16
	3.5.	.2. Data Evaluation by SEMCAD	16
(3.6.	System Check	19
(3.7.	Equivalent Tissues	20
4.	Lab	poratory Environment	21
5.	Cha	aracteristics of the Test	21
į	5.1.	Applicable Limit Regulations	21
į	5.2.	Applicable Measurement Standards	21
6.	Con	nducted Output Power Measurement	22
(3.1.	Summary	22
(5.2.	Conducted Power Results	22
7.	Test	t Results	23
-	7.1.	Dielectric Performance	23
-	7.2.	System Checking Results	23
-	7.3.	Summary of Measurement Results	24
	7.3.	.1. CDMA Cellular	24
8.	Mea	asurement Uncertainty	25

Report No. RZA2010-0921	Page 4 of 73
9. Main Test Instruments	26
ANNEX A: Test Layout	27
ANNEX B: System Check Results	29
ANNEX C: Graph Results	31
ANNEX D: Probe Calibration Certificate	46
ANNEX E: D835V2 Dipole Calibration Certificate	55
ANNEX F: DAE4 Calibration Certificate	64
ANNEX G: The EUT Appearances and Test Configuration	69

Report No. RZA2010-0921 Page 5 of 73

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No. RZA2010-0921

Page 6 of 73

1.3. Applicant Information

Company: Huawei Technologies Co., Ltd.

Address: Bantian, Longgang District

City: Shenzhen

Postal Code: 518129

Country: P.R. China

Contact: Fan Wentong

Telephone: 0755-28780808

Fax: 0755-28780808

1.4. Manufacturer Information

Company: Huawei Technologies Co., Ltd.

Address: Bantian, Longgang District

City: Shenzhen

Postal Code: 518129

Country: P.R. China

Telephone: 0755-28780808

Fax: 0755-28780808

Report No. RZA2010-0921 Page 7 of 73

1.5. Information of EUT

General information

Device Type :	Portable Device			
Exposure Category:	Uncontrolled Environment / General Population			
Name of EUT:	CDMA 1X Digital Mob	CDMA 1X Digital Mobile Telephone		
SN:	XP9MAA1051800057	XP9MAA1051800057		
Device Operating Configurations :				
Operating Mode(s):	CDMA Cellular			
Test Modulation:	QPSK			
Operating Fraguency Benga(a)	Band	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s):	CDMA Cellular	824.7 ~ 848.31	869.7 ~ 893.31	
Test Channel: (Low - Middle - High)	1013 - 384 - 777	(CDMA Cellular)	(tested)	
Power Class:	Tested with Power Control All up bits			
Hardware Version:	Ver.A			
Software Version:	C5120C16B101			
Antenna Type:	Internal Antenna			

Report No. RZA2010-0921 Page 8 of 73

Auxiliary Equipment Details

AE1:Battery

Model: HB5D1

Manufacturer: Huawei Technologies Co., Ltd.

SN: GAGA323XF1107268

AE2:Travel Adapter

Model: HS-050040E1

Manufacturer: Huawei Technologies Co., Ltd.

SN: BYAA40817145

Equipment Under Test (EUT) is a model of CDMA 1X Digital Mobile Telephone with internal antenna. The detail about Mobile phone, Lithium Battery and AC/DC Adapter is in chapter 1.5 in this report. SAR is tested for CDMA Cellular only.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR_{1g} Values of each Tested Band

Band	SAR _{1g} (W/kg)		
	Head	Body	
CDMA Cellular	0.863	1.060	

1.7. Test Date

The test is performed from June 19, 2010 to June 20, 2010.

2. Operational Conditions during Test

2.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1013, 384 and 777 respectively in the case of CDMA Cellular. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. Power control is set "All Up Bits" of CDMA Cellular. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

2.2. Information for the Measurement of CDMA 1x Devices

2.2.1. Output Power Verification

Test Parameter setup for maximum RF output power according to section 4.4.5 of 3GPP2

Parameter	Units	Value
l or	dBm/1.23MHz	-104
PilotE c /I or	dB	-7
TrafficE c /I or	dB	-7.4

For SAR test, the maximum power output is very important and essential; it is identical under the measurement uncertainty. It is proper to use typical Test Mode 3 (FW RC3, RVS RC3, SO55) as the worst case for SAR test.

2.2.2. Head SAR Measurement

SAR is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55.SAR for RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3.Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

2.2.3. Body SAR Measurement

SAR is measured in RC3 with the EUT configured to transmit at full rate using TDSO/SO32, transmit at full rate on FCH with all other code channels disabled. SAR for multiple code channels (FCH+SCHn) is not required when the maximum average output of each RF channel is less than 0.25dB higher than measured with FCH only.

Report No. RZA2010-0921

Page 10 of 73

Body SAR in RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate using the body exposure configuration that results in the highest SAR for that channel in RC3.

Test communication setup meet as followings:

Communication standard between mobile station and base station simulator	3GPP2 C.S0011-B	
Radio configuration	RC3 (Supporting CDMA 1X)	
Spreading Rate	SR1	
Data Rate	9600bps	
Service Options	SO55 (loop back mode)	
Service Options	SO32 (test data service mode)	
Multiplex Options	The mobile station does not support this service.	

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

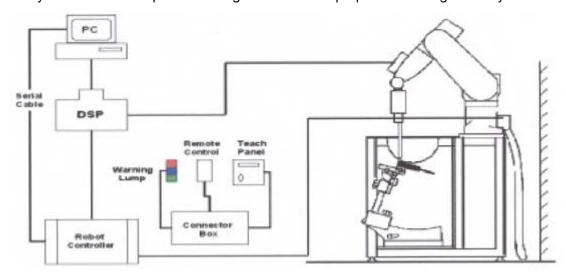


Figure 1. SAR Lab Test Measurement Set-up

3.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient

fields).

Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with

respect to the line between the ear reference points). The rotation centers for both scales is the

ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The amount of dielectric material

has been reduced in the closest vicinity of the device, since measurements have suggested that the

inference of the clamp on the test results could thus be lowered.

Figure 4.Device Holder

3.3.2. **Phantom**

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Aailable Special

Figure 5.Generic Twin Phantom

3.4. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

Report No. RZA2010-0921

Page 15 of 73

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

Conversion factor
 Diode compression point
 Dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal,

the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / (\cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

 $\boldsymbol{E_{tot}}$ = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3.6. System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 7 and table 8.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

3D Probe positioner

Field probe
Flat Phantom
Dipole

Cable

Att2

PM3

Att2

PM3

Figure 6. System Check Set-up

3.7. Equivalent Tissues

The liquid is consisted of water, sugar, salt, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 1 and Table 2 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 1: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz	
Water	41.45	
Sugar	56	
Salt	1.45	
Preventol	0.1	
Cellulose	1.0	
Dielectric Parameters	f=835MHz ε=41.5 σ=0.9	
Target Value	1-035141712	

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body)835MHz		
Water	52.5		
Sugar	45		
Salt	1.4		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters	f=025MU=		
Target Value	f=835MHz ε=55.2 σ=0.97		

4. Laboratory Environment

Table 3: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

5.2. Applicable Measurement Standards

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio frequency Emissions.

6. Conducted Output Power Measurement

6.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power.

Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

6.2. Conducted Power Results

Table 4: Conducted Power Measurement Results

CDMA Cellular	Co	onducted Power (dBm)
(RC3)	Channel 1013	Channel 384	Channel 777
Before test	24.20	24.10	24.10
After test	24.10	24.10	24.10
CDMA Cellular	Conducted Power (dBm)		
(RC1)	Channel 1013	Channel 384	Channel 777
Before test	24.20	24.10	24.10
After test	24.10	24.10	24.20

7. Test Results

7.1. Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

Eroguepov	Description	Dielectric Parameters		Temp
Frequency		ε _r	σ(s/m)	°C
	Target value	41.5	0.90	,
835MHz	±5% window	39.43 — 43.58	0.86 — 0.95	/
(head)	Measurement value 2010-6-19	42.06	0.93	22.5

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Eroguenev	Description	Dielectric Par	Temp	
Frequency	Description	ε _r	σ(s/m)	${\mathfrak C}$
	Target value	55.20	0.97	,
835MHz	±5% window	52.44 — 57.96	0.92 — 1.02	1
(body)	(body) Measurement value	F4.07	1.00	22.5
	2010-6-19	54.67	1.00	22.5

7.2. System Checking Results

Table 7: System Checking for Head Tissue Simulating Liquid

Frequency	Description	SAR	Dielectric Parameters		Temp	
		10g	1g	٤r	σ(s/m)	$^{\circ}$
	Recommended value	1.58	2.42	40 E	0.89	,
835MHz	±10% window	1.42 — 1.74	2.18 — 2.66	40.5		1
OSSIMITIZ	Measurement value	1.62	2.48	42.06	0.93	22.5
	2010-6-19	1.02	2.40	42.00	0.93	22.5

Note: 1. The graph results see ANNEX B.

Table 8: System Check for body Tissue Simulating Liquid

Frequency	Description	SAR	Dielectric Parameters		Temp	
		10g	1g	٤r	σ(s/m)	$^{\circ}$
	Recommended value	1.68	2.56	53	0.99	1
835MHz	±10% window	1.51 — 1.85	2.30 — 2.82	55		1
OSSIVIFIZ	Measurement value	1.68	2.56 54.6		1.00	21.9
	2010-6-19	1.00	2.56	54.67	1.00	21.9

Note: 1. The graph results see ANNEX B.

^{2.} Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the Calibrated dipole.

7.3. Summary of Measurement Results

7.3.1. CDMA Cellular

Table 9: SAR Values (CDMA Cellular)

Limit of SAR (W/k	g)	10 g Average	1 g Average	Power Drift (dB)	Graph					
		2.0	1.6	± 0.21						
Different Test Position	Channel	Measurement	Power	Results						
Different fest Position	Channel	10 g Average	1 g Average	Drift(dB)						
Test position of Head										
	High	0.629	0.863	-0.087	Figure 9					
Left hand, Touch cheek	Middle	0.618	0.842	-0.015	Figure 10					
	Low	0.578	0.789	0.078	Figure 11					
Left hand, Tilt 15 Degree	Middle	0.403	0.563	0.095	Figure 12					
	High	0.612	0.856	-0.031	Figure 13					
Right hand, Touch cheek	Middle	0.607	0.850	-0.020	Figure 14					
	Low	0.550	0.764	0.011	Figure 15					
Right hand, Tilt 15 Degree	Middle	0.425	0.620	-0.147	Figure 16					
	Test posi	tion of Body (Dist	ance 15mm)							
	High	0.655	0.947	-0.090	Figure 17					
Towards Ground	Middle	0.733	1.060	0.087	Figure 18					
	Low	0.682	0.986	-0.095	Figure 19					
Towards Phantom Midd		0.294	0.403	-0.001	Figure 20					
Worst case position of Body with Earphone (Distance 15mm)										
Towards Ground	Middle	0.372(max.cube)	0.540(max.cube)	0.005	Figure 21					

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR_{1g} limit (< 0.8W/kg), testing at the high and low channels is optional.
- 4. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the table above; the value from the second assessed cube is given in the SAR distribution plots (See ANNEX C).

Report No. RZA2010-0921

Page 25 of 73

8. Measurement Uncertainty

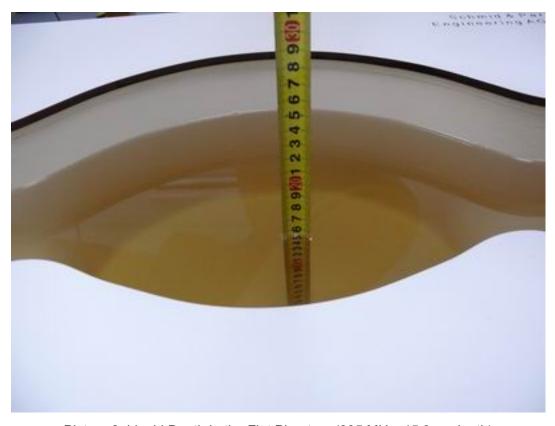
No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom V _{eff} or v _i		
1	System repetivity	Α	0.5	N	1	1	0.5	9		
	Measurement system									
2	probe calibration	В	5.9	N	1	1	5.9	8		
3	axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	8		
4	Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞		
6	boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞		
7	probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞		
8	System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞		
9	readout Electronics	В	1.0	N	1	1	1.0	8		
10	response time	В	0	R	$\sqrt{3}$	1	0	∞		
11	integration time	В	4.32	R	$\sqrt{3}$	1	2.5	8		
12	noise	В	0	R	$\sqrt{3}$	1	0	8		
13	RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞		
14	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	80		
15	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	80		
16	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	80		
	-	Tes	st sample Rela	ted						
17	-Test Sample Positioning	Α	2.9	N	1	1	2.9	5		
18	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5		
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞		
		Ph	ysical paramet	er						

Report No. RZA2010-0921

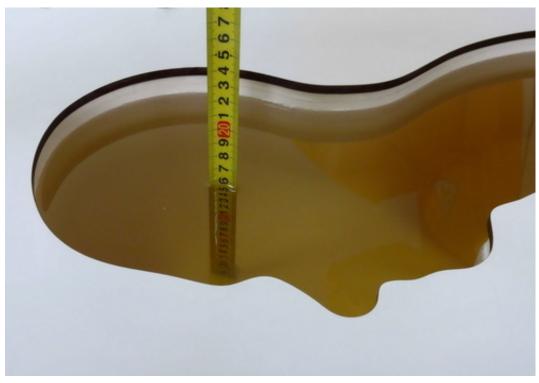
Page 26 of 73

20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.64	1.8	∞
22	-liquid conductivity (measurement uncertainty)	В	5.0	N	1	0.64	3.2	∞
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
24	-liquid permittivity (measurement uncertainty)	В	5.0	N	1	0.6	3.0	8
Combined standard uncertainty		$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					12.0	
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		N	k=	2	24.0	

9. Main Test Instruments


Table 10: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2009	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Re	quested
03	Power meter	Agilent E4417A	GB41291714	March 13, 2010	One year
04	Power sensor	Agilent 8481H	MY41091316	March 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2009	One year
06	Amplifier	IXA-020	0401	No Calibration Re	quested
07	BTS	E5515C	MY48360988	December 4, 2009	One year
08	E-field Probe	EX3DV4	3677	September 23, 2009	One year
09	DAE	DAE4	871	November 11, 2009	One year
10	Validation Kit 835MHz	on Kit 835MHz D835V2		July 13, 2009	One year


ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid Depth in the Flat Phantom (835 MHz, 15.3cm depth)

Picture 3: Liquid Depth in the Head Phantom (835 MHz, 15.4cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d082

Date/Time: 6/19/2010 10:02:02 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ mho/m}$; $\epsilon_r = 42.06$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.71 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 55.5 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.62 mW/gMaximum value of SAR (measured) = 2.67 mW/g

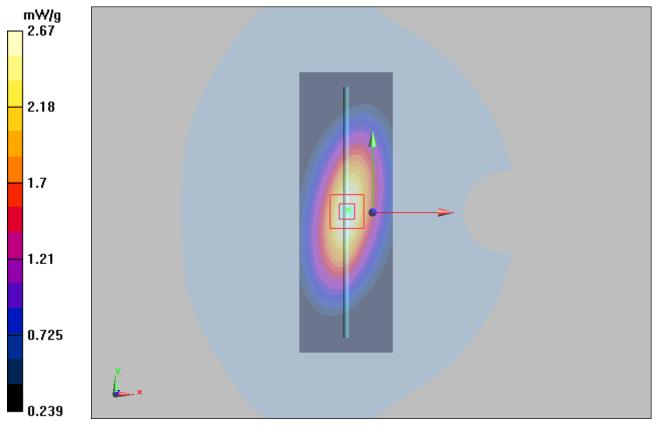


Figure 7 System Performance Check 835MHz 250mW

System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d082

Date/Time: 6/19/2010 11:27:20 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 1.00$ mho/m; $\varepsilon_r = 54.67$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.77 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.56 mW/g; SAR(10 g) = 1.68 mW/gMaximum value of SAR (measured) = 2.77 mW/g

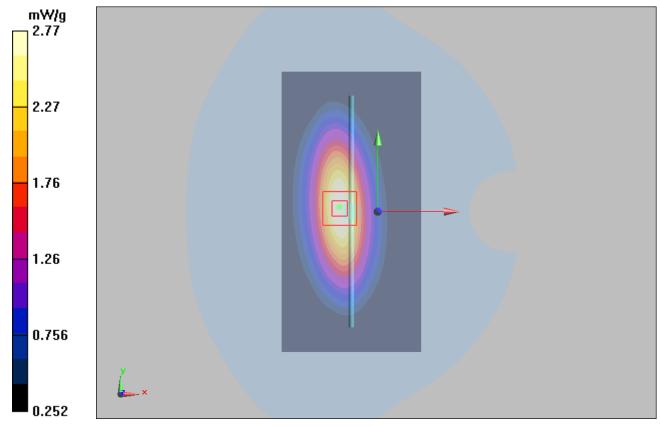


Figure 8 System Performance Check 835MHz 250mW

ANNEX C: Graph Results

CDMA Cellular Left Cheek High

Date/Time: 6/20/2010 4:32:17 AM

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.943 \text{ mho/m}$; $\varepsilon_r = 41.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

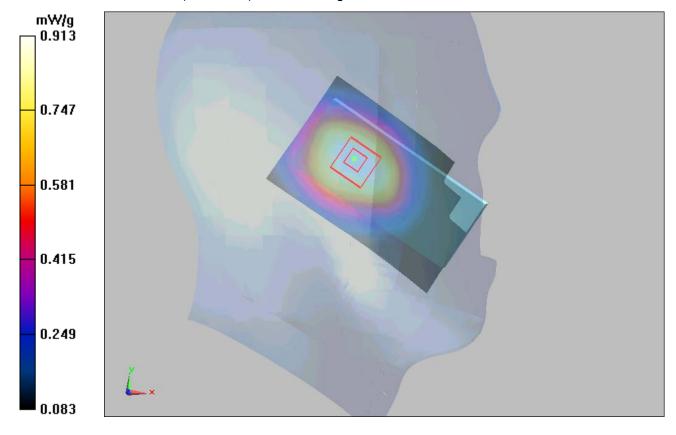
Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.966 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.8 V/m; Power Drift = -0.087 dB

Peak SAR (extrapolated) = 1.1 W/kg

SAR(1 g) = 0.863 mW/g; SAR(10 g) = 0.629 mW/g

Maximum value of SAR (measured) = 0.913 mW/g

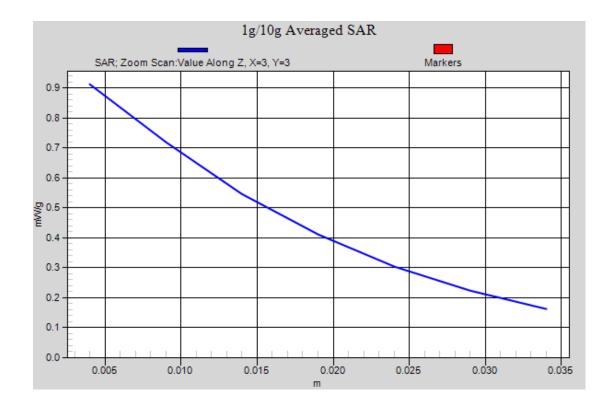


Figure 9 Left Hand Touch Cheek CDMA Cellular Channel 777

CDMA Cellular Left Cheek Middle

Date/Time: 6/20/2010 3:32:49 AM

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.933$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.908 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.8 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.842 mW/g; SAR(10 g) = 0.618 mW/g Maximum value of SAR (measured) = 0.889 mW/g

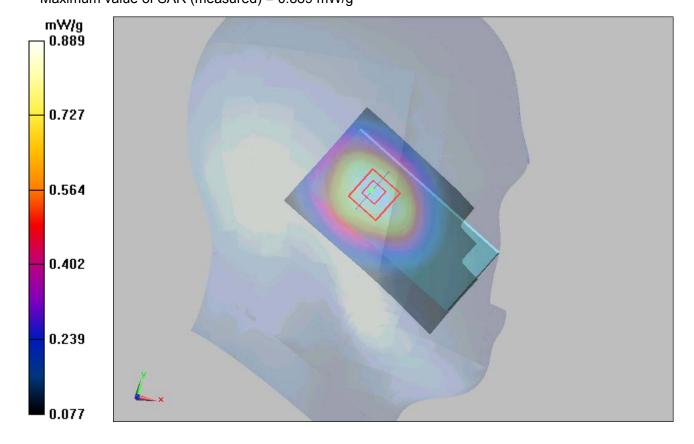


Figure 10 Left Hand Touch Cheek CDMA Cellular Channel 384

CDMA Cellular Left Cheek Low

Date/Time: 6/20/2010 3:52:56 AM

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.926 \text{ mho/m}$; $\epsilon_r = 42.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.851 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.4 V/m; Power Drift = 0.078 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.789 mW/g; SAR(10 g) = 0.578 mW/g Maximum value of SAR (measured) = 0.834 mW/g

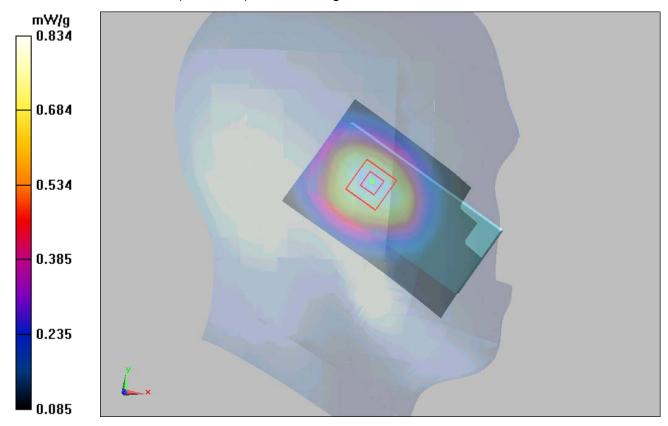


Figure 11 Left Hand Touch Cheek CDMA Cellular Channel 1013

CDMA Cellular Left Tilt Middle

Date/Time: 6/20/2010 4:52:36 AM

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.933$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.611 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.1 V/m; Power Drift = 0.095 dB

Peak SAR (extrapolated) = 0.726 W/kg

SAR(1 g) = 0.563 mW/g; SAR(10 g) = 0.403 mW/g Maximum value of SAR (measured) = 0.601 mW/g

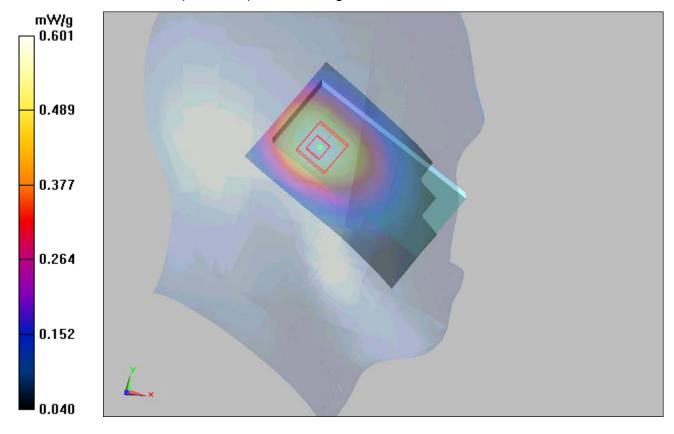


Figure 12 Left Hand Tilt 15° CDMA Cellular Channel 384

CDMA Cellular Right Cheek High

Date/Time: 6/20/2010 6:16:13 AM

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.943 \text{ mho/m}$; $\varepsilon_r = 41.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.928 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.7 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.856 mW/g; SAR(10 g) = 0.612 mW/g

Maximum value of SAR (measured) = 0.912 mW/g

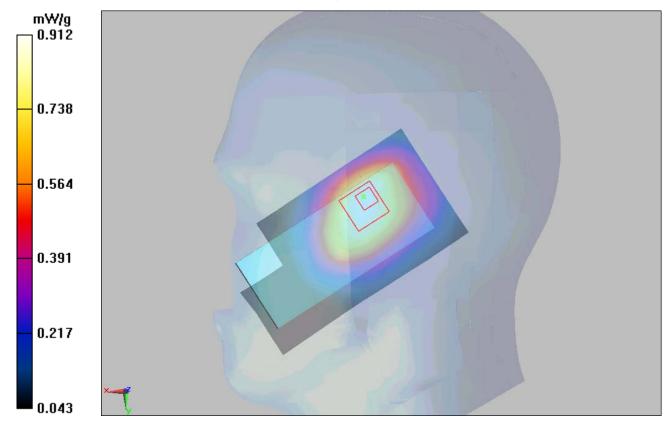


Figure 13 Right Hand Touch Cheek CDMA Cellular Channel 777

CDMA Cellular Right Cheek Middle

Date/Time: 6/20/2010 5:17:13 AM

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.933$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.915 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.4 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.850 mW/g; SAR(10 g) = 0.607 mW/g Maximum value of SAR (measured) = 0.905 mW/g

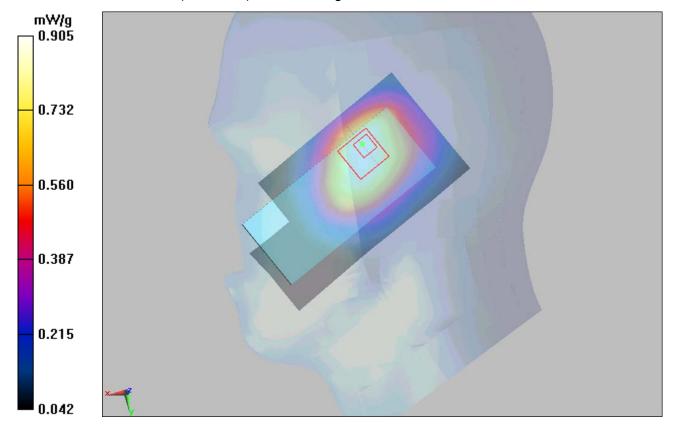


Figure 14 Right Hand Touch Cheek CDMA Cellular Channel 384

CDMA Cellular Right Cheek Low

Date/Time: 6/20/2010 6:38:50 AM

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.926 \text{ mho/m}$; $\epsilon_r = 42.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.830 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.5 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.764 mW/g; SAR(10 g) = 0.550 mW/g Maximum value of SAR (measured) = 0.814 mW/g

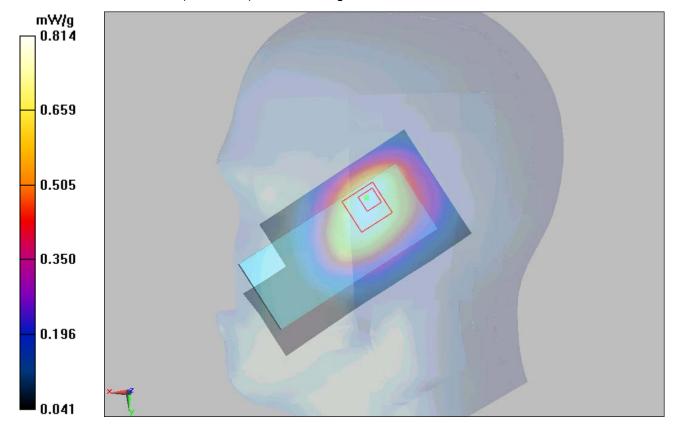


Figure 15 Right Hand Touch Cheek CDMA Cellular Channel 1013

CDMA Cellular Right Tilt Middle

Date/Time: 6/20/2010 7:21:44 AM

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.933$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.638 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.6 V/m; Power Drift = -0.147 dB

Peak SAR (extrapolated) = 0.894 W/kg

SAR(1 g) = 0.620 mW/g; SAR(10 g) = 0.425 mW/g Maximum value of SAR (measured) = 0.666 mW/g

Figure 16 Right Hand Tilt 15° CDMA Cellular Channel 384

CDMA Cellular Towards Ground High

Date/Time: 6/20/2010 2:06:33 AM

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 1.02 \text{ mho/m}$; $\epsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.04 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 24.2 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.947 mW/g; SAR(10 g) = 0.655 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

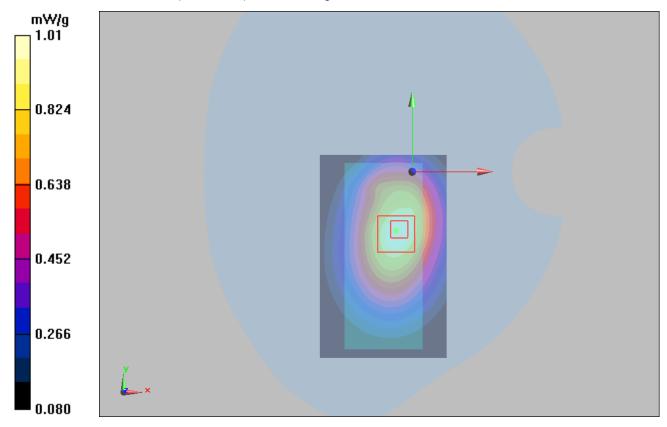


Figure 17 Body, Towards Ground, CDMA Cellular Channel 777

CDMA Cellular Towards Ground Middle

Date/Time: 6/20/2010 1:23:54 AM

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

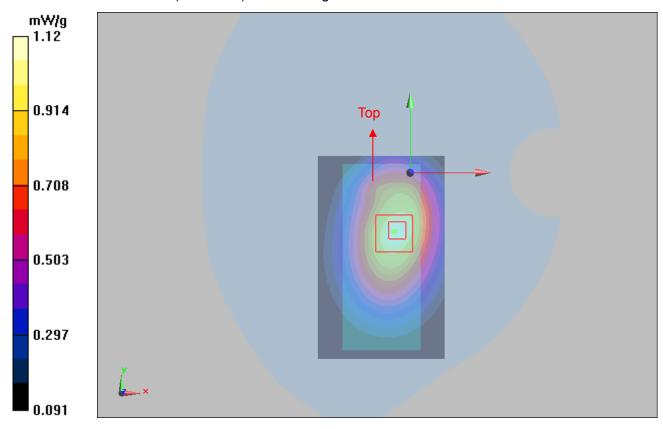
Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.12 mW/g


Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 24.7 V/m; Power Drift = 0.087 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.733 mW/g Maximum value of SAR (measured) = 1.12 mW/g

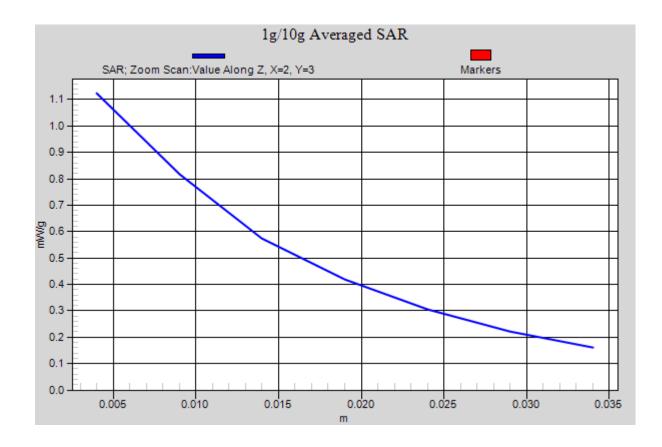


Figure 18 Body, Towards Ground, CDMA Cellular Channel 384

CDMA Cellular Towards Ground Low

Date/Time: 6/20/2010 1:44:51 AM

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.995 \text{ mho/m}$; $\epsilon_r = 54.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.04 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 24.5 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.986 mW/g; SAR(10 g) = 0.682 mW/gMaximum value of SAR (measured) = 1.06 mW/g

0.865

0.671

0.476

0.282

Figure 19 Body, Towards Ground, CDMA Cellular Channel 1013

CDMA Cellular Towards Phantom Middle

Date/Time: 6/20/2010 12:58:23 AM

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.420 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.3 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 0.562 W/kg

SAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.294 mW/g Maximum value of SAR (measured) = 0.454 mW/g

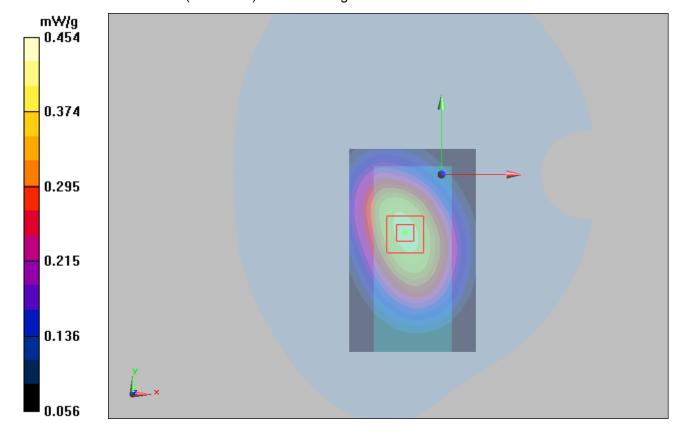


Figure 20 Body, Towards Phantom, CDMA Cellular Channel 384

CDMA Cellular with Earphone Towards Ground Middle

Date/Time: 6/20/2010 2:32:04 AM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Towards Ground Middle/Area Scan (51x81x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.539 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.6 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 0.750 W/kg

SAR(1 g) = 0.540 mW/g; SAR(10 g) = 0.372 mW/g

Maximum value of SAR (measured) = 0.582 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.6 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 0.743 W/kg

SAR(1 g) = 0.425 mW/g; SAR(10 g) = 0.265 mW/g

Maximum value of SAR (measured) = 0.549 mW/g

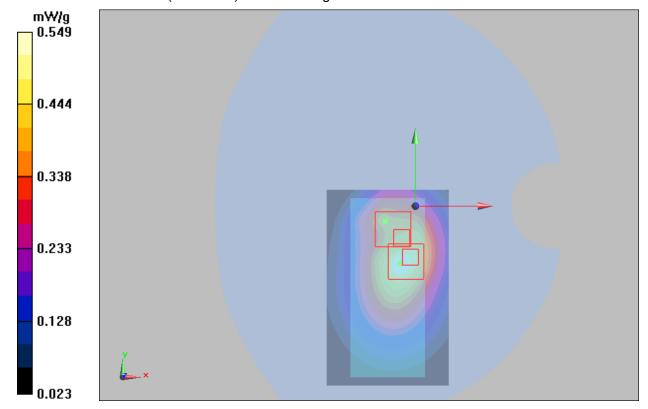


Figure 21 Body with Earphone, Towards Ground, CDMA Cellular Channel 384

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

		Certificate N	_{io} ; EX3-3677_Sep09
AUBRATION	CERTIFICAT		
Dbject	EX3DV4 - \$N:3	977	
Calibration procedure(s)		QA CAL-12.v5, QA CAL-23.v3 an edure for dosimetric E-field probe	
Calibration date:	September 23,	2009	
Condition of the calibrated item	In Tolerance		
		tional standards, which realize the physical ur probability are given on the following pages ar	
All calibrations have been condu	cted in the closed laborate	ory facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M&	I E critical for calibration)		
Calibration Equipment used (M& Primary Standards	IE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	, i	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10
Primary Standards Power meter E4419B	ID#	· · · · · · · · · · · · · · · · · · ·	-0
Primary Standards Power meter E4419B Power sensor E4412A	ID# GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
rrimary Standards ower meter E4419B lower sensor E4412A lower sensor E4412A	ID# GB41293874 MY41495277	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Apr-10 Apr-10
over meter E4419B lower sensor E4412A lower sensor E4412A lower sensor E4412A deference 3 dB Attenuator	ID# GB41293874 MY41495277 MY41498087	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Apr-10 Apr-10 Apr-10
over meter E4419B lower sensor E4412A lower sensor E4412A lower sensor E4412A deference 3 dB Attenuator deference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026)	Apr-10 Apr-10 Apr-10 Mar-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards RF generator HP 8648C	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08)	Apr-10 Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID# US3642U01700 US37390585	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID# US3642U01700	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09
	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse detaionnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

September 23, 2009

Probe EX3DV4

SN:3677

Manufactured: Last calibrated: September 9, 2008 November 7, 2008

Recalibrated:

September 23, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

September 23, 2009

DASY - Parameters of Probe: EX3DV4 SN:3677

Sensitivity in Free Space ^A			Diode C	ompression	ı ^B
NormX	0.42 ± 10.1%	μ V/(V/m) ²	DCP X	91 mV	
NormY	0.47 ± 10.1%	μ V/(V/m) ²	DCP Y	92 mV	
NormZ	0.40 ± 10.1%	μ V/(V/m) ²	DCP Z	93 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	8.2	4.4
SAR _{be} [%]	With Correction Algorithm	8.0	0.5

TSL

1750 MHz

Typical SAR gradient: 10 % per mm

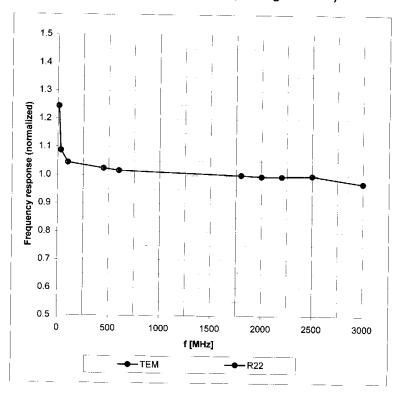
Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.5	3.9
SAR _{be} [%]	With Correction Algorithm	0.8	0.4

Sensor Offset

Probe Tip to Sensor Center __

1.0 mm

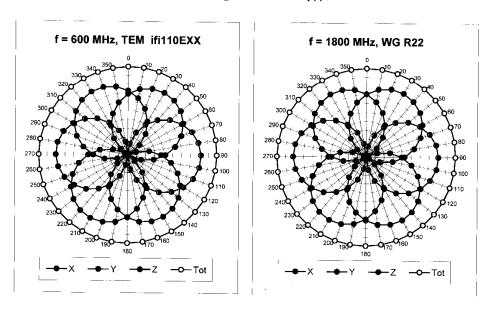
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

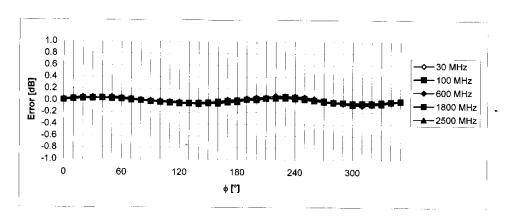

 $^{^{\}rm A}$ The uncertainties of NormX,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

September 23, 2009

Frequency Response of E-Field

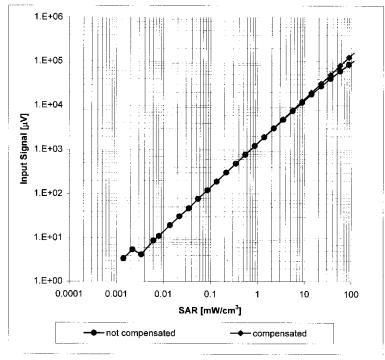

(TEM-Cell:ifi110 EXX, Waveguide: R22)

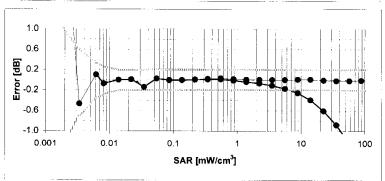


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

September 23, 2009

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

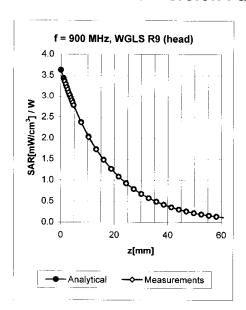


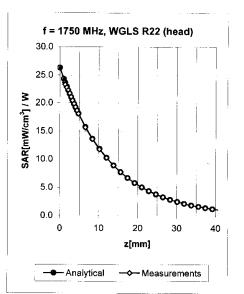

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

September 23, 2009

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)



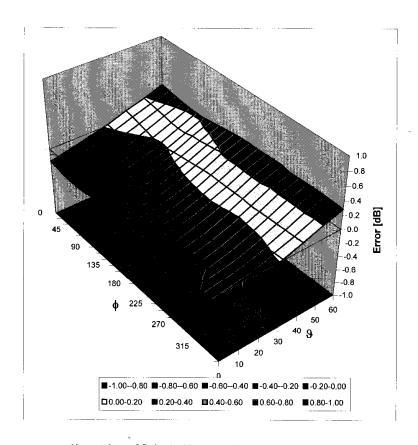


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

September 23, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.68	0.64	9.20 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.71	0.62	8.91 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.68	0.62	8.04 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.70	0.60	7.53 ± 11.0% (k=2)
							•
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.32	0.49	10.43 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.54	0.73	9.11 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.63	0.71	8.89 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.55	0.74	7.70 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.30	1.01	7.62 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.56	0.68	7.28 ± 11.0% (k=2)


^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3677_Sep09

September 23, 2009

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

ATL (Auden)

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d082 Jul09

CALIBRATION (CERTIFICATI		
Object	D835V2 - SN: 40	1082	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	edure for dipole validation kits	
Calibration date:	July 13, 2009		
Condition of the calibrated item	In Tolerance		
Calibration Equipment used (M&	TE critical for calibration)	ry facility: environment temperature (22 \pm 3)	°C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter EPM-442A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898)	Scheduled Calibration Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898)	Scheduled Calibration Oct-09 Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025)	Scheduled Calibration Oct-09 Oct-09 Mar-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025)	Scheduled Calibration Oct-09 Oct-09 Mar-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID #	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01029) 31-Mar-09 (No. 217-01029) 07-Mar-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09
All calibrations have been conducted and calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09

Certificate No: D835V2-4d082_Jul09

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d082_Jul09

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V5.0
Advanced Extrapolation	
Modular Flat Phantom V4.9	
15 mm	with Spacer
dx, dy, dz = 5 mm	
835 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom V4.9 15 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR normalized	normalized to 1W	9.68 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.71 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.34 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.0 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature during test	(22.5 ± 0.2) °C	-	_

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.56 mW / g
SAR normalized	normalized to 1W	10.2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	10.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.68 mW / g
SAR normalized	normalized to 1W	6.72 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.61 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d082_Jul09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0921

Page 59 of 73

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω - 2.5 jΩ	
Return Loss	- 29.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω - 4.3 jΩ	
Return Loss	- 26.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.390 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 17, 2008	

Certificate No: D835V2-4d082_Jul09

DASY5 Validation Report for Head TSL

Date/Time: 13.07.2009 11:31:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d082

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

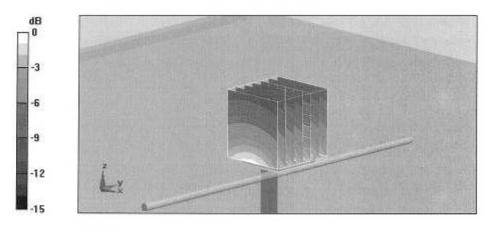
Probe: ES3DV2 - SN3025; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2009

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

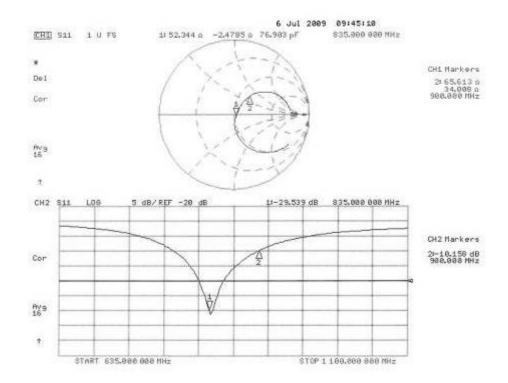
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.4 V/m; Power Drift = 0.00639 dB

Peak SAR (extrapolated) = 3.62 W/kg


SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 2.8 mW/g

0 dB = 2.8 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 13.07.2009 11:50:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d082

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

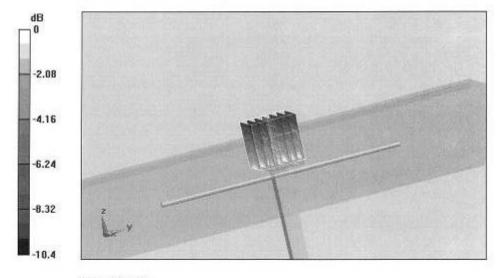
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

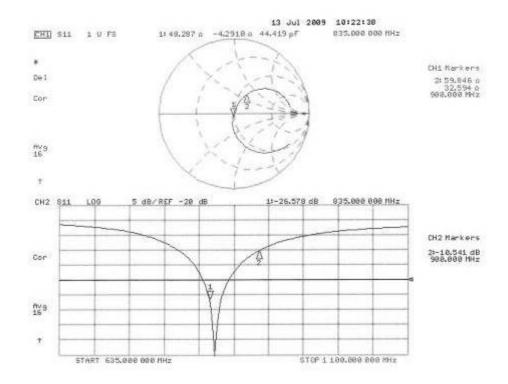
- Probe: ES3DV2 SN3025; ConvF(5.79, 5.79, 5.79); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics; DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 56.4 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 3.76 W/kg


SAR(1 g) = 2.56 mW/g; SAR(10 g) = 1.68 mW/g

Maximum value of SAR (measured) = 2.97 mW/g

0 dB = 2.97 mW/g

Impedance Measurement Plot for Body TSL

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

С

TA - SH (Auden) Certificate No: DAE4-871_Nov09 Client **CALIBRATION CERTIFICATE** DAE4 - SD 000 D04 BJ - SN: 871 Object Calibration procedure(s) QA CAL-06.v12 Calibration procedure for the data acquisition electronics (DAE) November 11, 2009 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 1-Oct-09 (No: 9055) Oct-10 Secondary Standards ID# Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 05-Jun-09 (in house check) In house check: Jun-10 Name Function Andrea Guntli Technician Calibrated by: Approved by: Fin Bomholt **R&D** Director Issued: November 11, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-871_Nov09

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0921

Page 66 of 73

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	х	Υ	Z
High Range	404.813 ± 0.1% (k=2)	404.794 ± 0.1% (k=2)	405.237 ± 0.1% (k=2)
Low Range	3.98191 ± 0.7% (k=2)	3.98417 ± 0.7% (k=2)	3.98912 ± 0.7% (k=2)

Connector Angle

C	onnector Angle to be used in DASY system	90.0 ° ± 1 °

Certificate No: DAE4-871_Nov09

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199994.0	1.84	0.00
Channel X	+ Input	19999.85	0.05	0.00
Channel X	- Input	-19997.97	1.83	-0.01
Channel Y	+ Input	200010.3	-3.71	-0.00
Channel Y	+ Input	19999.12	-0.48	-0.00
Channel Y	- Input	-20000.18	-0.78	0.00
Channel Z	+ Input	200010.2	-2.80	-0.00
Channel Z	+ Input	19998.54	-0.86	-0.00
Channel Z	- Input	-19999.82	0.00	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.3	0.22	0.01
Channel X + Input	200.20	0.30	0.15
Channel X - Input	-199.89	0.21	-0.10
Channel Y + Input	1999.8	-0.13	-0.01
Channel Y + Input	200.06	-0.04	-0.02
Channel Y - Input	-200.43	-0.73	0.36
Channel Z + Input	1999.5	-0.57	-0.03
Channel Z + Input	199.58	-0.72	-0.36
Channel Z - Input	-201.11	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.79	12.75
	- 200	-12.26	-13.72
Channel Y	200	-11.82	-11.47
	- 200	10.67	10.68
Channel Z	200	-1.08	-1.35
	- 200	0.32	0.12

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.36	1.06
Channel Y	200	1.52	-	3.59
Channel Z	200	2.55	1.41	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15928	16288
Channel Y	16188	15745
Channel Z	15790	16219

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 \mathrm{M}\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.06	-3.43	1.18	0.52
Channel Y	-0.71	-2.66	0.96	0.57
Channel Z	-0.95	-1.94	0.04	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	204.4
Channel Y	0.1999	203.6
Channel Z	0.1999	203.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9