

NO.: RZA2008-0573

OET 65 TEST REPORT

Test name Electromagnetic Field (Specific Absorption Rate)

Product CDMA 1X Digital Mobile Telephone

Model HUAWEI C5005

FCC ID QISC5005

Client HUAWEI Technologies Co., Ltd.

No. RZA2008-0573 Page 2of 83

GENERAL TERMS

1. The test report is invalid if not marked with "exclusive stamp for the data report" or the stamp of

the TA.

2. Any copy of the test report is invalid if not re-marked with the "exclusive stamp for the test report"

or the stamp of TA.

3. The test report is invalid if not marked with the stamps or the signatures of the persons

responsible for performing, revising and approving the test report.

4. The test report is invalid if there is any evidence of erasure and/or falsification.

5. If there is any dissidence for the test report, please file objection to the test center within 15 days

from the date of receiving the test report.

6. Normally, entrust test is only responsible for the samples that have undergone the test.

7. This test report cannot be used partially or in full for publicity and/or promotional purposes without

previous written permissions of TA.

Address: Room4,No.399,Cailun Rd,Zhangjiang Hi-Tech Park, Pudong Shanghai,China

Post code: 201203

Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com
E-mail: service@ta-shanghai.com

No. RZA2008-0573 Page 3of 83

-			age our oo
Product	CDMA 1X Digital Mobile Telephone	Model	HUAWEI C5005
Client	HUAWEI Technologies Co., Ltd.	Type of test	Entrusted
Manufacturer	HUAWEI Technologies Co., Ltd.	Arrival Date of sample	April.30 th , 2008
Place of sampling	(Blank)	Carrier of the samples	Yaohui Gu
Quantity of the samples	One	Date of product	(Blank)
Base of the samples	(Blank)	Items of test	SAR
Series number	PP7NBC1840500238		
Standard(s)	EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones. EN 50361–2001: Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones. ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques. OET65C revision 2002 DA 09-1948, June 19.2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).		
Conclusion	Localized Specific Absorption Rahas been measured in all cases Clause 6.2 of this test report. Masspecified in the relevant standard General Judgment: Pass	requested by the relevant ximum localized SAR is below the street in Clause 6.1 of this (Stamp)	standards cited in ow exposure limits
Comment	TX Freq. Band: 824–849MHz The test result only responds to	,	0.25W(CDMA)

Approved by # # # #

Revised by 注 大保

Performed by 凌敏多

Chenguang Zheng

Dabao Wang

Minbao Ling

Page 4of 83

No. RZA2008-0573

TABLE OF CONTENT

1 COMPETENCE AND WARRANTIES	6
2 GENERAL CONDITIONS	6
3 DESCRIPTION OF EUT	7
3.1 Addressing Information Related to EUT	7
3.2 Constituents of EUT	7
3.3 GENERAL DESCRIPTION	7
4 OPERATIONAL CONDITIONS DURING TEST	8
4.1 Test to be performed	8
4.2 Information for the measurement of CDMA 1x devices	8
4.2.1 Output Power Verification	8
4.2.2 Head SAR measurement	9
4.2.3 Body SAR measurement	9
5 SAR Measurements System Configuration	10
5.1 SAR Measurement Set-up	10
5.2 DASY4 E-FIELD PROBE SYSTEM	11
5.3 E-FIELD PROBE CALIBRATION	12
5.4 OTHER TEST EQUIPMENT	12
5.4.1 Device Holder for Transmitters	
5.4.2 Phantom	
5.5 EQUIVALENT TISSUES	14
5.6 SYSTEM SPECIFICATIONS	14
5.6.1 Robotic System Specifications	14
6 CHARACTERISTICS OF THE TEST	15
6.1 APPLICABLE LIMIT REGULATIONS	15
6.2 APPLICABLE MEASUREMENT STANDARDS	15
7 LABORATORY ENVIRONMENT	16
8 CONDUCTED OUTPUT POWER MEASUREMENT	16
8.1 Summary	16
8.2 Power Drift	16
8.3 CONDUCTED POWER	16
8.3.1 Measurement Methods	
8.3.2 Measurement result	
9 TEST RESULTS	18
9.1 DIELECTRIC PERFORMANCE	18
9.2 System Validation	18
9.3 SUMMARY OF MEASUREMENT RESULTS	19
9.4 CONCLUSION	20
10 MEASUREMENT UNCERTAINTY	21
11 MAIN TEST INSTRUMENTS	22
12 TEST PERIOD	22
13 TEST LOCATION	22

No. RZA	2008-0573	Page 5of 83
ANNEX A:	MEASUREMENT PROCESS	23
	TEST LAYOUT	
ANNEX C:	GRAPH RESULTS	26
ANNEX D:	SYSTEM VALIDATION RESULTS	64
ANNEX E:	PROBE CALIBRATION CERTIFICATE	65
ANNEX F:	D835V2 DIPOLE CALIBRATION CERTIFICATE	74
ANNEX G:	THE EUT APPEARANCES AND TEST CONFIGUNATION	80

No. RZA2008-0573 Page 6of 83

1 COMPETENCE AND WARRANTIES

TA Technology (Shanghai) Co., Ltd. is a test laboratory competent to carry out the tests described in this test report.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test.

2 GENERAL CONDITIONS

This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This document is only valid if complete; no partial reproduction can be made with out written approval of **TA Technology (Shanghai) Co., Ltd.**

This report cannot be used partially or in full for publicity and/or promotional purposes with out previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

No. RZA2008-0573 Page 7of 83

3 DESCRIPTION OF EUT

3.1 Addressing Information Related to EUT

Table 1: Applicant (The Client)

Name or Company	HUAWEI Technologies Co., Ltd.
Address/Post	Bantian, Longgang District
City	Shenzhen
Postal Code	518129
Country	P.R. China
Telephone	0755-28780808
Fax	0755-28780808

Table 2: Manufacturer

Name or Company	HUAWEI Technologies Co., Ltd.
Address/Post	Bantian, Longgang District
City	Shenzhen
Postal Code	518129
Country	P.R. China
Telephone	0755-28780808
Fax	0755-28780808

3.2 Constituents of EUT

Table 3: Constituents of Samples

Description	Model	Serial Number	Manufacturer
Handset	HUAWEI C5005	PP7NBC1840500238	HUAWEI
папизец	HUAVVEI C3003	FF/NBC 1040300230	Techonologies CO.,Ltd
Lithium Battery	HBC80S	HGY7B1613674	HUAWEI
Littium battery	ПВСООЗ	NG1/610130/4	Techonologies CO.,Ltd
AC/DC Adapter	TPCA-053065CY	TPI731501499	HUAWEI
AC/DC Adapter	TPCA-053065C1	171731501499	Techonologies CO.,Ltd

Note:

The EUT appearances see ANNEX G.

3.3 General Description

Equipment Under Test (EUT) is a model of CDMA 1X Digital Mobile Telephone with internal antenna. It consists of Handset, Lithium Battery and AC/DC Adapter The detail about Mobile phone, Lithium Battery and AC/DC Adapter is in Table 3. SAR is tested for CDMA Cellular only.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

No. RZA2008-0573 Page 8of 83

4 OPERATIONAL CONDITIONS DURING TEST

4.1 Test to be performed

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1013, 384 and 777 respectively in the case of CDMA Cellular. The EUT is commanded to operate at maximum transmitting power.

Under the loop back mode between mobile station and E5515C, the transmitter continuously emits with maximum power more strong than voice mode, so the SAR test was done with loop back mode. To make the mobile emits maximum power; the output power of E5515C would be adjusted to minimum power with the sensitivity of the mobile station to build steady connection with mobile station. The power level control parameter "all up" and it means that requires mobile station to emit with maximum power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

4.2 Information for the measurement of CDMA 1x devices

4.2.1 Output Power Verification

Test Parameter setup for maximum RF output power according to section 4.4.5 of 3GPP2

Parameter	Units	Value
l or	dBm/1.23MHz	-104
PilotE c /I or	dB	-7
TrafficE c /I or	dB	-7.4

For SAR test, the maximum power output is very important and essential; it is identical under the measurement uncertainty. It is proper to use typical Test Mode 3 (FW RC3, RVS RC3, SO55) as the worst case for SAR test.

No. RZA2008-0573 Page 9of 83

4.2.2 Head SAR measurement

SAR is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55.SAR for RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3.Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

4.2.3 Body SAR measurement

SAR is measured in RC3 with the EUT configured to transmit at full rate using TDSO/SO32,transmit at full rate on FCH with all other code channels disabled. SAR for multiple code channels (FCH+SCHn) is not required when the maximum average output of each RF channel is less than 0.25dB higher than measured with FCH only.

Body SAR in RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate using the body exposure configuration that results in the highest SAR for that channel in RC3.

Test communication setup meet as followings:

Communication standard between mobile station and base station simulator	3GPP2 C.S0011-B	
Radio configuration	RC3 (Supporting CDMA 1X)	
Spreading Rate	SR1	
Data Rate	9600bps	
Service Options	SO55 (loop back mode)	
Service Options	SO32 (test data service mode)	
Multiplex Options	The mobile station does not support this service.	

No. RZA2008-0573 Page 10of 83

5 SAR Measurements System Configuration

5.1 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than ± 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick) and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

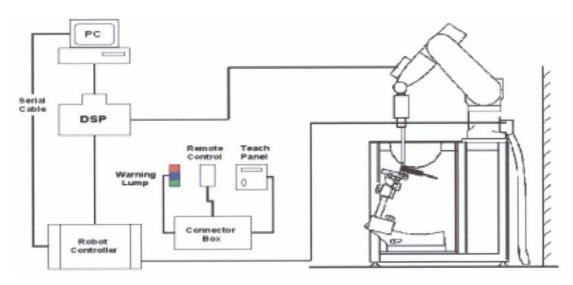


Figure 1. SAR Lab Test Measurement Set-up

The DAE3 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

No. RZA2008-0573 Page 11of 83

5.2 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ET3DV6 Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

System(ET3DV6 only)

Built-in shielding against static charges PEEK enclosure material(resistant to

organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at

frequencies of 900MHz, 1750MHz, 1950MHz and

2450MHz.

(accuracy±8%)

Calibration for other liquids and frequencies

upon request

Frequency I 0 MHz to > 6 GHz; Linearity: ±0.2 dB

(30 MHz to 3 GHz)

Directivity ±0.2 dB in brain tissue (rotation around probe axis)

±0.4 dB in brain tissue (rotation normal probe axis)

Dynamic Range 5u W/g to > 100mW/g; Linearity: ±0.2dB

Surface Detection ±0.2 mm repeatability in air and clear liquids

over diffuse reflecting surface(ET3DV6 only)

Dimensions Overall length: 330mm

Tip length: 16mm

Body diameter: 12mm

Tip diarneter: 6.8mm

Distance from probe tip to dipole centers: 2.7mm

Application General dosimetry up to 3GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

Figure 2. ET3DV6 E-field Probe



Figure 3. ET3DV6 E-field probe

No. RZA2008-0573 Page 12of 83

5.3 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

5.4 Other Test Equipment

5.4.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 4. Device Holder

No. RZA2008-0573 Page 13of 83

5.4.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm

Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Available Special

Figure 5. Generic Twin Phantom

No. RZA2008-0573 Page 14of 83

5.5 Equivalent Tissues

The liquid used for the frequency range of 800-2000 MHz consisted of water, sugar, salt, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 4 and Table 5 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 4: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz	
Water	41.45	
Sugar	56	
Salt	1.45	
Preventol	0.1	
Cellulose	1.0	
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9	

Table 5: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body)835MHz	
Water	52.5	
Sugar	45	
Salt	1.4	
Preventol	0.1	
Cellulose	1.0	
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97	

5.6 System Specifications

5.6.1 Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium III
Clock Speed: 800 MHz

Operating System: Windows 2000

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info. Optical uplink for commands

and clock.

No. RZA2008-0573 Page 15of 83

6 CHARACTERISTICS OF THE TEST

6.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

6.2 Applicable Measurement Standards

EN 50361–2001: Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the measurement method for demonstration of compliance with the SAR limits for such equipments.

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET65C revision2002 DA 09-1948, June 19.2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

No. RZA2008-0573 Page 16of 83

7 LABORATORY ENVIRONMENT

Table 6: The Ambient Conditions during Test

Temperature	Min. = 20 °C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and for	und very low and in compliance with requirement of standards.
Reflection of surrounding objects	is minimized and in compliance with requirement of standards.

8 CONDUCTED OUTPUT POWER MEASUREMENT

8.1 Summary

During the process of testing, the EUT was controlled via Digital Radio Communication tester to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

8.2 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 11 to Table 13 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

8.3 Conducted Power

8.3.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured. These measurements were done at 3 channels 1013, 384 and 777 before SAR test and after SAR test.

No. RZA2008-0573 Page 17of 83

8.3.2 Measurement result

Table 7: Conducted Power Measurement Results

CDMA2000 1X	Conducted Power			
(RC3)	Channel 777	Channel 384	Channel 1013	
(1103)	(848.31MHz)	(836.52MHz)	(824.7MHz)	
Before Test (dBm)	24.2	24.1	24.2	
After Test (dBm)	24.1	24.1	24.1	
	Conducted Power			
CDMA 2000 4V		Conducted Power		
CDMA2000 1X	Channel 777	Conducted Power Channel 384	Channel 1013	
CDMA2000 1X (RC1)	Channel 777 (848.31MHz)	1	Channel 1013 (824.7MHz)	
		Channel 384		

No. RZA2008-0573 Page 18of 83

9 TEST RESULTS

9.1 Dielectric Performance

Table 8: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 22.5 °C and relative humidity 51%.

Liquid temperature during the test: 22.3°C

Frequency (MHz)		Target value	Measurement value	Difference percentage	
835	Permittivity $\mathbf{\epsilon}_{r}$	41.50	41.84	0.82 %	
(Head)	Conductivity σ	0.90	0.92	2.22 %	

Table 9: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 22.5 °C and relative humidity 51%.

Liquid temperature during the test: 22.3°C

Frequency (MHz)		Target value	Measurement value	Difference percentage	
835	Permittivity $\mathbf{\epsilon}_{r}$	55.20	54.77	-0.78 %	
(Body)	Conductivity σ	0.97	0.98	1.03 %	

9.2 System Validation

Table 10: System Validation

Measurement is made at temperature 23.2 °C, relative humidity 50%, and input power 250 mW.
Liquid temperature during the test: 22.3°C

Liquid parameters		Frequency		Permit	tivity ε	Conductivity σ (S/m)	
		835	5MHz	41.	84	0.92	
V 16 4	F	Target value (W/kg)		Measurement value (W/kg)		Difference percentage	
Verification results	Frequency	10g Average	1g Average	10g Average			1g Average
	835MHz	1.56	2.43	1.53	2.34	-1.92%	-3.70%

Note:

- a. Target Values used derive from the SPEAG calibration certificate and 250 mW is used as feeding power to the validation dipole (SPEAG using).
- b. The graph results see ANNEX D.

No. RZA2008-0573 Page 19of 83

9.3 Summary of Measurement Results

Table 11: SAR Values (CDMA Cellular, Head)

Liquid Temperature: 22.5℃					
Limit of SAR (W/kg) Test Case Of Head		10 g Average 2.0	1 g Average 1.6	Power Drift (dB) ± 0.2	Graph Results
		Measurem (W/	ent Result	Power Drift	
Different Test Position	Channel	10 g Average	1 g Average	(dB)	
	High	0.714	1.010	-0.045	Figure7
Left hand, Touch cheek	Middle	0.572	0.809	0.023	Figure9
	Low	0.786	1.110	0.154	Figure11
	High	0.357	0.503	-0.065	Figure13
Left hand, Tilt 15 Degree	Middle	0.282	0.395	-0.168	Figure15
	Low	0.384	0.531	0.103	Figure17
	High	0.747	1.060	0.135	Figure19
Right hand, Touch cheek	Middle	0.577	0.817	0.104	Figure21
	Low	0.797	1.110	-0.034	Figure23
	High	0.363	0.512	0.040	Figure25
Right hand, Tilt 15 Degree	Middle	0.305	0.429	-0.176	Figure27
	Low	0.384	0.533	-0.089	Figure29

Remark: The value with blue color is the maximum SAR Value of each test band.

Table 12: SAR Values (CDMA Cellular, Body, Distance 15mm)

Liquid Temperature: 22.5 $^\circ\!$						
Limit of SAR (W/l	10 g Average	1 g Average	Power Drift (dB)			
	2.0	1.6	± 0.2	O		
Test Case Of Body		Measurem (W/		Power	Graph Results	
		10 g	1 g	Drift (dB)	İ	
Different Test Position	Channel	Average	Average	(ub)		
	High	0.418	0.572	-0.189	Figure31	
Towards Phantom	Middle	0.318	0.441	0.111	Figure33	
	Low	0.473	0.658	-0.014	Figure35	
	High	0.555	0.771	-0.132	Figure37	
Towards Ground	Middle	0.524	0.727	0.182	Figure39	

No. RZA2008-0573 Page 20of 83

Table 13: SAR Values (CDMA Cellular, Body with Earphone, Distance 15mm)

Liquid Temperature: 22.5℃								
Limit of SAR (W/I	10 g 1 g Average Average		Power Drift (dB)					
	2.0	1.6	± 0.2	Crowb				
Test Case Of Boo	Measurement Result (W/kg)		Power	Graph Results				
	10 g	1 g	Drift (dB)					
Different Test Position	Average	Average	(46)					

9.4 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 6.1 of this test report.

No. RZA2008-0573 Page 21of 83

10 MEASUREMENT UNCERTAINTY

No.	а	Туре	С	d	e=f(d、k)	f	h=c×f / e	k
	Uncertainty Component		Tol. (±%)	Prob. Dist	Div.	c₁(1g)	1g u (± %)	V ₁
1	System repetivity	Α	0.5	N	1	1	0.5	9
		Me	easurem	ent syste			T	
2	Probe Calibration	В	5	N	2	1	2.5	∞
3	Axial isotropy	В	4.7	R	$\sqrt{3}$	(1-cp) 1/2	4.3	∞
4	Hemisphere Isotropy	В	9.4	R	$\sqrt{3}$	$\sqrt{C_P}$	4.0	∞
5	Boundary Effect	В	0.4	R	$\sqrt{3}$	1	0.23	8
6	Linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8
7	System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞
8	Readout Electronics	В	1.0	N	1	1	1.0	8
9	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	∞
10	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8
11	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	8
		Te	st Samp	le Relate	ed		l	
13	Test Sample Positioning	Α	4.9	N	1	1	4.9	N-1
14	Device Holder Uncertainty	Α	6.1	N	1	1	6.1	N-1
15	Output Power Variation-SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	8
	!	Phantor	n and Tis	sue Par	ameters			
16	Phantom Uncertainty(shape and thickness tolerances)	В	1.0	R	$\sqrt{3}$	1	0.6	8
17	Liquid Conductivity-deviation from target values	В	5.0	R	$\sqrt{3}$	0.64	1.7	8
18	Liquid Conductivity-measurement uncertainty	В	5.0	N	1	0.64	1.7	М
19	Liquid Permittivity-deviation from target values	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
20	Liquid Permittivity- measurement uncertainty	В	5.0	N	1	0.6	1.7	М
	Combined Standard Uncertainty			RSS			11.25	
(9	Expanded Uncertainty 95 % CONFIDENCE INTERVAL)			K=2			22.5	

No. RZA2008-0573 Page 22of 83

11 MAIN TEST INSTRUMENTS

Table 14: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 15, 2007	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 14, 2008	One year
04	Power sensor	Agilent 8481H	MY41091316	March 14, 2008	One year
05	Signal Generator	HP 8341B	2730A00804	September 15, 2007	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	Validation Kit 835MHz	SPEAG D835V2	443	December 9, 2007	One year
08	BTS	E5515C	GB46490218	September 15, 2007	One year
09	E-field Probe	ET3DV6	1531	January 29, 2008	One year
10	DAE	DAE3	452	September 6, 2007	One year

12 TEST PERIOD

The test is performed from April 30th, 2008 to May 6th, 2008.

13 TEST LOCATION

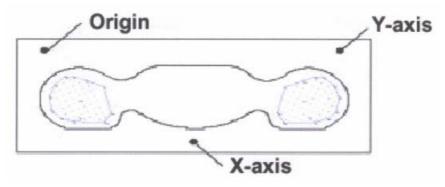
The test is performed at TA Technology (Shanghai) Co., Ltd.

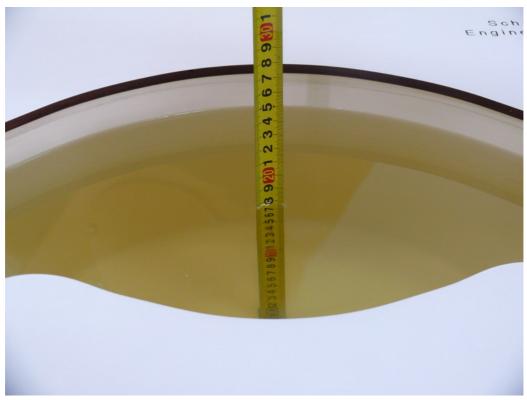
No. RZA2008-0573 Page 23of 83

ANNEX A: MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

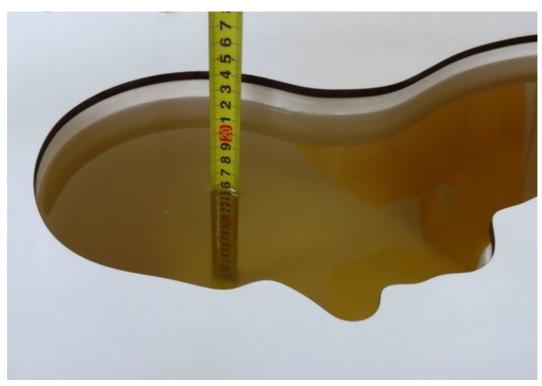
- Step 1: Measurement of the SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- Step 3: Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 7 x 7x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x ~ y and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.




Figure 6 SAR Measurement Points in Area Scan

No. RZA2008-0573 Page 24of 83

ANNEX B: TEST LAYOUT



Picture 1 Specific Absorption Rate Test Layout

Picture 2 Liquid depth in the Flat Phantom (835 MHz)

No. RZA2008-0573 Page 25of 83

Picture 3 Liquid depth in the head Phantom (835 MHz)

No. RZA2008-0573 Page 26of 83

ANNEX C: GRAPH RESULTS

CDMA Cellular Left Cheek High

Communication System: CDMA Cellular; Frequency: 848.31 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.931 \text{ mho/m}$; $\varepsilon_r = 41.7$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.714 mW/g

Maximum value of SAR (measured) = 1.08 mW/g

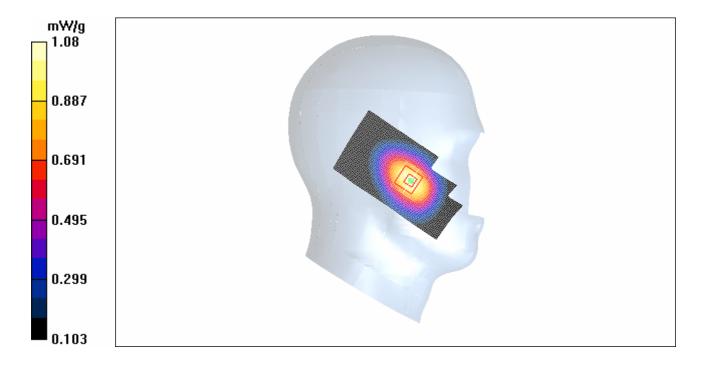


Figure 7 Left Hand Touch Cheek CDMA Cellular Channel 777

No. RZA2008-0573 Page 27of 83

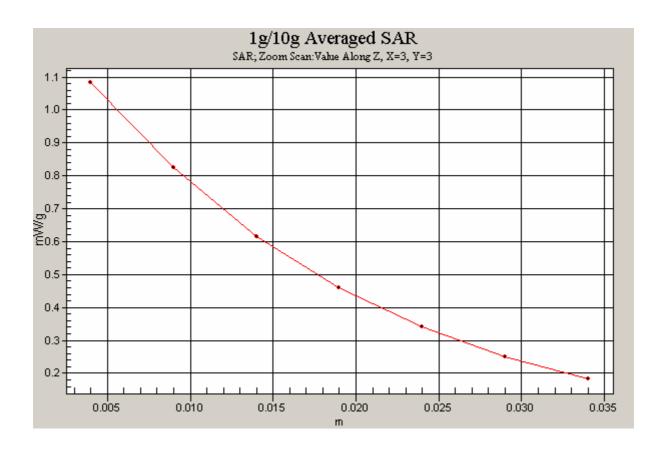


Figure 8 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 777)

No. RZA2008-0573 Page 28of 83

CDMA Cellular Left Cheek Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.921$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.868 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.8 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.809 mW/g; SAR(10 g) = 0.572 mW/g

Maximum value of SAR (measured) = 0.865 mW/g

Figure 9 Left Hand Touch Cheek CDMA Cellular Channel 384

No. RZA2008-0573 Page 29of 83

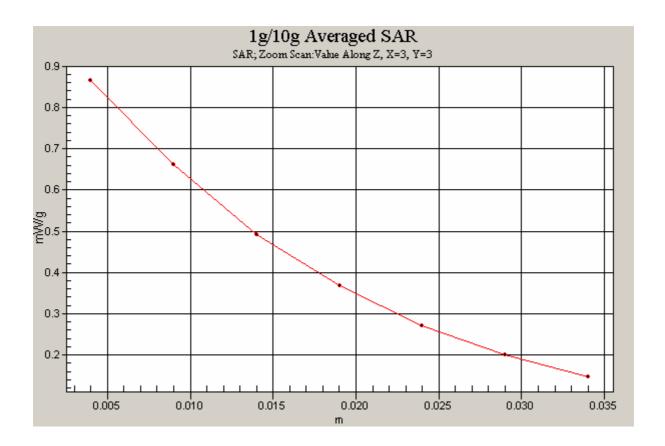


Figure 10 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 384)

No. RZA2008-0573 Page 30of 83

CDMA Cellular Left Cheek Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.904$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.24 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = 0.154 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.786 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

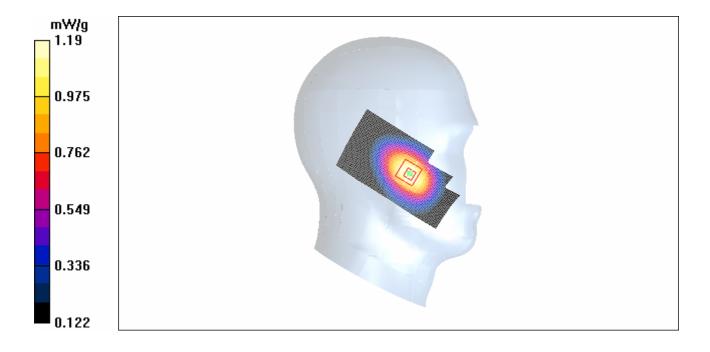


Figure 11 Left Hand Touch Cheek CDMA Cellular Channel 1013

No. RZA2008-0573 Page 31of 83

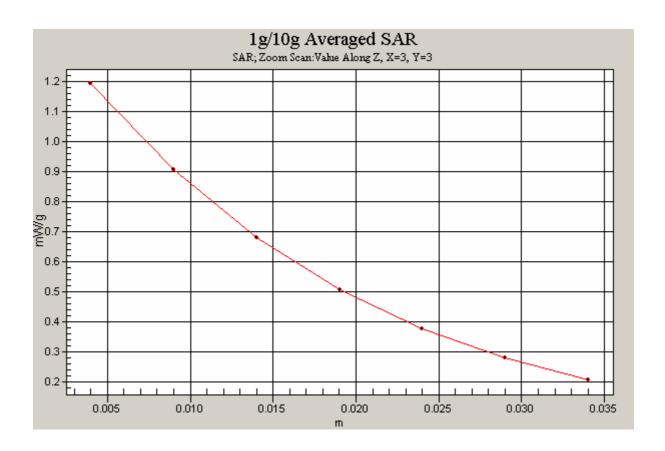


Figure 12 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 1013)

No. RZA2008-0573 Page 32of 83

CDMA Cellular Left Tilt High

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.931 \text{ mho/m}$; $\varepsilon_r = 41.7$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Tilt High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.535 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.065 dB

Peak SAR (extrapolated) = 0.659 W/kg

SAR(1 g) = 0.503 mW/g; SAR(10 g) = 0.357 mW/g

Maximum value of SAR (measured) = 0.534 mW/g

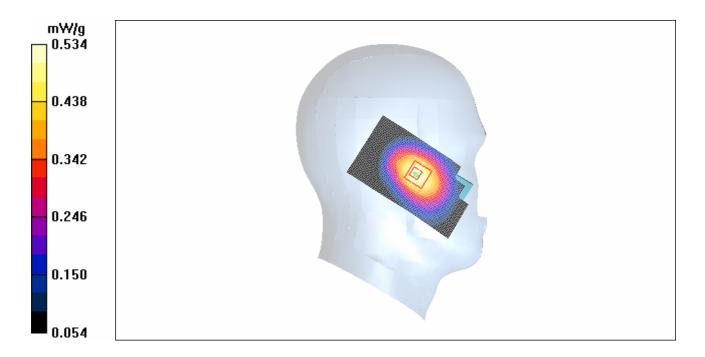


Figure 13 Left Hand Tilt 15° CDMA Cellular Channel 777

No. RZA2008-0573 Page 33of 83



Figure 14 Z-Scan at power reference point (Left Hand Tilt 15° CDMA Cellular Channel 777)

No. RZA2008-0573 Page 34of 83

CDMA Cellular Left Tilt Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.921$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.443 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.168 dB

Peak SAR (extrapolated) = 0.528 W/kg

SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.282 mW/g

Maximum value of SAR (measured) = 0.427 mW/g

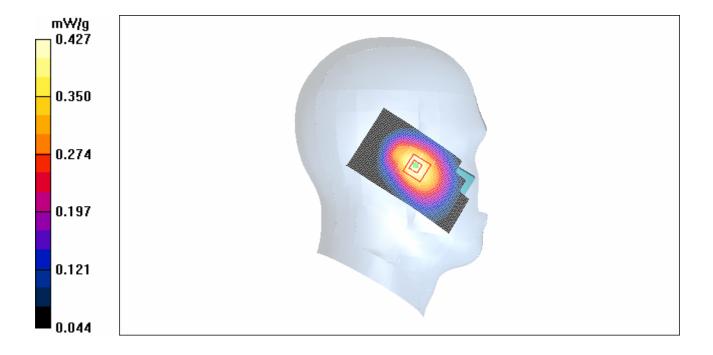


Figure 15 Left Hand Tilt 15° CDMA Cellular Channel 384

No. RZA2008-0573 Page 35of 83

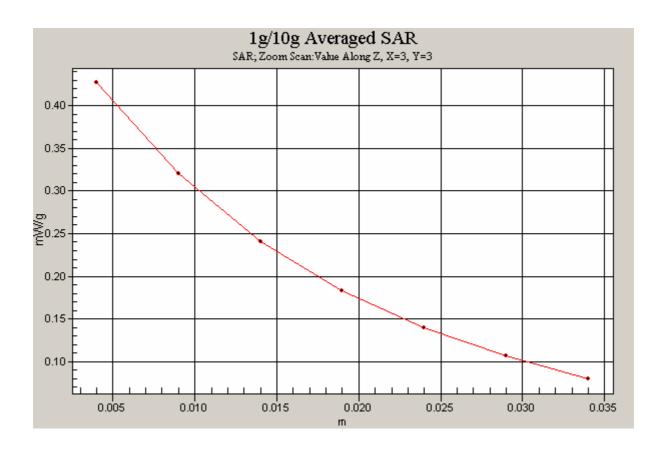


Figure 16 Z-Scan at power reference point (Left Hand Tilt 15° CDMA Cellular Channel 384)

No. RZA2008-0573 Page 36of 83

CDMA Cellular Left Tilt Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.904$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.560 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.4 V/m; Power Drift = 0.103 dB

Peak SAR (extrapolated) = 0.693 W/kg

SAR(1 g) = 0.531 mW/g; SAR(10 g) = 0.384 mW/g

Maximum value of SAR (measured) = 0.565 mW/g

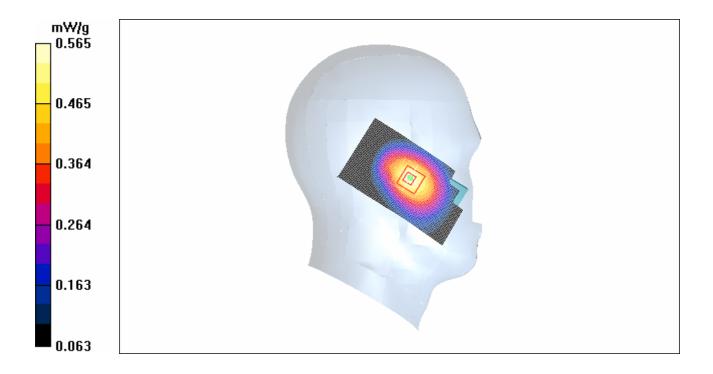


Figure 17 Left Hand Tilt 15° CDMA Cellular Channel 1013

No. RZA2008-0573 Page 37of 83

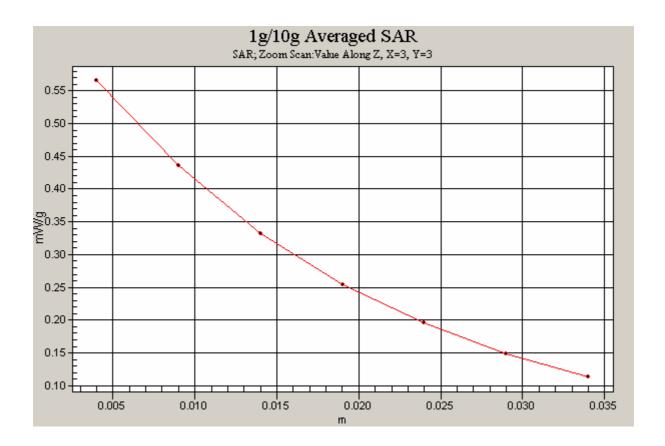


Figure 18 Z-Scan at power reference point (Left Hand Tilt 15° CDMA Cellular Channel 1013)

No. RZA2008-0573 Page 38of 83

CDMA Cellular Right Cheek High

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.931 \text{ mho/m}$; $\epsilon_r = 41.7$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.01 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = 0.135 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.747 mW/g

Maximum value of SAR (measured) = 1.12 mW/g

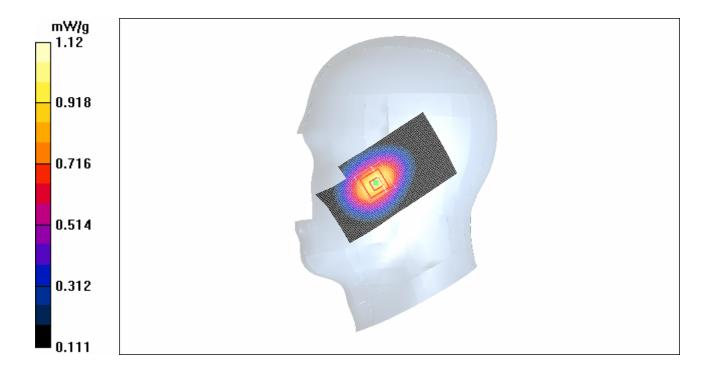


Figure 19 Right Hand Touch Cheek CDMA Cellular Channel 777

No. RZA2008-0573 Page 39of 83

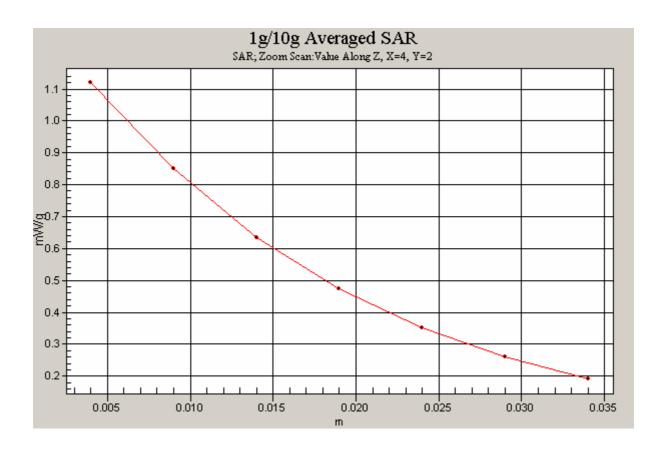


Figure 20 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 777)

No. RZA2008-0573 Page 40of 83

CDMA Cellular Right Cheek Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.921$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.881 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = 0.104 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.817 mW/g; SAR(10 g) = 0.577 mW/g

Maximum value of SAR (measured) = 0.867 mW/g

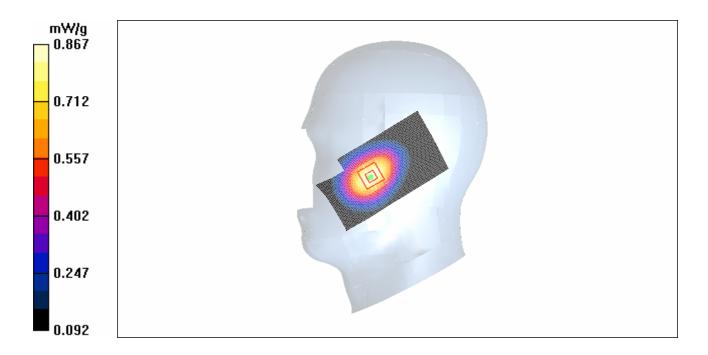


Figure 21 Right Hand Touch Cheek CDMA Cellular Channel 384

No. RZA2008-0573 Page 41of 83

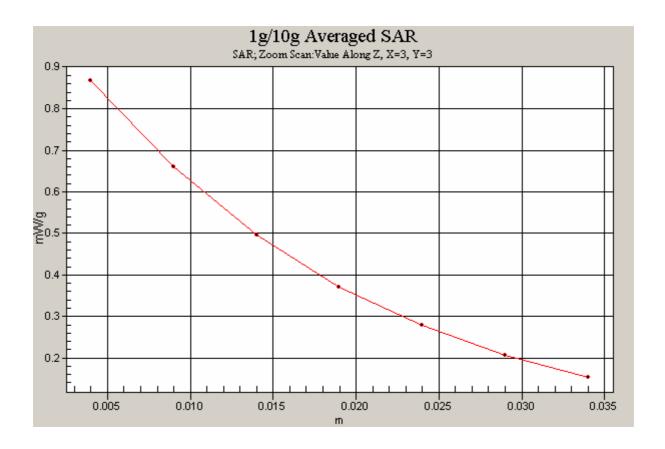


Figure 22 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 384)

No. RZA2008-0573 Page 42of 83

CDMA Cellular Right Cheek Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.904$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.16 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.2 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.797 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

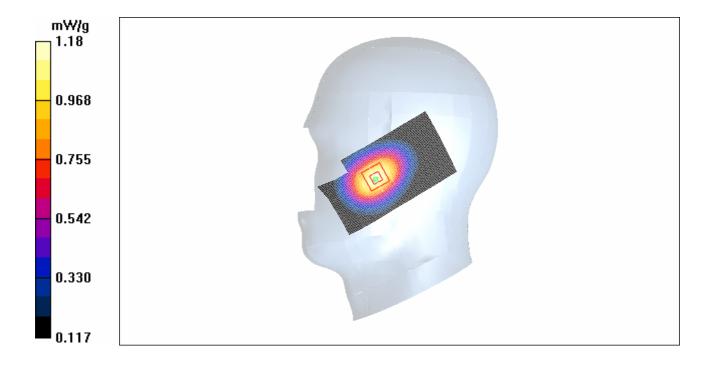


Figure 23 Right Hand Touch Cheek CDMA Cellular Channel 1013

No. RZA2008-0573 Page 43of 83

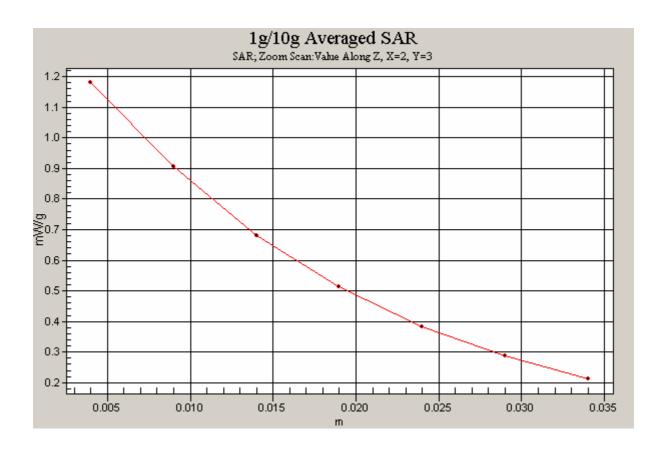


Figure 24 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 1013)

No. RZA2008-0573 Page 44of 83

CDMA Cellular Right Tilt High

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.931 \text{ mho/m}$; $\varepsilon_r = 41.7$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Tilt High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.501 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.6 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.671 W/kg

SAR(1 g) = 0.512 mW/g; SAR(10 g) = 0.363 mW/g

Maximum value of SAR (measured) = 0.545 mW/g

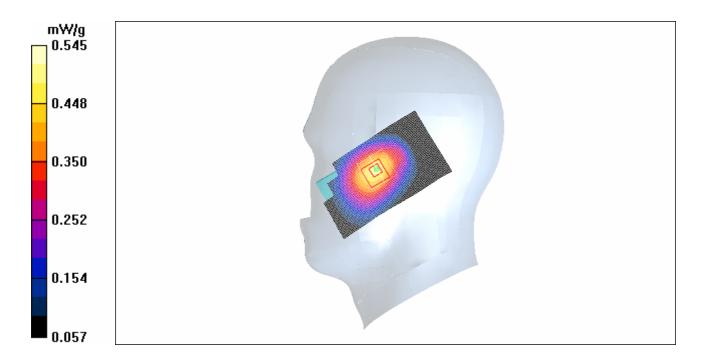


Figure 25 Right Hand Tilt 15° CDMA Cellular Channel 777

No. RZA2008-0573 Page 45of 83

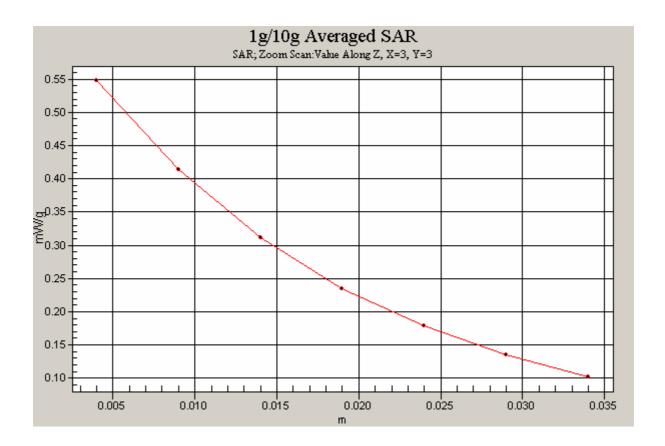


Figure 26 Z-Scan at power reference point (Right Hand Tilt 15° CDMA Cellular Channel 777)

No. RZA2008-0573 Page 46of 83

CDMA Cellular Right Tilt Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.921$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.416 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = -0.176 dB

Peak SAR (extrapolated) = 0.563 W/kg

SAR(1 g) = 0.429 mW/g; SAR(10 g) = 0.305 mW/g

Maximum value of SAR (measured) = 0.458 mW/g

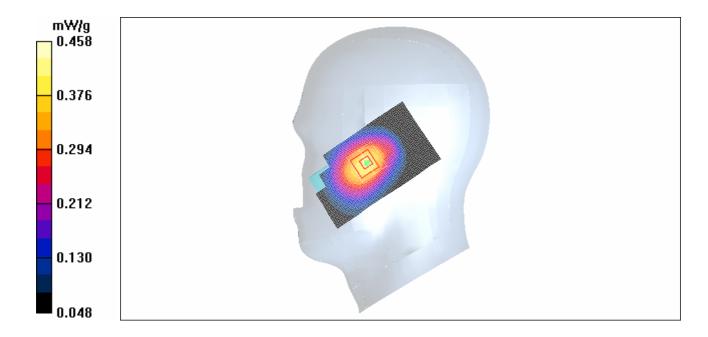


Figure 27 Right Hand Tilt 15° CDMA Cellular Channel 384

No. RZA2008-0573 Page 47of 83

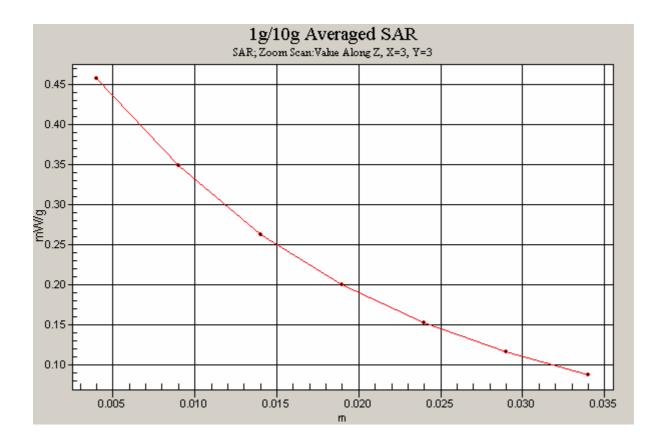


Figure 28 Z-Scan at power reference point (Right Hand Tilt 15° CDMA Cellular Channel 384)

No. RZA2008-0573 Page 48of 83

CDMA Cellular Right Tilt Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.904$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE3 Sn452;

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.525 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.6 V/m; Power Drift = -0.089 dB

Peak SAR (extrapolated) = 0.691 W/kg

SAR(1 g) = 0.533 mW/g; SAR(10 g) = 0.384 mW/g Maximum value of SAR (measured) = 0.568 mW/g

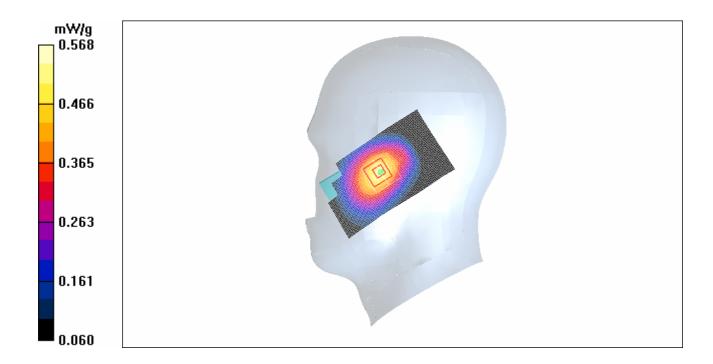


Figure 29 Right Hand Tilt 15° CDMA Cellular Channel 1013

No. RZA2008-0573 Page 49of 83

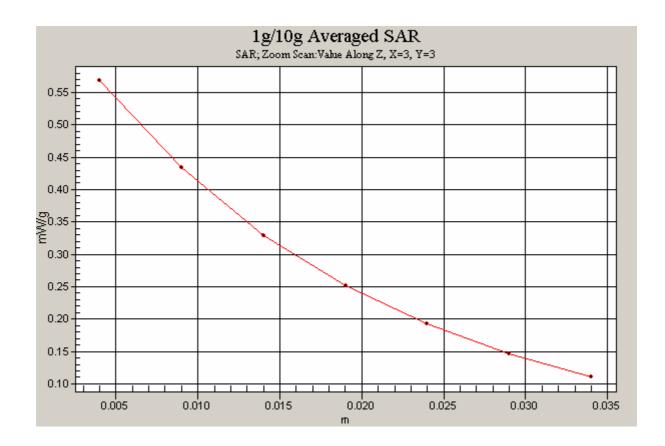


Figure 30 Z-Scan at power reference point (Right Hand Tilt 15° CDMA Cellular Channel 1013)

No. RZA2008-0573 Page 50of 83

CDMA Cellular Towards Phantom High

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon_r = 54.6$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE3 Sn452;

Towards Phantom High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.630 mW/g

Towards Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 12.4 V/m; Power Drift = -0.189 dB

Peak SAR (extrapolated) = 0.731 W/kg

SAR(1 g) = 0.572 mW/g; SAR(10 g) = 0.418 mW/g

Maximum value of SAR (measured) = 0.609 mW/g

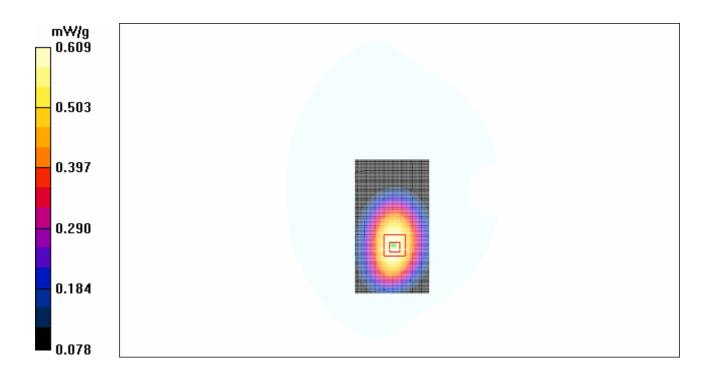


Figure 31 Body, Towards Phantom, CDMA Cellular Channel 777

No. RZA2008-0573 Page 51of 83

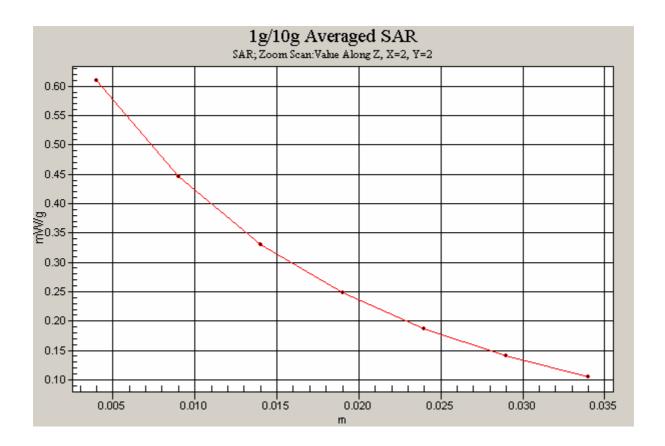


Figure 32 Z-Scan at power reference point (Body, Towards Phantom, CDMA Cellular Channel 777)

No. RZA2008-0573 Page 52of 83

CDMA Cellular Towards Phantom Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.977$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE3 Sn452;

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.466 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = 0.111 dB

Peak SAR (extrapolated) = 0.558 W/kg

SAR(1 g) = 0.441 mW/g; SAR(10 g) = 0.318 mW/g Maximum value of SAR (measured) = 0.473 mW/g

mW/g
0.473

0.391

0.308

0.225

0.143

Figure 33 Body, Towards Phantom, CDMA Cellular Cannel 384

No. RZA2008-0573 Page 53of 83

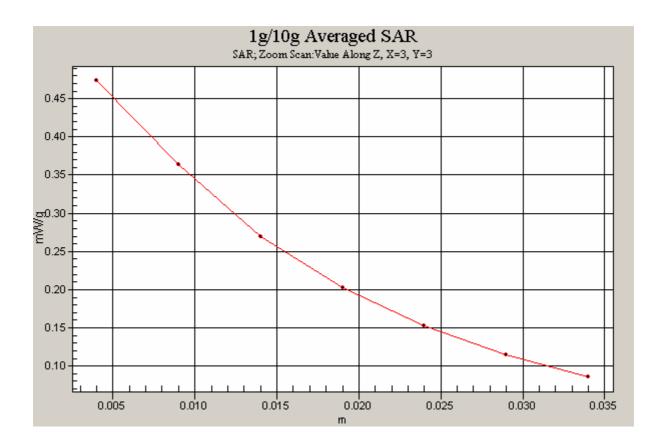


Figure 34 Z-Scan at power reference point (Body, Towards Phantom, CDMA Cellular Cannel 384)

No. RZA2008-0573 Page 54of 83

CDMA Cellular Towards Phantom Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE3 Sn452;

Towards Phantom Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.684 mW/g

Towards Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.821 W/kg

SAR(1 g) = 0.658 mW/g; SAR(10 g) = 0.473 mW/g

Maximum value of SAR (measured) = 0.714 mW/g

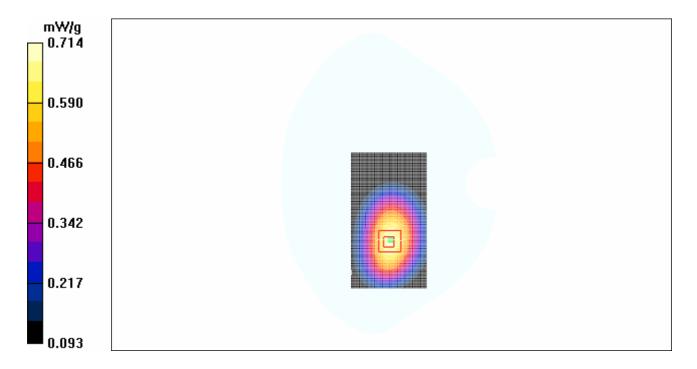


Figure 35 Body, Towards Phantom, CDMA Cellular Channel 1013

No. RZA2008-0573 Page 55of 83

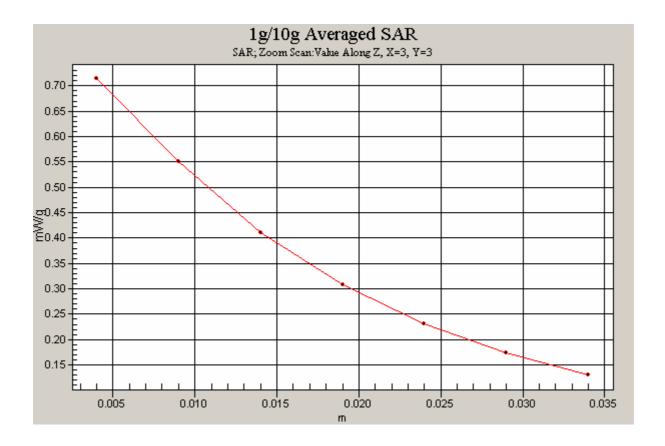


Figure 36 Z-Scan at power reference point (Body, Towards Phantom, CDMA Cellular Channel 1013)

No. RZA2008-0573 Page 56of 83

CDMA Cellular Towards Ground High

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon_r = 54.6$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE3 Sn452;

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.823 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = -0.132 dB

Peak SAR (extrapolated) = 0.982 W/kg

SAR(1 g) = 0.771 mW/g; SAR(10 g) = 0.555 mW/g

Maximum value of SAR (measured) = 0.817 mW/g

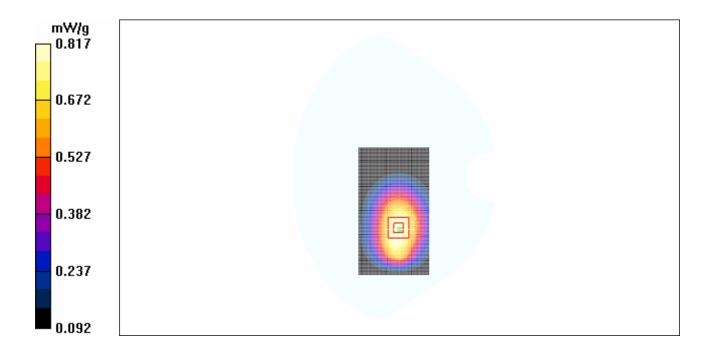


Figure 37 Body, Towards Ground, CDMA Cellular Channel 777

No. RZA2008-0573 Page 57of 83

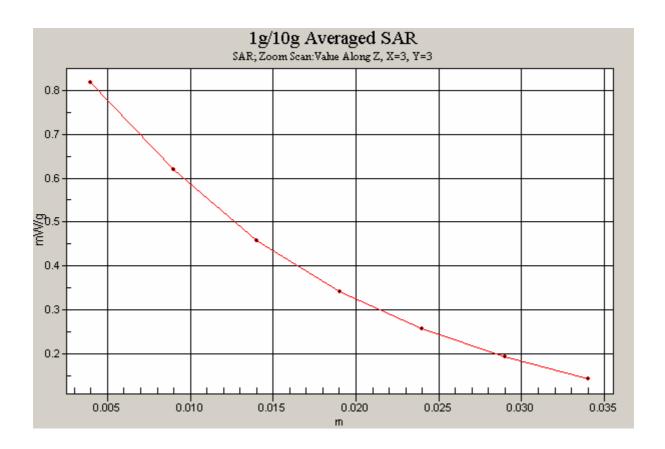


Figure 38 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 777)

No. RZA2008-0573 Page 58of 83

CDMA Cellular Towards Ground Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.977$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE3 Sn452;

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.756 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = -0.182 dB

Peak SAR (extrapolated) = 0.927 W/kg

SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.524 mW/g Maximum value of SAR (measured) = 0.773 mW/g

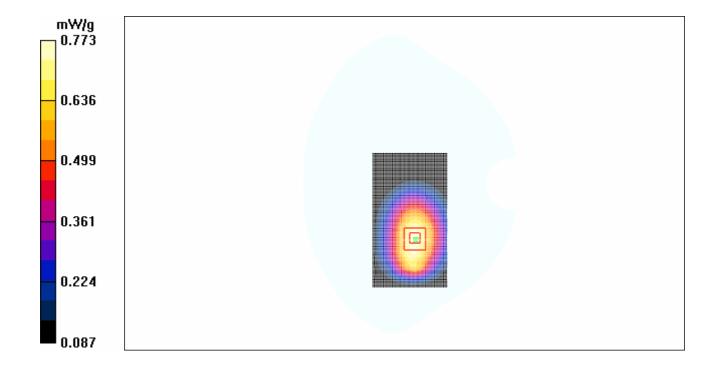


Figure 39 Body, Towards Ground, CDMA Cellular Channel 384

No. RZA2008-0573 Page 59of 83

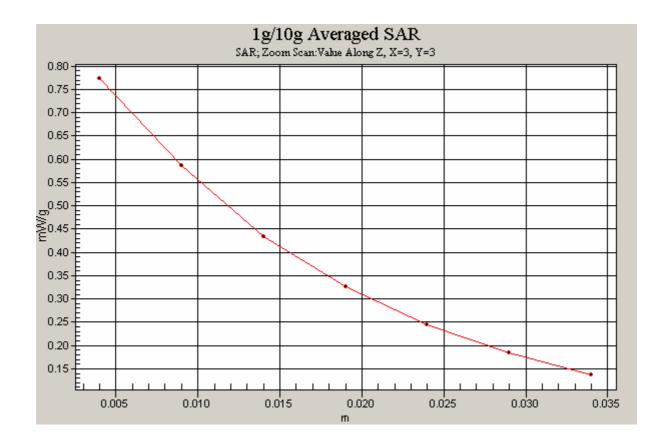


Figure 40 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 384)

No. RZA2008-0573 Page 60of 83

CDMA Cellular Towards Ground Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE3 Sn452;

Towards Ground Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.1 V/m; Power Drift = 0.184 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.752 mW/gMaximum value of SAR (measured) = 1.13 mW/g

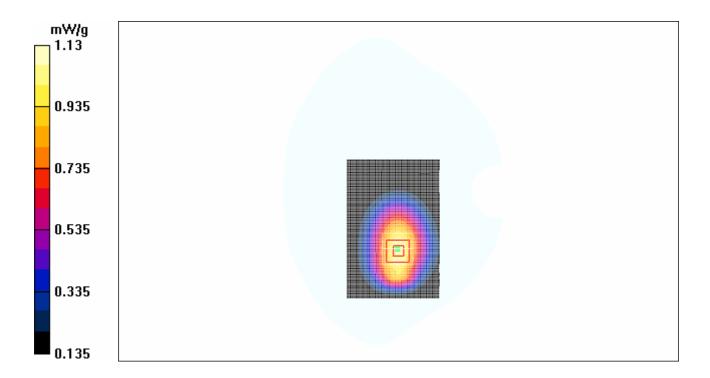


Figure 41 Body, Towards Ground, CDMA Cellular Channel 1013

No. RZA2008-0573 Page 61of 83

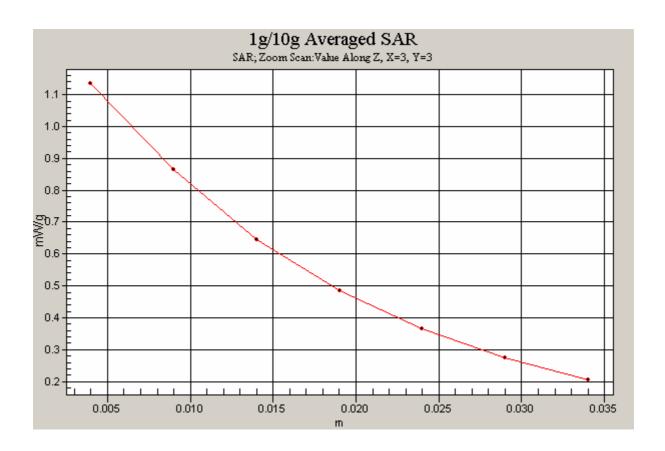


Figure 42 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 1013)

No. RZA2008-0573 Page 62of 83

CDMA Cellular Earphone Towards Ground Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE3 Sn452;

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.766 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.748 mW/g; SAR(10 g) = 0.504 mW/g Maximum value of SAR (measured) = 0.817 mW/g

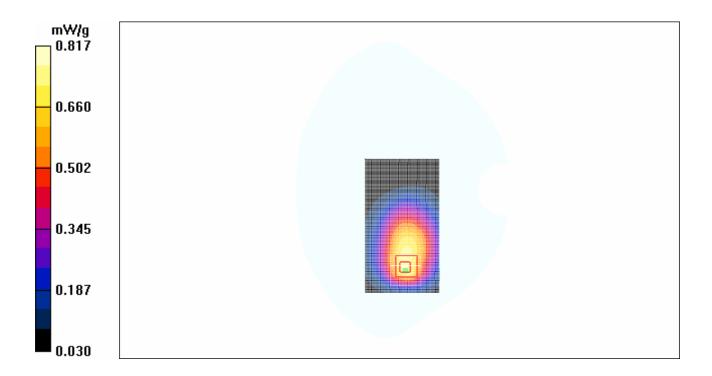


Figure 43 Body with Earphone, Towards Ground, CDMA Cellular Channel 1013

No. RZA2008-0573 Page 63of 83

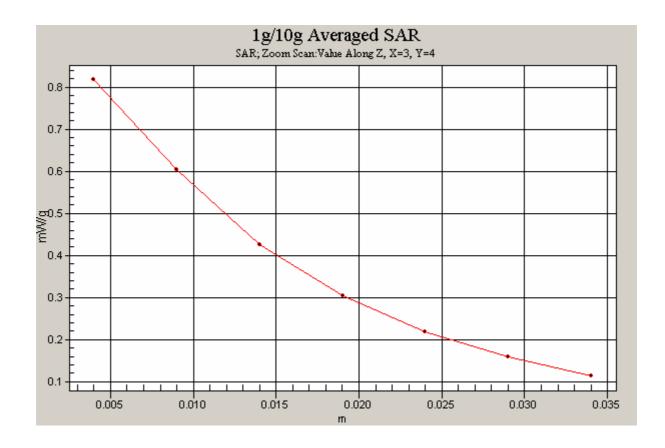


Figure 44 Z-Scan at power reference point (Body with Earphone, Towards Ground, CDMA Cellular Channel 1013)

No. RZA2008-0573 Page 64of 83

ANNEX D: SYSTEM VALIDATION RESULTS

System Performance Check at 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 835MHz

Medium parameters used: f = 835 MHz; σ = 0. 92 mho/m; ε_r = 41.84; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

- Electronics: DAE3 Sn452;

d=15mm, Pin=250mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.54 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.0 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.52 mW/g

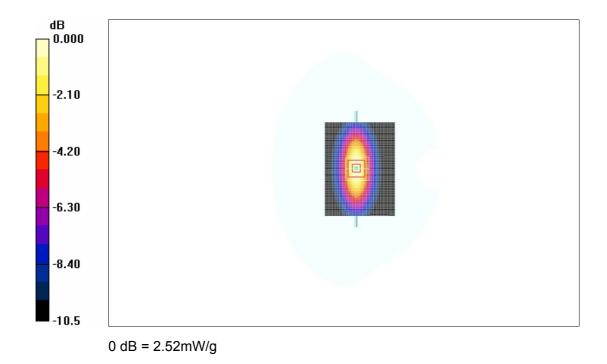
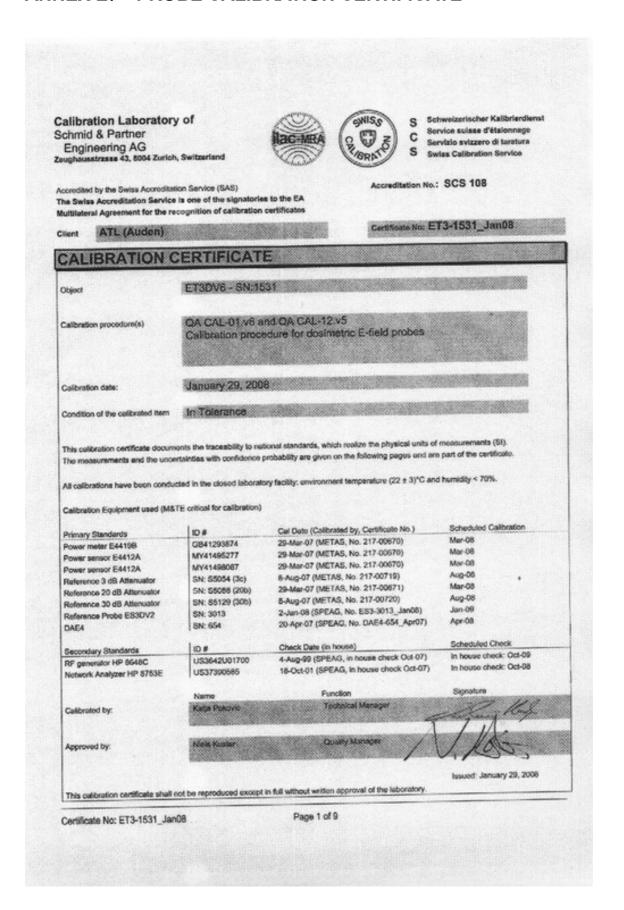



Figure 45 System Performance Check 835MHz 250mW

No. RZA2008-0573 Page 65of 83

ANNEX E: PROBE CALIBRATION CERTIFICATE

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-0573 Page 66of 83

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di tazatura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) In the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1531_Jan08

No. RZA2008-0573 Page 67of 83

ET3DV6 SN:1531

January 29, 2008

Probe ET3DV6

SN:1531

Manufactured: Last calibrated: Recalibrated: July 15, 2000 January 22, 2007 January 29, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-0573 Page 68of 83

ET3DV6 SN:1531

January 29,2008

DASY - Parameters of Probe: ET3DV6 SN:1531

Sensitivity	in	Fron	SpanoA
Sensitivity	m	rree	Space

Diode Compression⁸

NormX	1.52 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.66 ± 10.1%	μV/(V/m) ²	DCP Y	94 mV
NormZ	1.71 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TBL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm	
SAR [%]	Without Correction Algorithm	8.3	4.5	
SAR 1%]	With Correction Algorithm	0.7	0.0	

TSL

1750 MHz

Typical SAR gradient: 10 % per mm

Sensor Center	to Phantom Surface Distance	3.7 mm	4.7 mm
SAR. [%]	Without Correction Algorithm	11.9	8.0
SAR. [%]	With Correction Algorithm	0.5	0.1

Sensor Offset

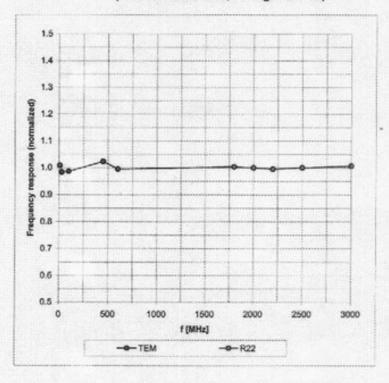
Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^{*} Numerical linearization parameter, uncontainty not required.

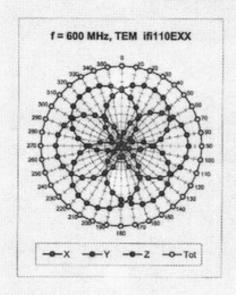

No. RZA2008-0573 Page 69of 83

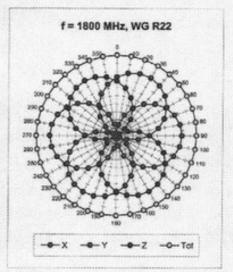
ET3DV6 SN:1531

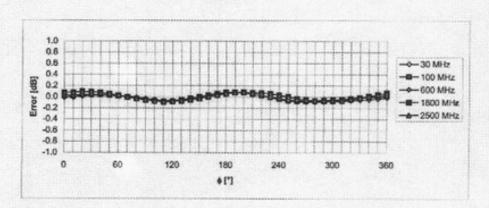
January 29, 2008

Frequency Response of E-Field

(TEM-Cell:Ifi110 EXX, Waveguide: R22)

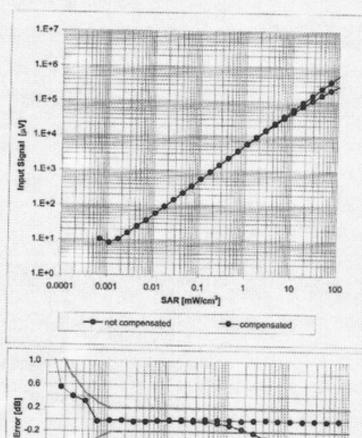

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

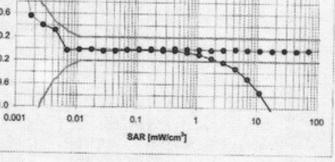

No. RZA2008-0573 Page 70of 83


ET3DV6 SN:1531

January 29, 2008

Receiving Pattern (\$\phi\$), 9 = 0°


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


No. RZA2008-0573 Page 71of 83

ET3DV6 SN:1531

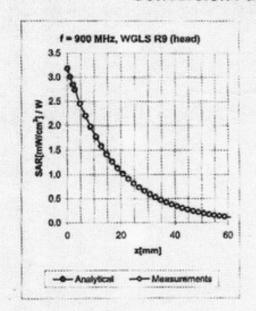
January 29, 2008

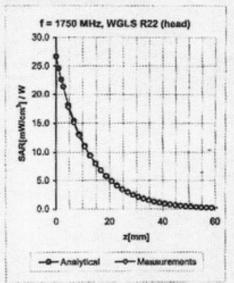
Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1531_Jan08

-0.6 -1.0


Page 7 of 9


No. RZA2008-0573 Page 72of 83

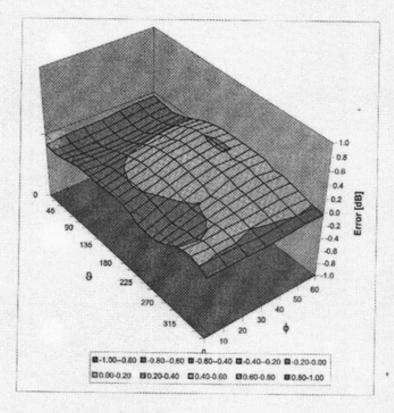
ET3DV6 SN:1531

January 29,2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncortainty
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.27	2.89	6.85 ± 11.0% (k=2)
1750	±50/±100	Head	40.1 ± 5%	1.37 ± 5%	0.52	2.56	5.42 ± 11.0% (k=2)
1950	±50/±100	Head	40.0 ± 5%	1.40 ± 5%	0.49	2.89	5.15 ± 11.0% (k=2)
900	±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.35	2.82	6.52 ± 11.0% (k=2)
1750	±50/±100	Body	53.4 ± 5%	1.49 ± 5%	0.56	2.68	4.97 ± 11.0% (k=2)
1950	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.88	2.07	4.64 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.68	2.16	4.10 ± 11.8% (k=2)

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the Come uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


No. RZA2008-0573 Page 73of 83

ET3DV6 SN:1531

January 29, 2008

Deviation from Isotropy in HSL

Error (6, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1531_Jan08

Page 9 of 9

No. RZA2008-0573 Page 74of 83

ANNEX F: D835V2 DIPOLE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: D835V2-443_Dec07

Client TMC China

Object	D835V2-SN: 443
Calibration procedure(s)	QA CAL-05.v6 Calibration procedure for dipole validation kits
Calibration date:	December 9, 2007
Condition of the calibrated item	In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements(SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted at an environment temperature (22±3)⁶C and humidity<70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	13-Sep-07 (METAS, NO. 217-00608)	Sep-08
Power sensor 8481A	U\$37292783	13-Sep-07 (METAS, NO. 217-00608)	Sep-08
Reference 20 dB Attenuator	SN:5086 (20g)	12-Jul-07 (METAS, NO. 217-00591)	Jul-08
Reference 10 dB Attenuator	SN:5047_2 (10r)	12-Jul-07 (METAS, NO. 217-00591)	Jul-08
DAE4	SN:601	30-Jan-07 (SPEAG, NO.DAE4-601_Jan07)	Jan-08
Reference Probe ET3DV8 (HF) SN: 1507	19-Sep-07 (SPEAG, NO. ET3-1507_Sep07)	Sep-08
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration
Power sensor HP 8481A	MY41092317	18-Oct-02(SPEAG, in house check Oct-07)	In house check: Oct-09
RF generator Aglient E4421B	MY41000678	11-May-05(SPEAG, in house check Nov-07)	In house check: Nov-09
Network Analyzer HP 8753E	US37390585S4206	18-Oct-01(SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Technician	AM
Approved by:	Katja Pokovic	Technical Director	20 40

Issued: December 10, 2007

This calibration certificate shall not be reported except in full without written approval of the laboratory.

Certificate No: D835V2-443_Dec07

Page 1 of 6

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-0573 Page 75of 83

Calibration Laboratory of Schmid & Partner Engineering AG Zeophausstrasse 43, 8004 Zurich, Switzerland

S Schweizerleicher Kallbrierdienst
C Service suiese d'étalonnage
Servicio svizzero di taratura
S Sivias Calibration Service

Accredited by the Swise Federal Office of Netrology and Accreditation Accreditation No.: SCS 108
The Swise Accreditation Service is one of the algoratories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-0573 Page 76of 83

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	Anna Carlotte Commission of the Commission of th
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2±6%	0.89 mhalm ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C	-	

SAR result with Head TSL

SAR averaged over 1 cm² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43mW/g
SAR normalized	normalized to 1W	9-72mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.70 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm* (10 g) of Head TSL	condition	
SAR measured	250 mW input power	158 mW/g
SAR normalized	normalized to 1W	6.24mW/g
SAR for nominal Head TSL perameters 1	normalized to 1W	6.31mW/g ± 16.5 % (k=2)

¹Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-0573 Page 77of 83

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω - 6.8 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.402 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is reade of standard sensingid coasial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 3, 2001

Certificate No: D835V2-443_Dec07

Page 4 of 6

No. RZA2008-0573 Page 78of 83

DASY4 Validation Report for Head TSL

Date/Time: 9.12.2007 14:20:15

Test laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; serial: D835V2-SN: 443

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 835 MHz;

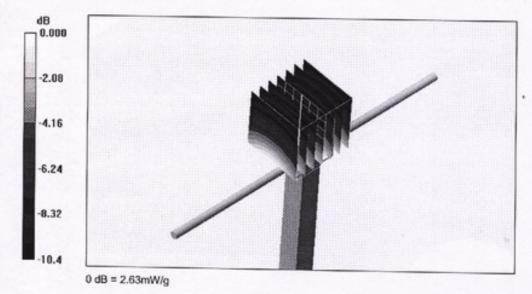
Medium parameters used: f=835 MHz; σ =0.89 mho/m; ϵ_r =40.2; ρ = 1000kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

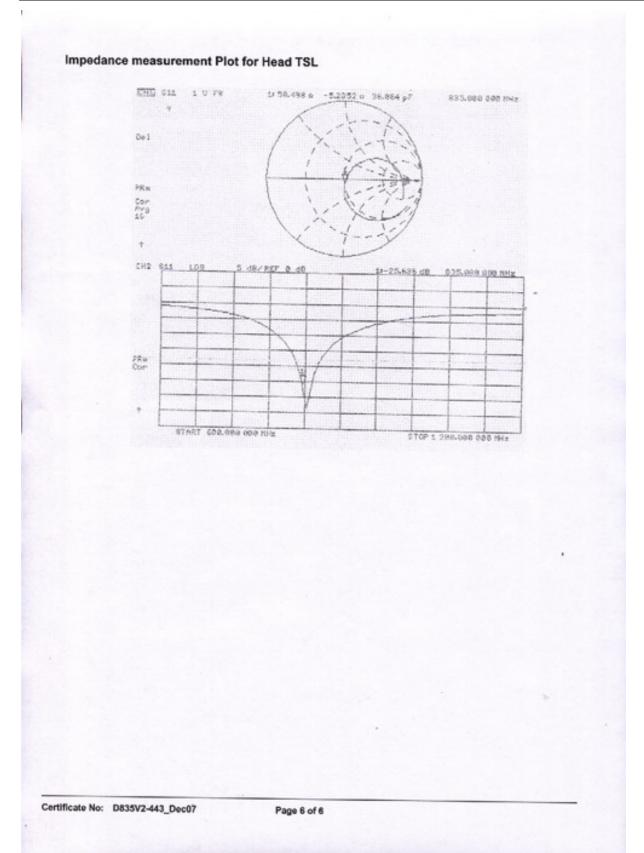
- Probe: ET3DV6-SN1507(HF); ConvF(6.01,6.01,6.01); Calibrated: 19.9.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.1_2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172


Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.3 V/m; Power Drift = 0.015dB

Peak SAR (extrapolated) = 3.65 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.56 mW/g


Maximum value of SAR (measured) = 2.63 mW/g

Certificate No: D835V2-443_Dec07

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-0573 Page 79of 83

No. RZA2008-0573 Page 80of 83

ANNEX G: THE EUT APPEARANCES AND TEST CONFIGURATION

Picture 4: Constituents of the sample (Lithium Battery is in the Handset)

Picture 5 Left Hand Touch Cheek Position

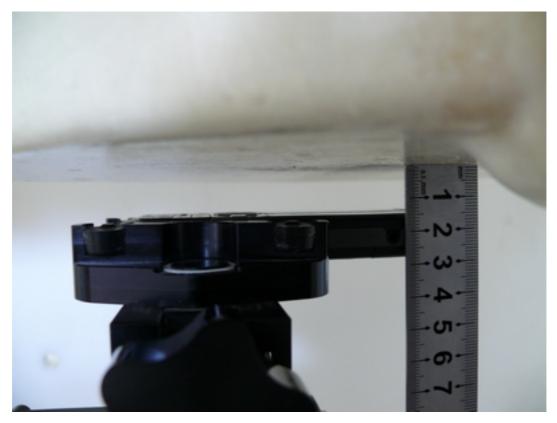
No. RZA2008-0573 Page 81of 83



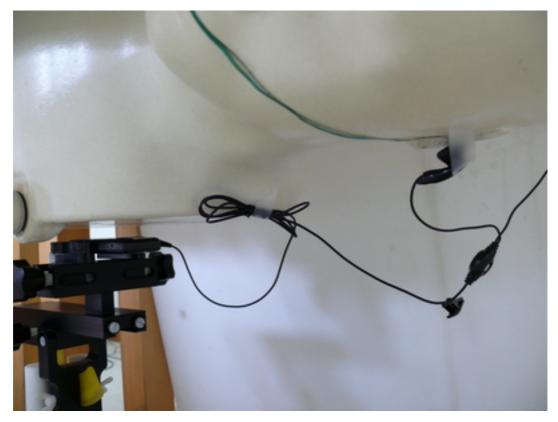
Picture 6 Left Hand Tilt 15° Degree Position

Picture 7 Right Hand Touch Cheek Position

No. RZA2008-0573 Page 82of 83



Picture 8 Right Hand Tilt 15° Degree Position



Picture 9 Body, towards the ground, the distance from handset to the bottom of the Phantom is 15mm)

No. RZA2008-0573 Page 83of 83

Picture 10 Body, towards the Phantom, the distance from handset to the bottom of the Phantom is 15mm)

Picture 11 Body with earphone, towards the ground, the distance from handset to the bottom of the Phantom is 15mm)