

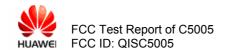
FCC Test Report

Product Name: CDMA Mobile Phone

Model Number: C5005

Report No: SYBH(R)056052008-2

FCC ID: QISC5005


Reliability Laboratory of Huawei Technologies Co., Ltd.

Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R. China

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice 1

- 1. The laboratory has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L0310.
- 2. The laboratory has obtained the accreditation of THE AMERICAN ASSOCIATION FOR LABORATORY ACCREDITATION (A2LA), and Accreditation Council Certificate Number: 2174.01.
- 3. The laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 97456.
- 4. The laboratory has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 6369A-1.
- 5. The laboratory also has been listed by the VCCI to perform EMC measurements. The accreditation number is R2364, C2583, and T256.
- 6. The test report is invalid if not marked with "exclusive stamp for the test report".
- 7. The test report is invalid if not marked with the stamps or the signatures of the persons responsible for performing, revising and approving the test report.
- 8. The test report is invalid if there is any evidence of erasure and/or falsification.
- 9. If there is any dissidence for the test report, please file objection to the test centre within 15 days from the date of receiving the test report.
- 10. Normally, the test report is only responsible for the samples that have undergone the test.
- 11. Context of the test report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of the laboratory.
- 12. In this page, the "laboratory" is "Reliability Laboratory of Huawei Technologies Co., Ltd."

REPORT ON FCC Test of Huawei CDMA Mobile Station

M/N: C5005

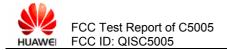
Report No: SYBH(R)056052008-2

FCC ID: QISC5005

REGULATION FCC CFR47 Part 2: Subpart J;

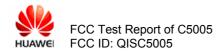
FCC CFR47 Part 22: Subpart H;

CONCLUSION Pass


General Manager <u>2008.5.04</u> 张兴海

Date Name signature

Technical Responsibility


For Area of Testing 2008.4.30 余 辉 Date Name signature

Test Lab Engineer 2008.4.28 胡俊 Name signature

Contents

1 <u>S</u>	<u>Summary</u>	5
2 P	Product Description	6
2.1 2.2	Production Information	6
3 <u>T</u>	Test Site Description	7
3.1 3.2		7 7
4 <u>P</u>	Product Description	8
4.1 4.2	TECHNICAL CHARACTERISTICSEUT IDENTIFICATION LIST	
5 <u>N</u>	Main Test Instruments	11
6 <u>T</u>	Fransmitter Measurements	12
6.1 6.2 6.3	CONDUCTED OUTPUT POWER	14 17
6.4 6.5 6.6	BAND EDGES COMPLIANCE	21
6.7	FREQUENCY STABILITY	25
7 <u>S</u>	System Measurement Uncertainty	29
8 A	Appendixes	29

1 **Summary**

The table below summarizes the measurements and results for the Huawei CDMA Mobile Station C5005. Detailed results and descriptions are shown in the following pages.

Table 1 Summary of results

FCC Measurement Specification	FCC Limits Part(s)	Description	Result
2.1046	22.913	Effective Radiated Power of Transmitter	PASS
2.1046	22.913	Conducted Power of Transmitter	PASS
2.1047	/	Modulation Characteristics	PASS
2.1049	1	Occupied Bandwidth	PASS
2.1051	22.917	Band Edges Compliance	PASS
2.1051	22.917	Spurious Emission at Antenna Terminal	PASS
2.1055	22.355	Frequency Stability	PASS

Note: The Radiated Spurious Emissions' test results are shown in the EMC report.

2 Product Description

2.1 Production Information

2.1.1 General Description

Huawei CDMA Mobile Phone C5005 is subscriber equipment in the CDMA system. The frequency band is US Cellular. The Mobile Phone implements such functions as RF signal receiving / Transmitting, CDMA protocol processing, voice and SMS service etc. The Mobile Phone uses QSC6030 single chipset and Zero-IF technologies.

2.1.2 Support function and Service

The Mobile Station C5005 support the function and service as follows:

Table 2 Service and Test mode List

Service Name	Characteristic	Corresponding Test Mode	Note
voice and SMS	Modulation: QPSK	TM1*	
voice and SMS	Modulation: HPSK	TM3*	

Note: * Refer to ANSI/TIA-98-E section 1.3 for the information of TM (Test Mode).

2.2 Modification Information

For original equipment, following table is not application.

Table 3 Modification Information

Model Number	Board/M odule	Original Version	New Version	Modify Information
	Tot			cable

3 Test Site Description

The test site of:

Huawei Technologies Co. Ltd. P.O. Box 518129 Huawei base, bantian, Longgang District, Shenzhen, China

The test site description has been submitted to and registration granted under the registration number **97456** on April 20.2006 . The test site has been accredited by

and the accredited number is **2174.01** in Jan of 2006.

3.1 Testing Period

The test have been performed during the period of

Apr. 20, 2008 to Apr. 27, 2008

3.2 General Set up Description

Huawei CDMA Mobile Station C5005 can only support CDMA mode and US Cellular Band. During this measurement, the Mobile Station just works in CDMA mode and US Cellular Band.

TM1: Forward Traffic Channel Radio Configuration 1, Reverse Traffic Channel Radio Configuration 1 **TM3:** Forward Traffic Channel Radio Configuration 3, Reverse Traffic Channel Radio Configuration 3

Parameter	Units	Value
Îor	dBm/1.23 MHz	-104
$\frac{\text{Pilot Ec}}{\text{I}_{\text{or}}}$	dB	-7
$\frac{\text{Traffic Ec}}{I_{\text{or}}}$	dB	-7.4

4 Product Description

4.1 Technical Characteristics

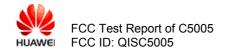
4.1.1 Frequency Range

Table 4 Frequency Range

Uplink band:	824 to 849 MHz
Downlink band:	869 to 894 MHz

4.1.2 Channel Spacing / Separation

Table 5 Channel Spacing / Separation


Channel spacing:	1.23 MHz
Channel raster	30 kHz

4.1.3 Type of Emission

Table 6 Type of Emission

	Table 0	Type of Efficient
Emission Designation:		1M25F9W

According to CFR 47 (FCC) part 2, subpart C, section 2.201 and 2.202

Environmental Requirements

Table 7 Environmental Requirements

Minimum temperature:	- 10 °C
Maximum temperature:	+ 55 °C
Relative Humidity:	5% ~ 95%RH

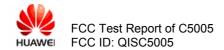
4.1.4 Power Source

Table 8 Power Source

AC voltage nominal:	~ 120V
AC voltage range	~ 100V ~ 240V
AC current maximal:	650mA

4.1.5 Tune-up Procedure

According to CFR (FCC) part 2, subpart 2, section 2.1033 (9)


Please reference the document Tune-up Procedure in TCF.

4.1.6 Applied DC Voltages and Currents

According to CFR (FCC) part 2, subpart 2, section 2.1033 (8) The voltage and current in the final RF stage is:

Table 9 Applied RF module DC Voltages and Currents

Voltage:	=== 3.7VDC
Current:	120mA According to CFR (FCC) part 2, subpart 2, section 2.1033 (8)

4.2 EUT Identification List

4.2.1 Board Information

Table 10 Board Information

Table 10 Beard Information				
800MHz CDMA Mobile Station				
C5005				
Board and Module				
Equipment Designation / Description	Serial Number	Remarks		
-Main board	020JTQ7N84000087	HC1C5005M Ver.C		
-LCD	98350010007N	CT018TN06 V.C		
-Battery	BYD7B0616154	HBL6A		

4.2.2 Adapter Technical Data

AC/DC Adapter Model:	HS-050040E1	HS-050040U1
Manufacturer :	SHENZHEN HUNTKEY POWER TECHNOLOGY CO., LTD	SHENZHEN HUNTKEY POWER TECHNOLOGY CO., LTD
Rated Voltage	~ 120V, 60Hz	~ 120V, 60Hz
Input Voltage :	~ 100-240V 50/60Hz	~ 100-240V 50/60Hz
Output Voltage;	=== 5.0V	=== 5.0V
Rated Power :	2W	2W
S/N:	HKA7C281222	HKA7C351242

4.2.3 Battery Technical Data

Battery Model: HBC80S
Rated capacity: 800mAh
Nominal Voltage: === 3.7V
Charging Voltage: === 4.2V

4.2.4 FCC Identification

Grantee Code: QIS
Product Code: C5005
FCC Identification: QISC5005

5 Main Test Instruments

Table 11 Main Test Equipments

		I Land Leat Equipments			
Equipment Description	Manufacturer	Model	Serial Number	Calibrated until (MM.DD.YYYY)	
Signal Analyzer	R&S	FSQ 26	100266	03.20.2009	
Receiver	R&S	ESIB 26	100318	08.17.2008	
Loop Antenna	Schwarzbeck	FMZB1516	1516115	03.20.2009	
BiLog Antenna	Schaffner	CBL 6112B	2536	08.30.2008	
Horn Antenna	ETS-Lindgren	3117	00062533	03.20.2009	
Horn Antenna	ETS-Lindgren	3116	00031541	03.20.2009	
Dipole	Schwarzbeck	D69250- UHAP/D69250-VHAP		08.28.2008	
Signal Generator	R&S	SMU200A	100699	03.17.2009	
Signal Generator	R&S	SMR 40	100325	12.09.2008	
Power Supply	Keithley	2306	1045337	03.20.2009	
Climate Chamber	WEISS	ACS-1	3604040034	03.20.2009	
Universal Radio Communication	R&S	CMU200	108035	03.20.2009	
Tester					
Wireless communication test set	Agilent	8960	GB43461081	03.13.2009	
Spectrum Analyzer	Agilent	PSA E4445A	MY42510100	03.13.2009	

6 Transmitter Measurements

6.1 Effective Radiated Power of Transmitter (ERP)

6.1.1 Test Conditions

Table 12 Test Conditions

Preconditioning:	1 hour
Measured at:	enclosure
Ambient temperature:	24
Relative humidity:	54%
Test Configurations:	TM1 and TM3 at frequency B、M、T

6.1.2 Test Specifications and Limits

6.1.2.1 Specification

CFR 47 (FCC) part 2.1046 and part 22.913

6.1.2.2 Supporting Standards

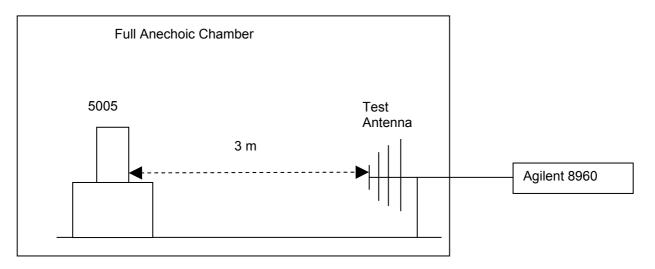
Table 13 Supporting Standards:

	Table to Capporting Standards:
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum Mobile Stations

6.1.2.3 Limits

Compliance with part 22.913, in no any case may the peak power of a mobile station transmitter exceed 7 W. And calculate longitude ERP by following formula: ERP(dBm)= 10*log (ERP_{in mwatts}). EIRP (dBm)=ERP(dBm)+2.15dB.

Table 14 Limits


Maximum Output Power (Watts)	< 7 Watts
Maximum Output Power (dBm)	< 38.5 dBm

6.1.3 Test Method and Setup

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, E.R.P. shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the Mobile Station to the wireless communication tester Agilent 8960 via the air interface. The band class is set as US Cellular.
- (b) Test the Radiated maximum output power by the Agilent 8960 received from test antenna.
- (c) Use substitution method to verify the Maximum output power. The EUT is substituted by a dipole antenna. The dipole is connected to a signal generator. And then adjust the output level of the signal generator to get the same received power recorded in step (b) on Agilent 8960, and record the power level of Signal Generator. Of course, the cable loss at the test frequency should be compensated.

Test setup

Step 1: Pre-test

Step 2: Substitution method to verify the maximum ERP

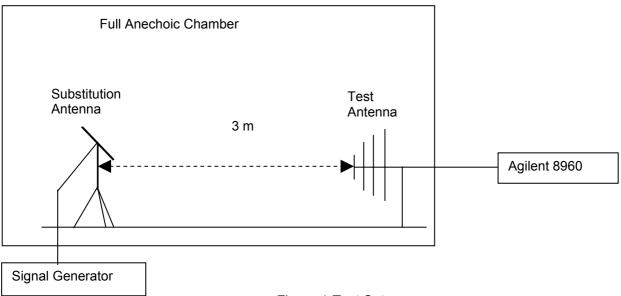


Figure 1. Test Set-up

NOTE: Effective radiated power (ERP) refers to the radiation power output of the EUT, assuming all emissions are radiated from half-wave dipole antennas.

6.1.3.1 Measurement Results

Table 15 Measurement Results

			RF Output Power						
TEST CONDITIONS		Channel1	Channel1013(B)		Channel 283(M)		Channel777(T)		
		824.7MHz 833.4		833.49	MHz	848.31MHz			
		dBr	m	dBm		dBm			
		Measured	Limit	Measured	Limit	Measured	Limit		
TM1	T _{nom} (24 °C)	19.85	38.5	19.82	38.5	19.81	38.5		
	V _{nom} (3.7 V)	19.65							
TM3	T _{nom} (24 °C)	19.89	38.5	19.85	38.5	19.83	38.5		
	V _{nom} (3.7 V)	19.09		19.00	36.5				
	•	•		<u>'</u>	1		<u>'</u>		

6.1.3.2 Substitution Results

Table 16 Substitution Results

			Tubic		ontation rec				
Test Mode	Freq. [MHz]	Meas. Level [dBm]	Substitution Antenna Type	SGP [dBm]	Substitutio n Gain [dBd]	Cable Loss [dB]	Substitution Level (ERP) [dBm]	Limit [dBm]	Result
	004.7	40.05	D'anta Ant	00.04	0.05	0.0		00.5	D
TM1	824.7	19.85	Dipole Ant.	23.31	-2.95	0.6	19.76	38.5	Pass
TM1	833.49	19.82	Dipole Ant.	23.38	-3.06	0.6	19.72	38.5	Pass
TM1	848.31	19.81	Dipole Ant.	23.39	-3.11	0.6	19.68	38.5	Pass
ТМЗ	824.7	19.89	Dipole Ant.	23.35	-2.95	0.6	19.80	38.5	Pass
ТМЗ	833.49	19.85	Dipole Ant.	23.41	-3.06	0.6	19.75	38.5	Pass
TM3	848.31	19.83	Dipole Ant.	23.41	-3.11	0.6	19.70	38.5	Pass

Note: a, For get the ERP (Efficient Radiated Power) in substitution method, the following formula should take to calculate it,

ERP [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBd]

SGP: Signal Generator Level

b, A CDMA signal with bandwidth of 1.23MHz are created by the vector generator R&S SMU200A.

c, RBW=10kHz, VBW=300kHz, and integrated by the instrument to 1.23MHz.

6.1.4 Conclusion

The equipment **PASSED** the requirement of this clause.

6.2 Conducted output power

6.2.1 Test Conditions

Table 17 Test Conditions

FCC ID: QISC5005	Security Level: Public

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	24
Relative humidity:	54%
Test Configurations:	TM1 and TM3 at frequency B、M、T

6.2.2 Test Specifications and Limits

6.2.2.1 Specification

CFR 47 (FCC) part 2.1046 and part 22.913

6.2.2.2 Supporting Standards

Table 18 Supporting Standards:

Table to the provincial and the second secon				
ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment			
	Measurement and Performance Standards			
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for			
	cdma2000 Spread Spectrum Mobile Stations			

6.2.2.3 Limits

Compliance with part 22.913, in no any case may the peak power of a mobile station transmitter exceed 7 W. The calculated longitude ERP by following formula:

ERP(dBm)= 10*log (ERP_{in mwatts}).

And for conducted power, we can use Antenna Gain to calculate the limit. So the conducted power:

P_{cod}.(dBm)=ERP(dBm)- Gain(dBd). and Gain (dBd)= Gain(dBi)- 2.15dB

Table 19 Limits

Maximum Output Power (Watts)	< 7 Watts=(38.5 dBm)
Antenna Gain(dBi):	-2 dBi
Antenna Gain(dBd):	-4.15dBd
Maximum Conducted Output Power (dBm)	< 42.65dBm

6.2.3 Test Method and Setup

(a)For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, Conducted maximum power shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the Mobile Station to the wireless communication tester Agilent 8960 via the antenna connector. The band class is set as US Cellular.

(b)Test the Conducted maximum output power by the Agilent 8960.

Test setup

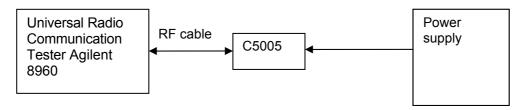


Figure 2. Test Set-up

6.2.4 Measurement Results

Table 20 Measurement Results

		Table 20		CITICITÉ I (COUIT				
		RF Output Power						
TEST CONDITIONS		Channel 1013(B)		Channel 283(M)		Channel 777(T)		
		824.7MHz		833.49MHz		848.31MHz		
		dBm		dBm		dBm		
		Measured	Limit	Measured	Limit	Measured	Limit	
TM1	T _{nom} (24 °C)	24.01 42.65		24.00	40 CE	23.99	40 GE	
	V _{nom} (3.7 V)			24.00	42.65	23.99	42.65	
TM3	T _{nom} (24 °C)	24.04	40 CE	24.02	40 CE	24.01	40 CE	
	V _{nom} (3.7 V)	24.04 42.65		24.03 42.65		24.01 42.6		

6.2.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.3 Modulation Characteristics

6.3.1 Test Conditions

Table 21 Test Conditions

Preconditioning:	1 hour		
Measured at:	Antenna connector		
Ambient temperature:	24 °C		
Relative humidity:	54 %		
Test Configurations:	TM1 and TM3 at frequency M		

6.3.2 Test Specifications and Limits

6.3.2.1 Specification

CFR 47 (FCC) part 2.1047 and part 22 subpart H.

6.3.2.2 Supporting Standards

Table 22 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum Mobile Stations.

6.3.2.3 Limits

No specific modulation characteristics requirement limits in part 2.1047 and part 22 subpart H.

Table 23 Limits

Limits	Not applicable	
--------	----------------	--

6.3.3 Test Method and Setup

Connect the Mobile Station to the Universal Radio Communication Tester CMU200 via the antenna connector. The band class is set as US Cellular; the Mobile Station's output is matched with 50 Ω loads. Test method was according to ANSI/TIA-98-E. The waveform quality and constellation of the Mobile Station was tested.

Test setup

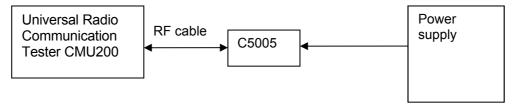


Figure 3. Test Set-up

6.3.4 Measurement Results

Table 24 Measurement Results

		Table 24 Weasurement 1	Coulto		
TEST CONDITIONS		Modulation Characteristic			
		Channel283(M)			
		833.49MHz			
		Measured			
		TM1 TM3			
T _{nom} (24 °C) V _{nom} (3.7V)		Refer to Appendix A Refer to Appendix A			
			•		

6.3.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix A.

6.4 Occupied Bandwidth

6.4.1 Test Conditions

Table 25 Test Conditions

Preconditioning:	1 hour		
Measured at:	Antenna connector		
Ambient temperature:	24 °C		
Relative humidity:	54%		
Test Configurations:	TM1 and TM3 at frequency B、M、T		

6.4.2 Test Specifications and Limits

6.4.2.1 Specification

CFR 47 (FCC) part 2.1049 and part 22 subpart H.

6.4.2.2 Supporting Standards

Table 26 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum Mobile Stations.

6.4.2.3 Limits

No specific occupied bandwidth requirement in part 22 subpart H, but the occupied bandwidth was defined in part 2.1049: the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Table 27 Limits

Upper /lower frequency limits	0.5% of the mean power
-------------------------------	------------------------

6.4.3 Test Method and Setup

Mobile Station was connected to the wireless communication test set Agilent 8960 and the Spectrum Analyzer E4445A via the divider. The band class is set as US Cellular; Mobile Station was controlled to transmit Maximum power. Measure and record the Occupied Bandwidth of the Mobile Station by the Spectrum Analyzer E4445A

The OBW, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

Refer to 47CFR part2.1049 section (g)&(h).

(g) Transmitter in which the modulating base band comprises not more than three independent channels - when modulated by the full complement of signals for which the transmitter is rated. The level of modulation for each channel should be set to that prescribed in rule parts applicable to the

services for which the transmitter is intended. If specific modulation levels are not set forth in the rules, the tests should provide the manufacturer's maximum rated condition.

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudorandom generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at discretion of the user.

Measurement bandwidth (RBW): 30 kHz (Resolution bandwidth)

Video bandwidth (VBW): 300 kHz

Test Set-up

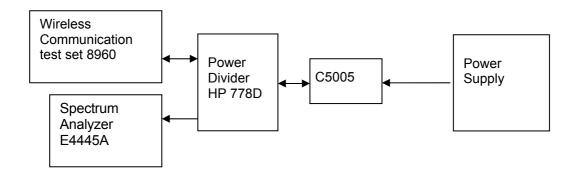


Figure 4. Test Set-up

6.4.4 Measurement Results

Table 28 Measurement Results

Table 20 IviedSurement Results							
	Occupied Bandwidth						
TEST CONDITIONS		Channel1013 (B)		Channel283 (M)		Channel777(T)	
		824.7MHz		833.49MHz		848.31MHz	
		Measured		Measured		Measured	
		(MHz)		(MHz)		(MHz)	
		TM1 TM3		TM1	TM3	TM1	TM3
T _{nom} (24 °C)	V _{nom} (3.7V)	1.2710	1.2750	1.2743	1.2751	1.2760	1.2750

6.4.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix B.

6.5 Band Edges Compliance

6.5.1 Test Conditions

Table 29 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	50 %
Test Configurations:	TM1 and TM3 at frequency B、T

6.5.2 Test Specifications and Limits

6.5.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 22.917

6.5.2.2 Supporting Standards

Table 30 Supporting Standards:

remote to the posterior and the second secon				
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment			
Measurement and Performance Standards				
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for			
	cdma2000 Spread Spectrum Mobile Stations.			

6.5.2.3 Limits

Compliance with 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 log_{10} P. (Whereas P is the rated power of the EUT).

Table 31 Limits

10.010 0 1 2.11.110				
Conducted Rated Power:	24 dBm			
Required attenuation:	43+10log (0.251) = 37 , 24 dBm – 37 dB			
Absolute level	- 13 dBm			

6.5.3 Test Method and Setup

Mobile Station was connected to the wireless communication test set Agilent 8960 and the Spectrum Analyzer E4445A via the divider, the band class is set as US Cellular. Mobile Station was controlled to transmit Maximum power. Measure and record Band edge compliance of the Mobile Station by the E4445A.

Measurement bandwidth (RBW): 13 kHz (Resolution bandwidth)

Video bandwidth (VBW): 130 kHz

Test Set-up

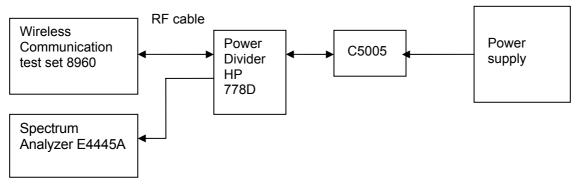


Figure 5. Test Set-up

6.5.4 Measurement Results at Band Edges

Table 32 Measurement Results outside Band Edges-- Single Carrier

					Luges Olligie		
Band	Frequency of Band edges [MHz]	Channel Number	Test Mode	Conducted Rated Power [dBm]	Spurious Level measured [dBm]	FCC limit	Result
				[ubiii]	ניוום		
			T _{nom} (2	5 °C), V _{nom} (3.7V)		
Cellular	824	1013 (B)	TM1 & TM3	24.00	<-13(See appendix C)	- 13 dBm	Pass
Band	849	777 (T)	TM1 & TM3	24.00	<-13(See appendix C)	- 13 dBm	Pass

6.5.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix C.

6.6 Spurious Emission at Antenna Terminal

6.6.1 Test Conditions

Table 33 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	24°C
Relative humidity:	52 %
Test Configurations:	TM1 and TM3 at frequency B、M、T

6.6.2 Test Specifications and Limits

6.6.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 22.917

6.6.2.2 Supporting Standards

Table 34 Supporting Standards:

	rabio o r capporting otalication
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
ANSI/TIA-98-E: 2003	Recommended Minimum Performance Standards for
	cdma2000 Spread Spectrum Mobile Stations. Release C

6.6.2.3 Limits

Compliance with part 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 \log_{10} P. (Whereas P is the rated power of the EUT).

Table 35 Limits

Conducted Rated Power:	24 dBm
Required attenuation:	43+10log (0.251) = 37 , 24 dBm – 37 dB
Absolute level	- 13 dBm

6.6.3 Test Method and Setup

Mobile Station was connected to the wireless communication test set Agilent 8960 and the Spectrum Analyzer E4445A via the divider, the band class is set as US Cellular. Mobile Station was controlled to transmit Maximum power. Measure and record the Conducted Spurious Emission of the Mobile Station by the Spectrum Analyzer E4445A.

According to part 22.917, the defined measurement bandwidth as following:

22.917(b) Measurement procedure: Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

Measurement bandwidth (RBW) for 9 kHz up to 150 kHz: 1 kHz; Measurement bandwidth (RBW) for 150 kHz up to 30 MHz: 10 kHz;

Measurement bandwidth (RBW) for 30MHz up to 1 GHz: 100 kHz; Measurement bandwidth (RBW) for 1GHz up to 12.75 GHz: 1 MHz;

Test Set-up

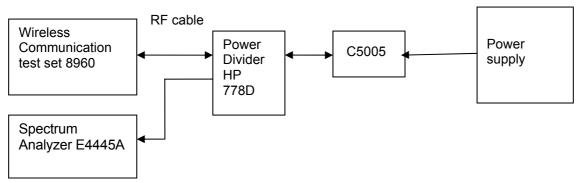


Figure 6. Test Set-up

Table 36 Measurement Results

6.6.4 Measurement Results at Conducted Spurious Emission

Test Range | Conducted | Spurious Level | FCC | Result Test

Charine	1631	1 est ixange	Conducted	Spullous Level	1 00	ixesuit
Number	Mode	(Frequency)	Rated	measured [dBm]	limit	
			Power			
			[dBm]			
	TM1	9 kHz	24.00	<- 13 dBm	- 13	Daga
Channel	I IVI I	~12.75GHz	24.00	(See appendix D)	dBm	Pass
1013(B)	TM3	9 kHz	24.00	<- 13 dBm	- 13	Daga
	TIVIS	~12.75GHz		(See appendix D)	dBm	Pass
	TM1	9 kHz	24.00	<- 13 dBm	- 13	Doos
Channel	I IVI I	~12.75GHz	24.00	(See appendix D)	dBm	Pass
283(M)	TM3	9 kHz	24.00	<- 13 dBm	- 13	Pass
	TIVIS	~12.75GHz		(See appendix D)	dBm	Pass
	TM1	9 kHz	24.00	<- 13 dBm	- 13	Pass
Channel	I IVI I	~12.75GHz		(See appendix D)	dBm	Pass
777(T)	TM2	9 kHz	24.00	<- 13 dBm	- 13	Daga
	TM3	~12.75GHz		(See appendix D)	dBm	Pass

6.6.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix D.

6.7 Frequency Stability

6.7.1 Test Conditions

Table 37 Test Conditions

Preconditioning:	1 hour
Measured at:	Antenna connector
Ambient temperature:	See below
Relative humidity:	54% at 25°C
Test Configurations:	TM1 and TM3 at frequency M

6.7.2 Test Specifications and Limits

6.7.2.1 Specification

CFR 47 (FCC) part 2.1055 and part 22.355

6.7.2.2 Supporting Standards

Table 38 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment	
	Measurement and Performance Standards	
EIA/TIA-98E: 2003	Recommended Minimum Performance Standards for	
	cdma2000 Spread Spectrum Mobile Stations.	

6.7.2.3 Limits

According to part 22.355, from 821MHz to 869MHz, for mobile device, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances 2.5ppm.

6.7.3 Test Method and Setup

The frequency stability shall be measured with variation of ambient temperature as follows:

- (1) From –30 ° to +50 ° centigrade for all equipment except that specified in subparagraphs
- (2) And (3) of paragraph 2.1055
- (a) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (b) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point, which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (c) When deemed necessary, the Commission may require tests of frequency stability under conditions

in addition to those specifically set out in paragraphs (a), (b), (c) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment.)

The EUT can only work in such extreme voltage 3.5V and 4.2V, so here the EUT is tested in the 3.5V and 4.2V.

Test Set up

Connect the Mobile Station to the Wireless Communication test set 8960 via the connector. Then measure the frequency error by the Wireless Communication test set 8960. The Mobile Station's output is matched with a 50 Ω loads.

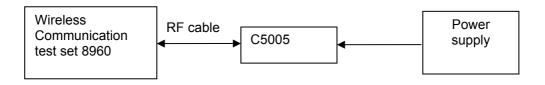


Figure 7. Test Set up

6.7.4 Measurement Results

6.7.4.1 Measurement Results vs. Variation of Temperature

• Cellular, TM1, 3.7V DC Channel No.283(833.49MHz)

Table 39 Measurement Results vs. Variation of Temperature—TM1

Temperature	Conducted Rated Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
-30 °C	24	833.49	-26	Pass
-20 °C	24	833.49	-20	Pass
-10 °C	24	833.49	-15	Pass
0 °C	24	833.49	10	Pass
+10 °C	24	833.49	-5	Pass
+20 °C	24	833.49	-7	Pass
+30 °C	24	833.49	15	Pass
+40 °C	24	833.49	20	Pass
+50 °C	24	833.49	-9	Pass

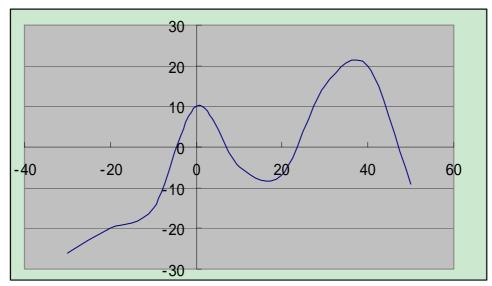


Figure 8. TM1 Test Graph

• Cellular, TM3, 3.7V DC Channel No.283(833.49MHz)

Table 40 Measurement Results vs. Variation of Temperature—TM3

Temperature	Conducted Rated Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
-30 °C	24	833.49	-23	Pass
-20 °C	24	833.49	-16	Pass
-10 °C	24	833.49	6	Pass
0 °C	24	833.49	9	Pass
+10 °C	24	833.49	-5	Pass
+20 °C	24	833.49	-13	Pass
+30 °C	24	833.49	-2	Pass
+40 °C	24	833.49	3	Pass
+50 °C	24	833.49	15	Pass

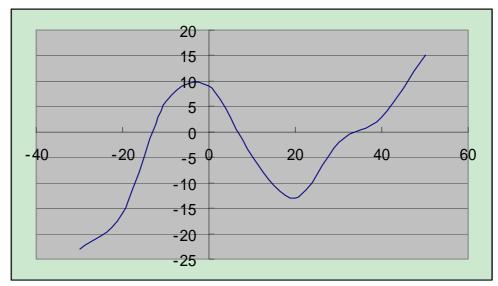


Figure 9. TM3 Test Graph

6.7.4.2 Measurement Results vs. Variation of Voltage

TM1, 25 °C ,Channel No. 283(833.49MHz)

Table 41 Measurement Results vs. Variation of Voltage—TM1

Voltage	Conducted Rated Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
3.5	24	833.49	-2	Pass
3.7	24	833.49	-3	Pass
4.2	24	833.49	-1	Pass

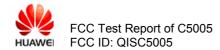

TM3, 25 °C ,Channel No. 283(833.49MHz)

Table 42 Measurement Results vs. Variation of Voltage—TM3

Voltage	Conducted Rated Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
3.5	24	833.49	-2	Pass
3.7	24	833.49	-1	Pass
4.2	24	833.49	-2	Pass

6.7.5 Conclusion

The equipment PASSED the requirement of this clause.

7 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Table 43 System Measurement Uncertainty

Items	•	Extended Uncertainty
Effective Radiated Power of Transmitter	ERP(dBm)	U=2.2dB; k=2
Band Width	Magnitude (%)	U = 0.2%; k=2
Band Edge Compliance	Disturbance Power (dBm)	U = 2.0dB; k=2
Conducted Spurious Emission at Antenna Terminal	Disturbance Power (dBm)	U = 2.0dB; k=2
Frequency Stability	Frequency Accuracy(ppm)	U = 0.21ppm; k=2
Conducted Output Power	Power(dBm)	U=0.39dB; k=2

8 Appendixes

Appendix A	Measurement Results Modulation Characteristics	3 pages
Appendix B	Measurement Results Occupied Bandwidth	7 pages
Appendix C	Measurement Results Band Edges	5 pages
Appendix D	Measurement Results Spurious Emission at Antenna Terminal	31 pages