

OET 65 TEST REPORT

Test name	Electromagnetic Field (Specific Absorption Rate)	
Product	CDMA 1X Digital Mobile Telephone	
FCC ID	QISC2806	
Model	HUAWEI C2806	
Client	Huawei Technologies Co., Ltd.	

No. RZA2008-1258FCC Page 2of 90

GENERAL TERMS

1. The test report is invalid if not marked with "exclusive stamp for the data report" or the stamp of

the TA.

2. Any copy of the test report is invalid if not re-marked with the "exclusive stamp for the test report"

or the stamp of TA.

3. The test report is invalid if not marked with the stamps or the signatures of the persons

responsible for performing, revising and approving the test report.

4. The test report is invalid if there is any evidence of erasure and/or falsification.

5. If there is any dissidence for the test report, please file objection to the test center within 15 days

from the date of receiving the test report.

6. Normally, entrust test is only responsible for the samples that have undergone the test.

7. This test report cannot be used partially or in full for publicity and/or promotional purposes without

previous written permissions of TA.

Address: Room4,No.399,Cailun Rd,Zhangjiang Hi-Tech Park, Pudong Shanghai,China

Post code: 201203

Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com
E-mail: service@ta-shanghai.com

No. RZA2008-1258FCC Page 3of 90

GENERAL SUMMARY

Product	CDMA 1X Digital Mobile Telephone	Model	HUAWEI C2806
Client	Huawei Technologies Co., Ltd.	Type of test	Entrusted
Manufacturer	Huawei Technologies Co., Ltd.	Arrival Date of sample	September 19 th , 2008
Place of sampling	(Blank)	Carrier of the samples	Yaohui Gu
Quantity of the samples	One	Date of product	(Blank)
Base of the samples	(Blank)	Items of test	SAR
Series number	PT4CAA1882600876		
Standard(s) Conclusion	(Blank) Items of test SAR		
Comment	The test result only responds to the measured sample.		

Approved by 和伟中

Revised by **发**级

Performed by /12

feng Shi

Weizhong Yang

Minbao Ling

TABLE OF CONTENT

1.	CO	MPETENCE AND WARRANTIES	6
2.	GEI	NERAL CONDITIONS	6
3.	DES	SCRIPTION OF EUT	7
3	3.1.	Addressing Information Related to EUT	7
3	3.2.	CONSTITUENTS OF EUT	7
3	3.3.	GENERAL DESCRIPTION	7
3	3.4.	Test item	8
4.	OPI	PERATIONAL CONDITIONS DURING TEST	
4	1 .1.	TEST TO BE PERFORMED	9
4	1.2.	INFORMATION FOR THE MEASUREMENT OF CDMA 1x DEVICES	9
	4.2	2.1. Output Power Verification	9
		2.2 Head SAR measurement	
	4.2	2.3 Body SAR measurement	10
5.	SAF	R MEASUREMENTS SYSTEM CONFIGURATION	11
Ę	5.1.	SAR MEASUREMENT SET-UP	11
Ę	5.2.	DASY4 E-FIELD PROBE SYSTEM	12
	5.2	2.1. ET3DV6 Probe Specification	12
	5.2	2.2. E-field Probe Calibration	13
Ę	5.3.	OTHER TEST EQUIPMENT	13
	5.3	3.1. Device Holder for Transmitters	
	5.3	3.2. Phantom	
Ę	5.4.	SCANNING PROCEDURE	
Ę	5.5.	DATA STORAGE AND EVALUATION	
	5.5	5.1. Data Storage	
		5.2. Data Evaluation by SEMCAD	
Ę	5.6.		
		S.1. Robotic System Specifications	
	5.7.	SYSTEM VALIDATION	
Ę	5.8.	EQUIVALENT TISSUES	20
6.	LAE	BORATORY ENVIRONMENT	20
7.	CH	IARACTERISTICS OF THE TEST	21
7	7.1.	APPLICABLE LIMIT REGULATIONS	21
7	7.2.	APPLICABLE MEASUREMENT STANDARDS	21
8.	CO	NDUCTED OUTPUT POWER MEASUREMENT	22
8	3.1.	SUMMARY	22
8	3.2.	Power Drift	22
8	3.3.	CONDUCTED POWER	22
	8.3	3.1. Measurement Methods	22

No. RZA	2008-1258FCC	Page 50f 90
8.3.2.	Measurement result	22
9. TEST RE	SULTS	23
	LECTRIC PERFORMANCE	
9.2. Sys	STEM VALIDATION RESULTS	23
9.3. Sui	MMARY OF MEASUREMENT RESULTS	24
9.4. Co	NCLUSION	24
10. MEAS	UREMENT UNCERTAINTY	25
11. MAIN	TEST INSTRUMENTS	26
12. TEST	PERIOD	26
13. TEST	LOCATION	26
ANNEX A: N	MEASUREMENT PROCESS	27
ANNEX B: 1	EST LAYOUT	28
ANNEX C: (GRAPH RESULTS	30
ANNEX D: S	SYSTEM VALIDATION RESULTS	66
ANNEX E: F	PROBE CALIBRATION CERTIFICATE	67
ANNEX F:	0835V2 DIPOLE CALIBRATION CERTIFICATE	76
ANNEX G: [DAE4 CALIBRATION CERTIFICATE	82
A N I N I T N I I I I I I	FUE FUE ADDEADANGES AND TEST CONFIGURATION	0-

No. RZA2008-1258FCC Page 6of 90

1. COMPETENCE AND WARRANTIES

TA Technology (Shanghai) Co., Ltd. is a test laboratory competent to carry out the tests described in this test report.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and teCHnical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test.

2. GENERAL CONDITIONS

This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This document is only valid if complete; no partial reproduction can be made with out written approval of **TA Technology (Shanghai) Co., Ltd.**

This report cannot be used partially or in full for publicity and/or promotional purposes with out previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

No. RZA2008-1258FCC Page 7of 90

3. DESCRIPTION OF EUT

3.1. Addressing Information Related to EUT

Table 1: Applicant (The Client)

Name or Company	Huawei Technologies Co., Ltd.
Address/Post	Bantian, Longgang District
City	Shenzhen
Postal Code	518129
Country	P.R. China
Telephone	0755-28780808
Fax	0755-28780808

Table 2: Manufacturer

Name or Company	Huawei Technologies Co., Ltd.	
Address/Post	Bantian, Longgang District	
City	Shenzhen	
Postal Code	518129	
Country	P.R. China	
Telephone	0755-28780808	
Fax	0755-28780808	

3.2. Constituents of EUT

Table 3: Constituents of Samples

Description	Model	Serial Number	Manufacturer
Handset	HUAWEI C2806	PT4CAA1882600876	HUAWEI Techonologies CO.,Ltd
Lithium Battery	HBL6A	GAG8429XF1841515	Shenzhen BYD Co., Ltd.
AC/DC Adapter	HS-050040E1	XQH852973852	TECH-POWER Electronics (Shenzhen) Co., Ltd.

Note:

The EUT appearances see ANNEX H.

3.3. General Description

Equipment Under Test (EUT) is a model of CDMA 1X Digital Mobile Telephone with internal antenna. The detail about Mobile phone, Lithium Battery and AC/DC Adapter is in Table 3. SAR is tested for CDMA Cellular only.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

No. RZA2008-1258FCC Page 8of 90

3.4. Test item

Table 4: Test item of EUT

Device type :	portable device	
Exposure category:	uncontrolled environment / general population	
Device operating configurations :		
Operating mode(s):	CDMA Cellular	
Standard output power	(24dBm,0.25W) CDMA Cellul	ar;
Operating frequency range(s)	transmitter frequency range	receiver frequency range
CDMA Cellular	824.7 MHz ~ 848.31 MHz	869.7 MHz ~ 893.31MHz
Test channel	1013 -384 – 777 (CDMA Cellular)	
(Low –Middle –High)	1013-304 - 111 (CDIVIA CE	ilulai)
Hardware version:	Ver.B	
Software version:	C2806C02B102	
Antenna type:	integrated antenna	

No. RZA2008-1258FCC Page 9of 90

4. OPERATIONAL CONDITIONS DURING TEST

4.1. Test to be performed

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1013, 384 and 777 respectively in the case of CDMA Cellular. The EUT is commanded to operate at maximum transmitting power.

Under the loop back mode between mobile station and E5515C, the transmitter continuously emits with maximum power more strong than voice mode, so the SAR test was done with loop back mode. To make the mobile emits maximum power; the output power of E5515C would be adjusted to minimum power with the sensitivity of the mobile station to build steady connection with mobile station. The power level control parameter "all up" and it means that requires mobile station to emit with maximum power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

4.2. Information for the measurement of CDMA 1x devices

4.2.1. Output Power Verification

Test Parameter setup for maximum RF output power according to section 4.4.5 of 3GPP2

Parameter	Units	Value
l or	dBm/1.23MHz	-104
PilotE c /I or	dB	-7
TrafficE c /I or	dB	-7.4

For SAR test, the maximum power output is very important and essential; it is identical under the measurement uncertainty. It is proper to use typical Test Mode 3 (FW RC3, RVS RC3, SO55) as the worst case for SAR test.

4.2.2 Head SAR measurement

SAR is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55.SAR for RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3.Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

No. RZA2008-1258FCC Page 10of 90

4.2.3 Body SAR measurement

SAR is measured in RC3 with the EUT configured to transmit at full rate using TDSO/SO32, transmit at full rate on FCH with all other code channels disabled. SAR for multiple code channels (FCH+SCHn) is not required when the maximum average output of each RF channel is less than 0.25dB higher than measured with FCH only.

Body SAR in RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate using the body exposure configuration that results in the highest SAR for that channel in RC3.

Test communication setup meet as followings:

Communication standard between mobile	3GPP2 C.S0011-B	
station and base station simulator		
Radio configuration	RC3 (Supporting CDMA 1X)	
Spreading Rate	SR1	
Data Rate	9600bps	
Service Options	SO55 (loop back mode)	
Service Options	SO32 (test data service mode)	
Multiplex Options	The mobile station does not support this service.	

No. RZA2008-1258FCC Page 11of 90

5. SAR MEASUREMENTS SYSTEM CONFIGURATION

5.1. SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than \pm 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length \pm 300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick) and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2003 system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, meCHanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

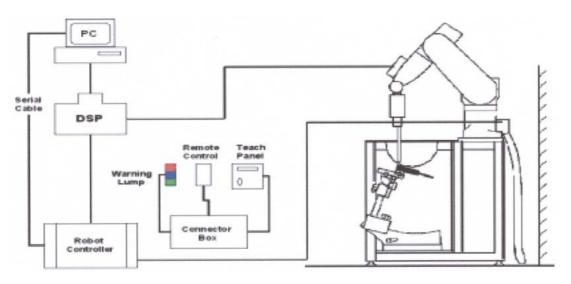


Figure 1. SAR Lab Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

No. RZA2008-1258FCC Page 12of 90

5.2. Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

5.2.1. ET3DV6 Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection System (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents,

e.q., glycol)

Calibration In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at frequencies of 900MHz, 1750MHz,

1950MHz and 2450MHz

(accuracy±8%)

Calibration for other liquids and

frequencies upon request

Frequency 10 MHz to 2.5 GHz; Linearity: ±0.2 dB

(30 MHz to 2.5 GHz)

Directivity ± 0.2 dB in brain tissue

(rotation around probe axis)

±0.4 dB in brain tissue (rotation around probe axis)

Dynamic Range 5u W/g to > 100mW/g; Linearity: ± 0.2 dB Surface Detection ± 0.2 mm repeatability in air and clear

liquids over diffuse reflecting surface

Dimensions Overall length: 330mm

Tip length: 16mm Body diameter: 12mm Tip diarneter: 6.8mm

Distance from probe tip to dipole

centers: 2.7mm

Application General dosimetry up to 2.5GHz

Compliance tests of mobile phones Fast automatic scanning in arbitrary

phantoms

Figure 2.ET3DV6 E-field Probe

Figure 3. ET3DV6 E-field probe

No. RZA2008-1258FCC Page 13of 90

5.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test Chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

5.3. Other Test Equipment

5.3.1. Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 4. Device Holder

No. RZA2008-1258FCC Page 14of 90

5.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm

Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Available Special

Figure 5. Generic Twin Phantom

No. RZA2008-1258FCC Page 15of 90

5.4. Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process.
 - They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation.
- A" 7x7x7 zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous coarse scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5mm in x and y-direction and 5 mm in z-direction. DASY4 is also able to perform repeated zoom scans if more than 1 peak is found during area scan.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps.

5.5. Data Storage and Evaluation

5.5.1. Data Storage

No. RZA2008-1258FCC

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai ₀ , a _{i1} , a _{i2}
	- Conversion factor	$ConvF_i$
	- Diode compression point	Dcp _i
Device parameters:	- Frequency	f
Device parameters.	- Crest factor	cf
	order radio.	01
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for

Page 16of 90

No. RZA2008-1258FCC Page 17of 90

peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma)/(\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

No. RZA2008-1258FCC Page 18of 90

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

5.6. System Specifications

5.6.1. Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium III Clock Speed: 800 MHz

Operating System: Windows 2003

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info. Optical uplink for commands

and clock.

Page 19of 90

5.7. System validation

No. RZA2008-1258FCC

System validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test.

Validation results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

System validation is performed regularly on all frequency bands where tests are performed with the DASY 4 system. Results are stored to have a long time overview of system performance and are shown in EN test reports at request.

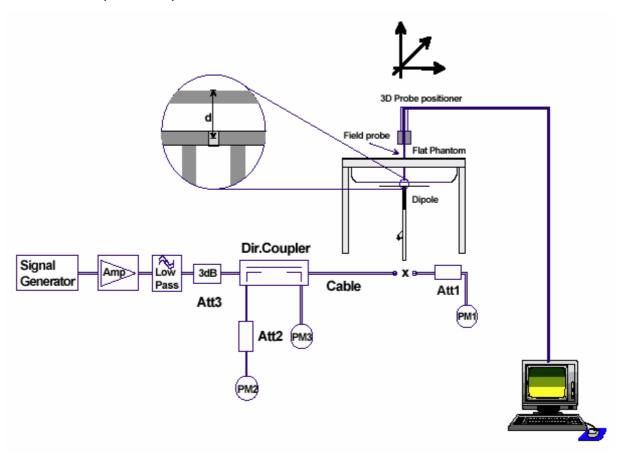


Figure 6. System validation Set-up

No. RZA2008-1258FCC Page 20of 90

5.8. Equivalent Tissues

The liquid used for the frequency range of 800-2000 MHz consisted of water, sugar, salt, Preventol, Glycol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 5 and Table 6 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 5: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz
Water	41.45
Sugar	56
Salt	1.45
Preventol	0.1
Cellulose	1.0
Dielectric Parameters	f=025MU=
Target Value	f=835MHz ε=41.5 σ=0.9

Table 6: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body)835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97

6. LABORATORY ENVIRONMENT

Table 7: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C				
Relative humidity	Min. = 30%, Max. = 70%				
Ground system resistance	< 0.5 Ω				
Ambient noise is checked and found very low and in compliance with requirement of standards.					
Reflection of surrounding objects is minimized and in compliance with requirement of standards.					

No. RZA2008-1258FCC Page 21of 90

7. CHARACTERISTICS OF THE TEST

7.1. Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of 2.0 W/kg as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

7.2. Applicable Measurement Standards

BS EN 62209-1:2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human head Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.

IEC 62209-2: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30MHz to 6GHz Handheld and Body-Mounted Devices used in close proximity to the body.

8. CONDUCTED OUTPUT POWER MEASUREMENT

8.1. Summary

During the process of testing, the EUT was controlled via Digital Radio Communication tester to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and with in 5% than EMI measurement.

8.2. Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 12 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 0.21dB.

8.3. Conducted Power

8.3.1. Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured .The measurements were done both before and after SAR tests for each test band.

8.3.2. Measurement result

Table 8: Conducted Power Measurement Results

	Conducted Power					
CDMA Cellular (RC3)	Channel 777	Channel 384	Channel 1013			
	(848.31MHz)	(836.52MHz)	(824.7MHz)			
Before Test (dBm)	24.2	24.1	24.2			
After Test (dBm)	24.1	24.1	24.1			
	Conducted Power					
CDMA Cellular (RC1)	Channel 777	Channel 384	Channel 1013			
	(848.31MHz)	(836.52MHz)	(824.7MHz)			
Before Test (dBm)	24.2	24.1	24.2			
After Test (dBm)	24.1	24.1	24.1			

No. RZA2008-1258FCC Page 23of 90

9. TEST RESULTS

(Brain)

(Body)

9.1. Dielectric Performance

Table 9: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 22.5 °C and relative humidity 51%.Liquid temperature during the test: 22.3°CFrequencyTargetMeasurementDifference(MHz)valuevaluepercentage835Permittivity ε_r41.5041.38-0.29%

0.93

1.00

3.33

3.09

%

%

Table 10: Dielectric Performance of Body Tissue Simulating Liquid

0.90

0.97

Conductivity **σ**

Conductivity **o**

Measurement is made at temperature 22.5 °C and relative humidity 51%. Liquid temperature during the test: 22.3°C **Frequency Target** Measurement Difference (MHz) value value percentage 55.58 0.69 % 55.20 835 Permittivity ε_r

9.2. System Validation Results

Table 11: System Validation

Measurement is made at temperature 23.2 °C, relative humidity 50%, and input power 250 mW.								
Liquid temperature during the test: 22.3°C								
Liquid	Liquid Frequency Permittivity ε Conductivity σ (S/m)							
parameters	835MHz		41.38		0.93			
Verification results	_	Target value (W/kg)		Measurement value (W/kg)		Difference percentage		
	Frequency	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1g Average	
	835MHz	1.56	2.43	1.53	2.34	-1.92%	-3.70%	

Note:

- 1. Target Values used derive from the SPEAG calibration certificate and 250 mW is used as feeding power to the validation dipole (SPEAG using).
- 2. The graph results see ANNEX D.

No. RZA2008-1258FCC Page 24of 90

9.3. Summary of Measurement Results

Table 12: SAR Values (CDMA Cellular)

Liquid Temperature: 22.5℃					
Limit of SAR (W/kg)		10 g Average	1 g Average	Power Drift (dB)	
		2.0	1.6	± 0.21	Graph
Different Test Position	Channel	Measurement	Measurement Result(W/kg)		Results
Different fest Position	Chamilei	10 g Average	1 g Average	Drift(dB)	
	Tes	st position of He	ad		
	High	0.731	1.120	0.062	Figure 8
Left hand, Touch cheek	Middle	0.671	1.020	0.191	Figure 10
	Low	0.799	1.210	0.116	Figure 12
	High	0.312	0.447	-0.118	Figure 14
Left hand, Tilt 15 Degree	Middle	0.321	0.458	0.101	Figure 16
	Low	0.377	0.536	0.098	Figure 18
	High	0.730	1.080	-0.078	Figure 20
Right hand, Touch cheek	Middle	0.701	1.030	-0.074	Figure 22
	Low	0.796	1.180	-0.044	Figure 24
	High	0.356	0.508	-0.025	Figure 26
Right hand, Tilt 15 Degree	Middle	0.373	0.532	-0.016	Figure 28
	Low	0.412	0.585	-0.193	Figure 30
	Test positio	n of Body (Dista	nce 15mm)		
	High	0.685	0.978	0.036	Figure 32
Towards Ground	Middle	0.786	1.110	-0.085	Figure 34
	Low	0.848	1.180	-0.073	Figure 36
	High	0.362	0.517	-0.068	Figure 38
Towards Phantom	Middle	0.407	0.582	-0.028	Figure 40
	Low	0.415	0.589	0.093	Figure 42

Note: 1. The value with blue color is the maximum SAR Value of each test band.

9.4. Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 7.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 7.1 of this test report.

^{2.} Tests in body position were performed with 15 mm air gap between DUT and Phantom to simulate the use of a non-metallic belt-clip or holster.

No. RZA2008-1258FCC Page 25of 90

10. MEASUREMENT UNCERTAINTY

No.	а	Type	С	d	e=f(d、k)	f	h=c×f / e	k	
	Uncertainty Component		Tol. (±%)	Prob. Dist	Div.	c ₁ (1g)	1g u (± %)	V ₁	
1	System repetivity	Α	0.5	N	1	1	0.5	9	
	Measurement system								
2	Probe Calibration	В	5	N	2	1	2.5	∞	
3	Axial isotropy	В	4.7	R	$\sqrt{3}$	(1-cp)	4.3	8	
4	Hemisphere Isotropy	В	9.4	R	$\sqrt{3}$	$\sqrt{C_P}$		8	
5	Boundary Effect	В	0.4	R	$\sqrt{3}$	1	0.23	∞	
6	Linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8	
7	System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.6	8	
8	Readout Electronics	В	1.0	N	1	1	1.0	8	
9	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	8	
10	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8	
11	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8	
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	8	
		Te	st Sample	Related					
13	Test Sample Positioning	Α	4.9	N	1	1	4.9	N-1	
14	Device Holder Uncertainty	Α	6.1	N	1	1	6.1	N-1	
15	Output Power Variation-SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	8	
	P	hanton	n and Tiss	ue Parame	eters				
16	Phantom Uncertainty(shape and thickness tolerances)	В	1.0	R	$\sqrt{3}$	1	0.6	8	
17	Liquid Conductivity-deviation from target values	В	5.0	R	$\sqrt{3}$	0.64	1.7	8	
18	Liquid Conductivity-measurement uncertainty	В	5.0	N	1	0.64	1.7	М	
19	Liquid Permittivity-deviation from target values	В	5.0	R	$\sqrt{3}$	0.6	1.7	8	
20	Liquid Permittivity- measurement uncertainty	В	5.0	N	1	0.6	1.7	M	
	Combined Standard Uncertainty			RSS			11.25		
	Expanded Uncertainty (95 % CONFIDENCE INTERVAL)			K=2			22.5		

No. RZA2008-1258FCC Page 26of 90

11. MAIN TEST INSTRUMENTS

Table 13: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	Agilent 8753E	US37390326	September 14, 2008	One year	
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested		
03	Power meter	Agilent E4417A	GB41291714	March 14, 2008	One year	
04	Power sensor	Agilent 8481H	MY41091316	March 14, 2008	One year	
05	Signal Generator	HP 8341B	2730A00804	September 14, 2008	One year	
06	Amplifier	IXA-020	0401	No Calibration Requested		
07	BTS	E5515C	GB46490218	September 14, 2008	One year	
08	E-field Probe	ET3DV6	1531	January 29, 2008	One year	
09	DAE	DAE4	452	July 21, 2008	One year	
10	Validation Kit 835MHz	D835V2	443	December 9, 2007	One year	

12. TEST PERIOD

The test is performed from September 21, 2008 to September 22, 2008.

13. TEST LOCATION

The test is performed at TA Technology (Shanghai) Co., Ltd.

*****END OF REPORT BODY*****

No. RZA2008-1258FCC Page 27of 90

ANNEX A: MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm x 15 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- Step 3: Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 7 x 7x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x ~ y and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

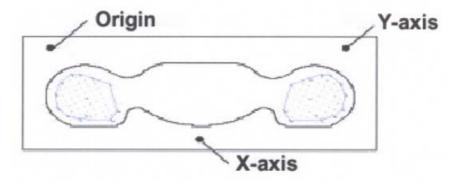
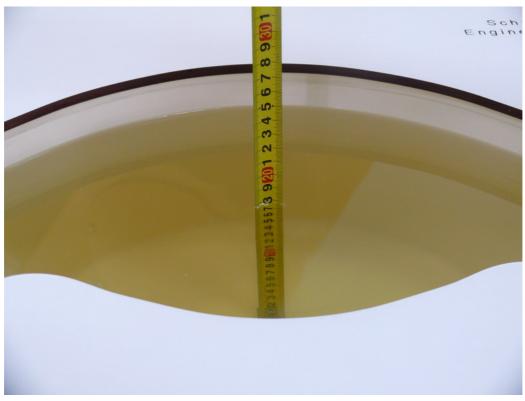
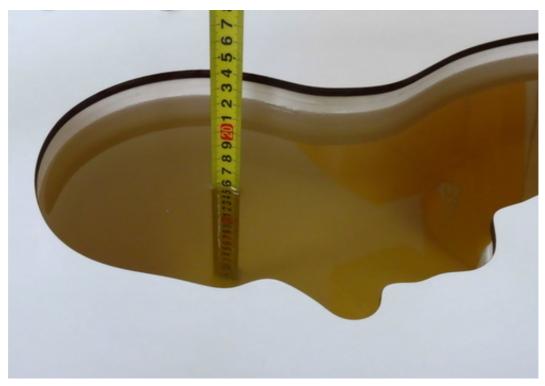



Figure 7 SAR Measurement Points in Area Scan

ANNEX B: TEST LAYOUT



Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the Flat Phantom (835 MHz)

No. RZA2008-1258FCC Page 29of 90

Picture 3: Liquid depth in the head Phantom (835 MHz)

No. RZA2008-1258FCC Page 30of 90

ANNEX C: GRAPH RESULTS

CDMA Cellular Left Cheek High

Communication System: CDMA Cellular; Frequency: 848.31 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.939 \text{ mho/m}$; $\varepsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

mW/g

0.310

0.085

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.27 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.731 mW/g Maximum value of SAR (measured) = 1.21 mW/g

1.21 0.986 0.761 0.536

Figure 8 Left Hand Touch Cheek CDMA Cellular Channel 777

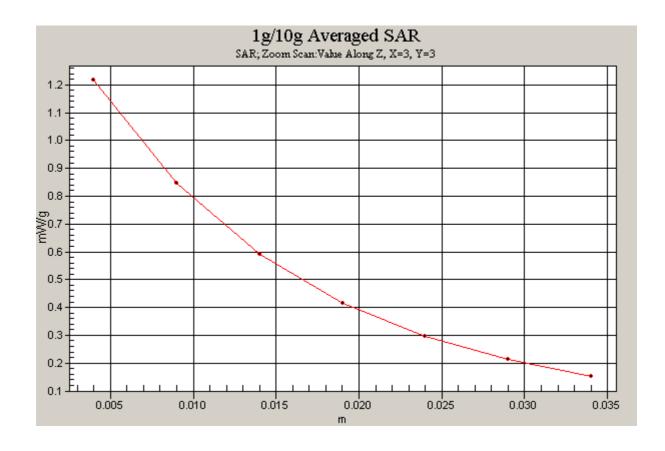


Figure 9 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 777)

No. RZA2008-1258FCC Page 32of 90

CDMA Cellular Left Cheek Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.929$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.10 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.4 V/m; Power Drift = 0.191 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.671 mW/g

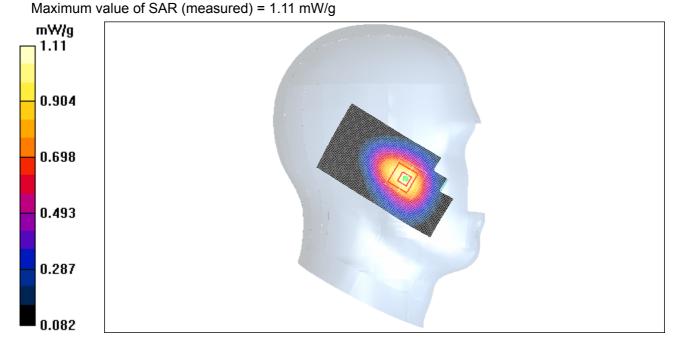


Figure 10 Left Hand Touch Cheek CDMA Cellular Channel 384



Figure 11 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 384)

No. RZA2008-1258FCC Page 34of 90

CDMA Cellular Left Cheek Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.913$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.32 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.116 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.799 mW/g

Maximum value of SAR (measured) = 1.34 mW/g g

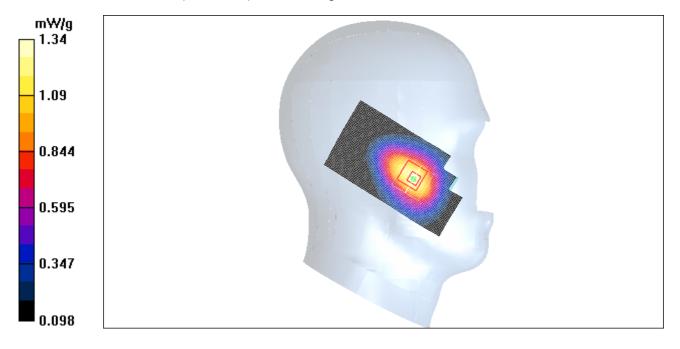


Figure 12 Left Hand Touch Cheek CDMA Cellular Channel 1013

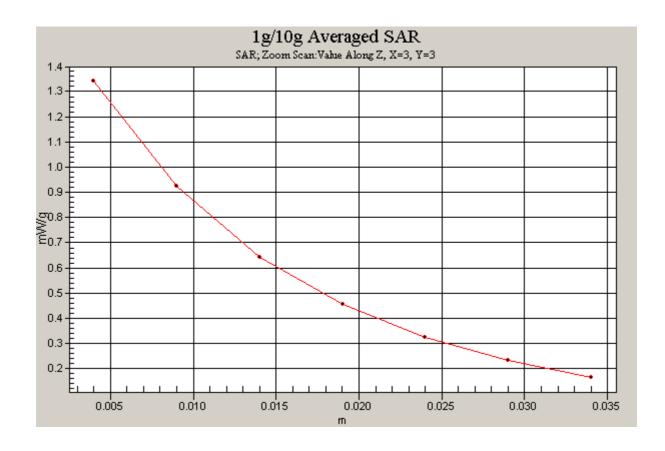


Figure 13 Z-Scan at power reference point (Left Hand Touch Cheek CDMA Cellular Channel 1013)

CDMA Cellular Left Tilt High

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.939 \text{ mho/m}$; $\varepsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Tilt High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.502 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = -0.118 dB

Peak SAR (extrapolated) = 0.616 W/kg

SAR(1 g) = 0.447 mW/g; SAR(10 g) = 0.312 mW/g

Maximum value of SAR (measured) = 0.480 mW/g

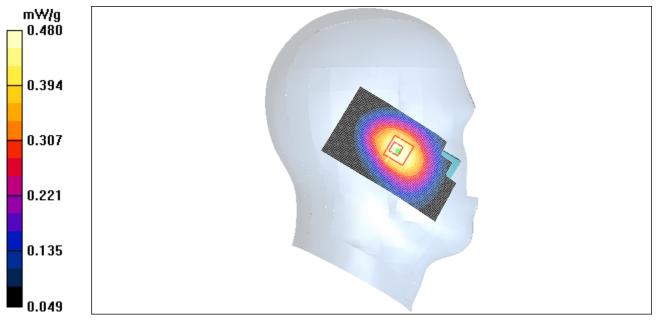


Figure 14 Left Hand Tilt 15° CDMA Cellular Channel 777

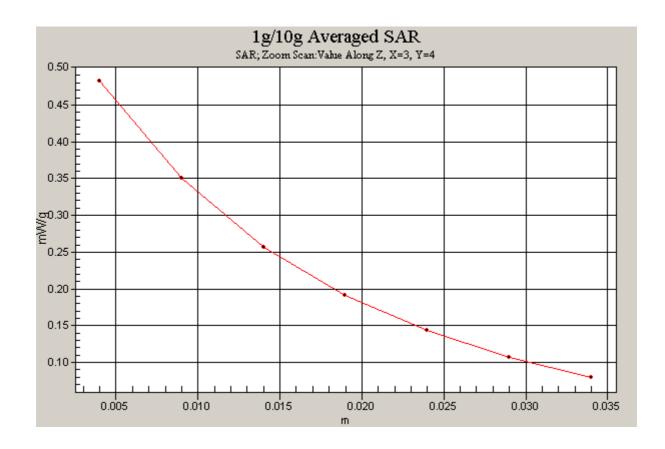


Figure 15 Z-Scan at power reference point (Left Hand Tilt 15° CDMA Cellular Channel 777)

No. RZA2008-1258FCC Page 38of 90

CDMA Cellular Left Tilt Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.929$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.482 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = 0.101 dB

Peak SAR (extrapolated) = 0.623 W/kg

SAR(1 g) = 0.458 mW/g; SAR(10 g) = 0.321 mW/g

Maximum value of SAR (measured) = 0.492 mW/g

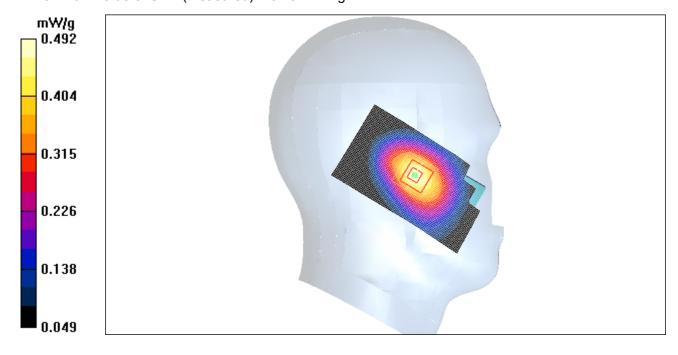


Figure 16 Left Hand Tilt 15° CDMA Cellular Channel 384

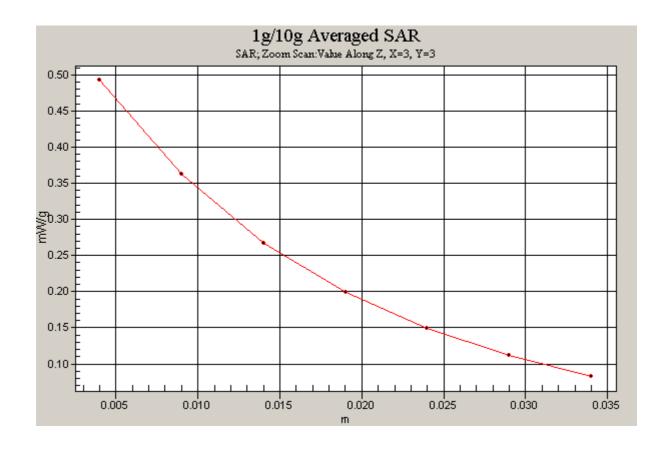


Figure 17 Z-Scan at power reference point (Left Hand Tilt 15° CDMA Cellular Channel 384)

No. RZA2008-1258FCC Page 40of 90

CDMA Cellular Left Tilt Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.913$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.571 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.9 V/m; Power Drift = 0.098 dB

Peak SAR (extrapolated) = 0.733 W/kg

SAR(1 g) = 0.536 mW/g; SAR(10 g) = 0.377 mW/g

Maximum value of SAR (measured) = 0.580 mW/g

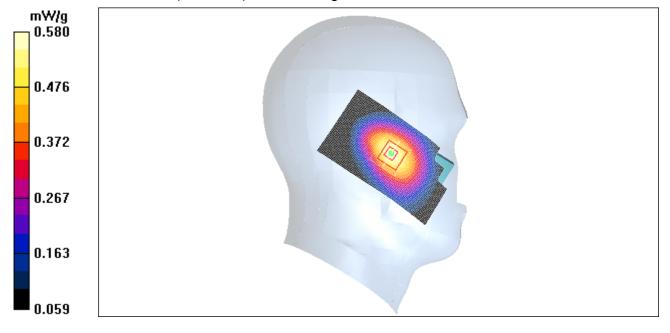


Figure 18 Left Hand Tilt 15° CDMA Cellular Channel 1013

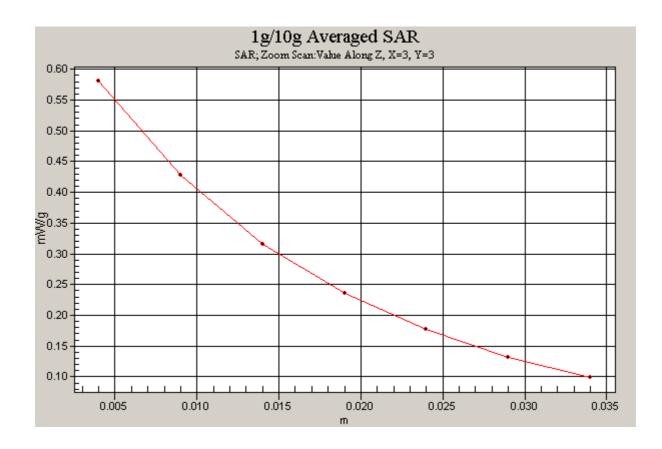


Figure 19 Z-Scan at power reference point (Left Hand Tilt 15° CDMA Cellular Channel 1013)

No. RZA2008-1258FCC Page 42of 90

CDMA Cellular Right Cheek High

Communication System: CDMA Cellular; Frequency: 848.31 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.939 \text{ mho/m}$; $\varepsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm.

Maximum value of SAR (interpolated) = 1.31 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.730 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

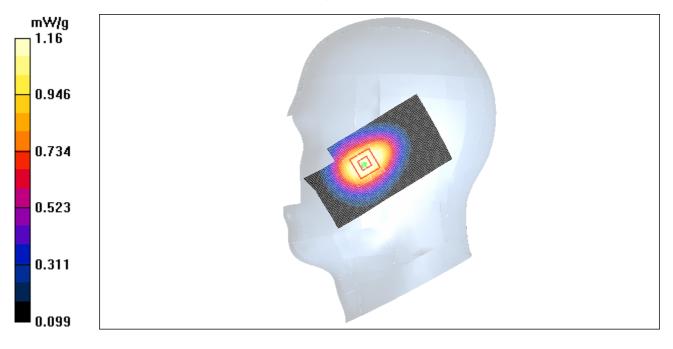


Figure 20 Right Hand Touch Cheek CDMA Cellular Channel 777

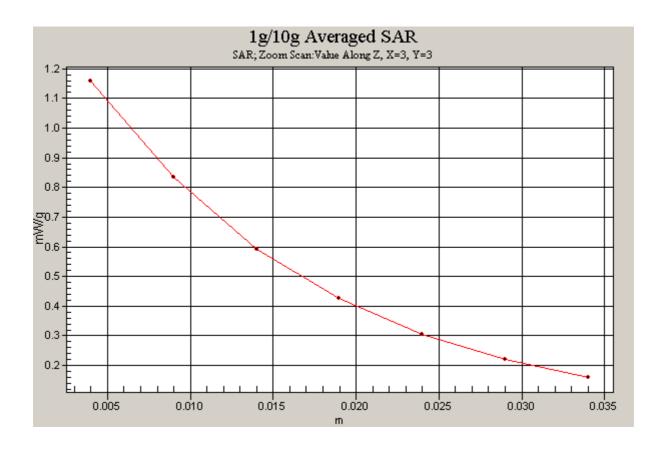


Figure 21 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 777)

No. RZA2008-1258FCC Page 44of 90

CDMA Cellular Right Cheek Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.929$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.17 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = -0.074 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.701 mW/g

Maximum value of SAR (measured) = 1.13 mW/g

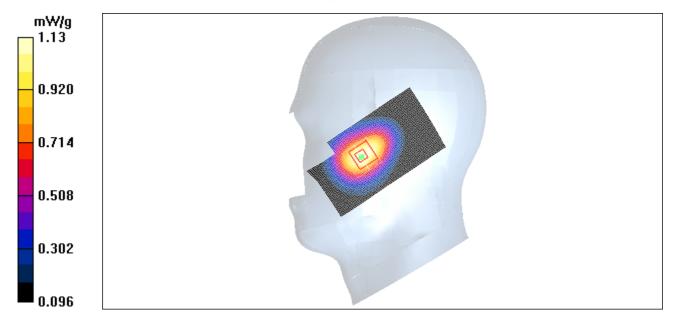


Figure 22 Right Hand Touch Cheek CDMA Cellular Channel 384

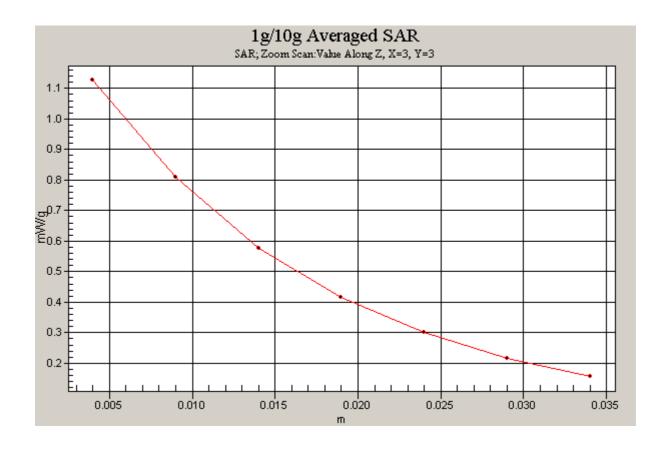


Figure 23 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 384)

No. RZA2008-1258FCC Page 46of 90

CDMA Cellular Right Cheek Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.913$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.35 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = -0.044 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.796 mW/g

Maximum value of SAR (measured) = 1.28 mW/g

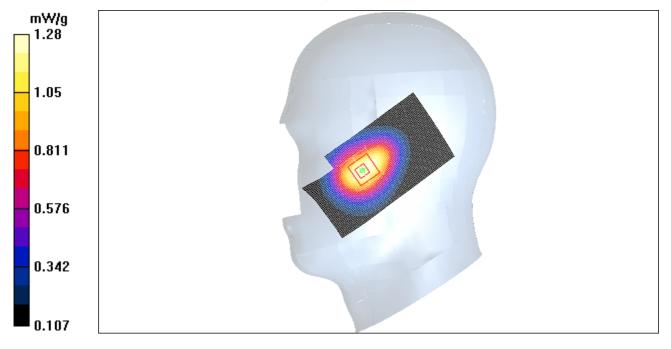


Figure 24 Right Hand Touch Cheek CDMA Cellular Channel 1013

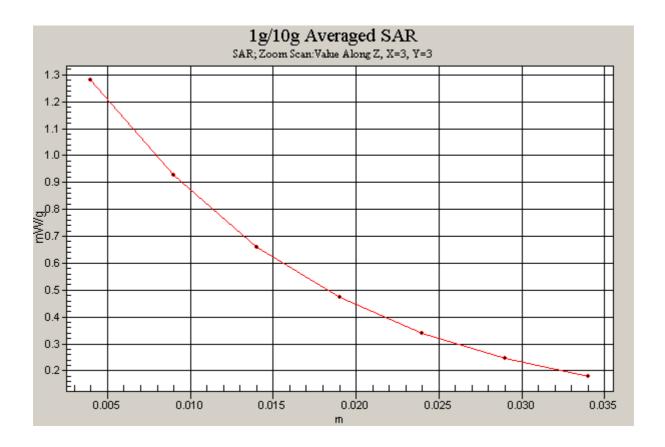


Figure 25 Z-Scan at power reference point (Right Hand Touch Cheek CDMA Cellular Channel 1013)

No. RZA2008-1258FCC Page 48of 90

CDMA Cellular Right Tilt High

Communication System: CDMA Cellular; Frequency: 848.31 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.939 \text{ mho/m}$; $\varepsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Tilt High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.576 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.4 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.685 W/kg

SAR(1 g) = 0.508 mW/g; SAR(10 g) = 0.356 mW/g

Maximum value of SAR (measured) = 0.540 mW/g

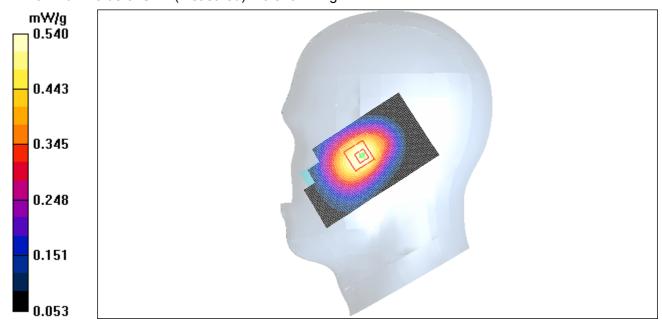


Figure 26 Right Hand Tilt 15° CDMA Cellular Channel 777

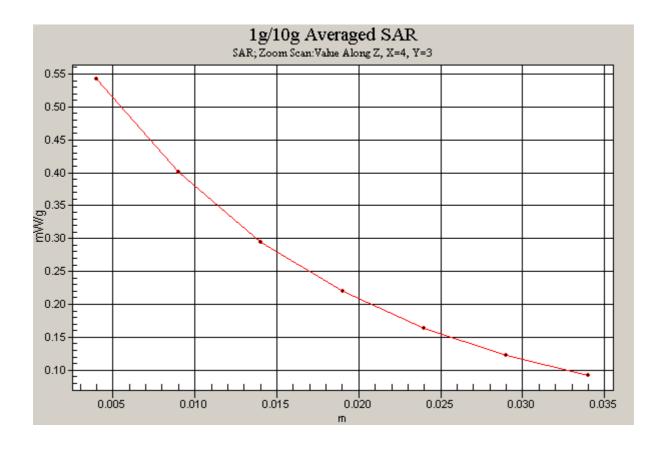


Figure 27 Z-Scan at power reference point (Right Hand Tilt 15° CDMA Cellular Channel 777)

No. RZA2008-1258FCC Page 50of 90

CDMA Cellular Right Tilt Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.929 \text{ mho/m}$; $\epsilon_r = 41.4$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.574 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.3 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.723 W/kg

SAR(1 g) = 0.532 mW/g; SAR(10 g) = 0.373 mW/g.

Maximum value of SAR (measured) = 0.572 mW/g

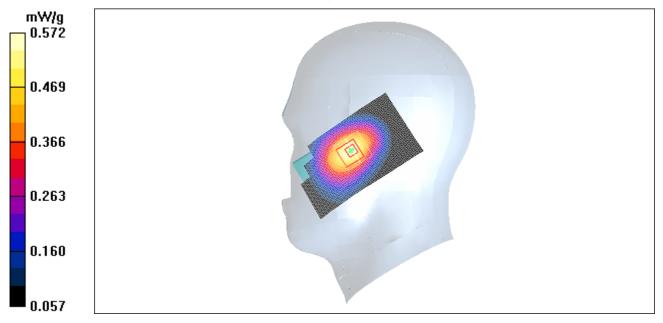


Figure 28 Right Hand Tilt 15° CDMA Cellular Channel 384

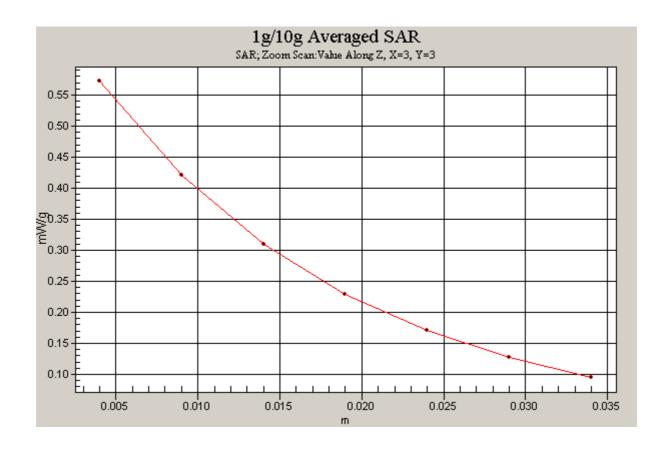


Figure 29 Z-Scan at power reference point (Right Hand Tilt 15° CDMA Cellular Channel 384)

No. RZA2008-1258FCC Page 52of 90

CDMA Cellular Right Tilt Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.913$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

Electronics: DAE4 Sn452;

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.637 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = -0.193 dB

Peak SAR (extrapolated) = 0.787 W/kg

SAR(1 g) = 0.585 mW/g; SAR(10 g) = 0.412 mW/g

Maximum value of SAR (measured) = 0.625 mW/g

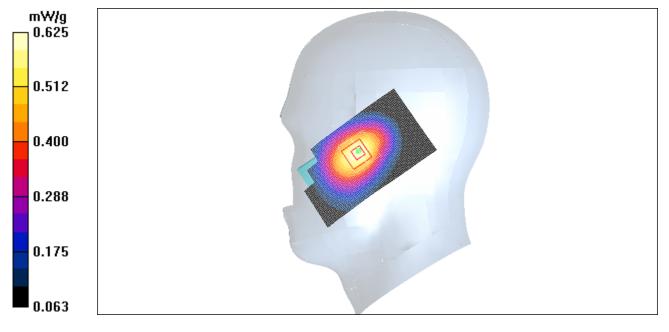


Figure 30 Right Hand Tilt 15° CDMA Cellular Channel 1013

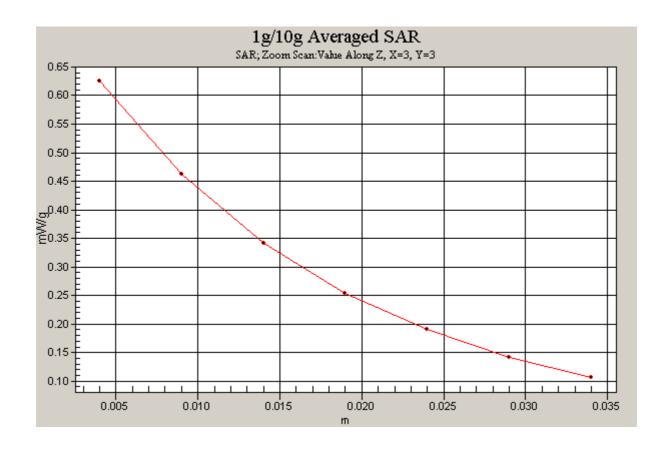


Figure 31 Z-Scan at power reference point (Right Hand Tilt 15° CDMA Cellular Channel 1013)

No. RZA2008-1258FCC Page 54of 90

CDMA Cellular Towards Ground High

Communication System: CDMA Cellular; Frequency: 848.31 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 1.01 \text{ mho/m}$; $\varepsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE4 Sn452;

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.15 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.978 mW/g; SAR(10 g) = 0.685 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

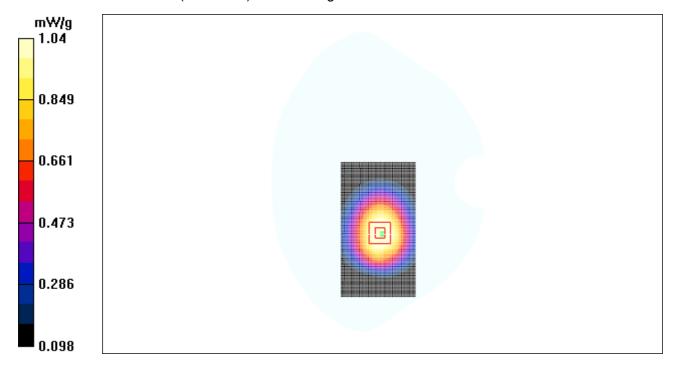


Figure 32 Body, Towards Ground, CDMA Cellular Channel 777

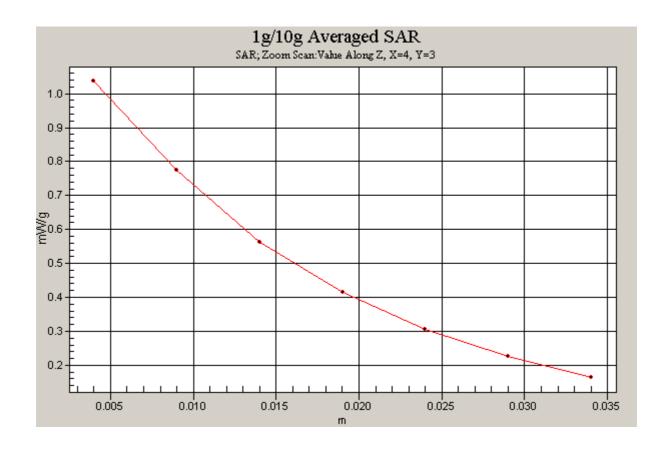


Figure 33 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 777)

No. RZA2008-1258FCC Page 56of 90

CDMA Cellular Towards Ground Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.999$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE4 Sn452;

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.17 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = -0.085 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.786 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

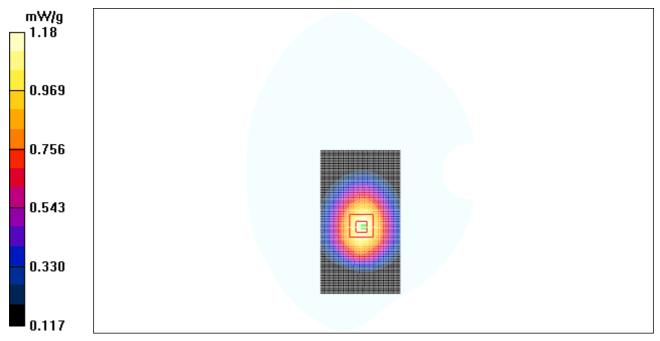


Figure 34 Body, Towards Ground, CDMA Cellular Channel 384

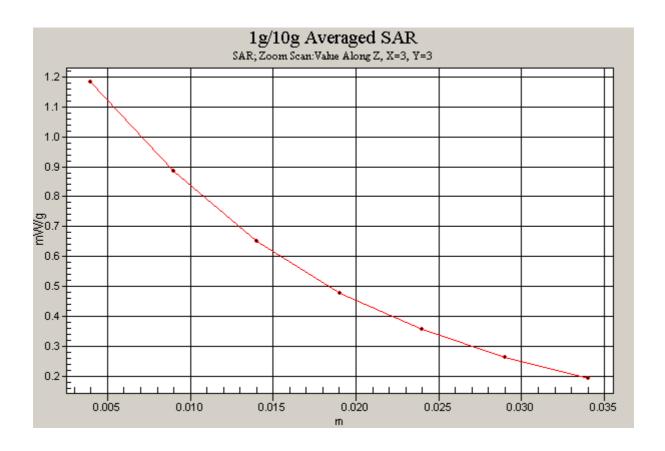


Figure 35 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 384)

No. RZA2008-1258FCC Page 58of 90

CDMA Cellular Towards Ground Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.985 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE4 Sn452;

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.31 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.0 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.848 mW/g Maximum value of SAR (measured) = 1.27 mW/g

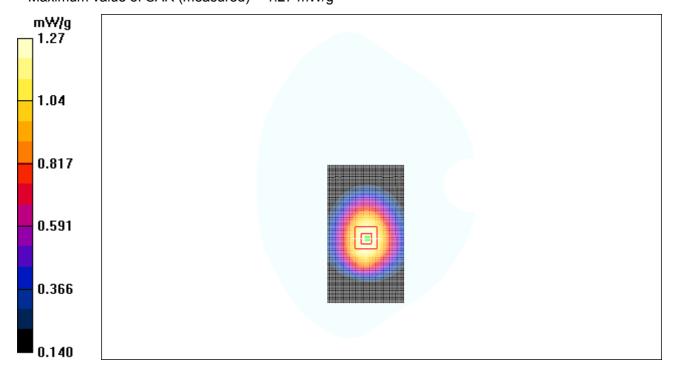


Figure 36 Body, Towards Ground, CDMA Cellular Channel 1013

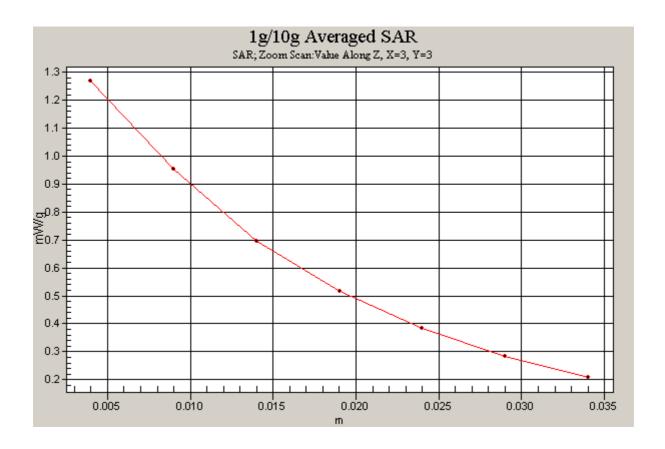


Figure 37 Z-Scan at power reference point (Body, Towards Ground, CDMA Cellular Channel 1013)

No. RZA2008-1258FCC Page 60of 90

CDMA Cellular Towards Phantom High

Communication System: CDMA Cellular; Frequency: 848.31 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 1.01 \text{ mho/m}$; $\varepsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE4 Sn452;

Towards Phantom High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.577 mW/g

Towards Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.77 V/m; Power Drift = -0.068 dB

Peak SAR (extrapolated) = 0.672 W/kg

SAR(1 g) = 0.517 mW/g; SAR(10 g) = 0.362 mW/g

Maximum value of SAR (measured) = 0.555 mW/g

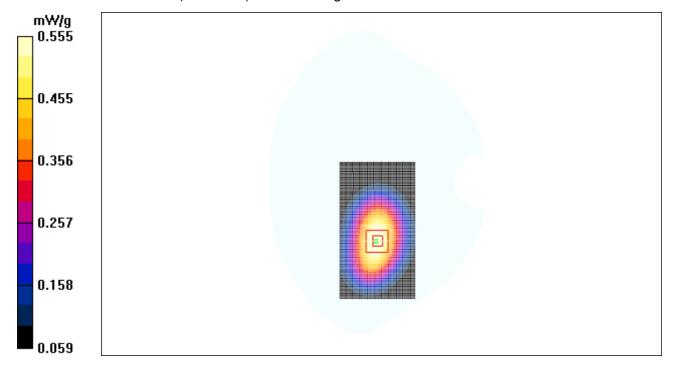


Figure 38 Body, Towards Phantom, CDMA Cellular Channel 777

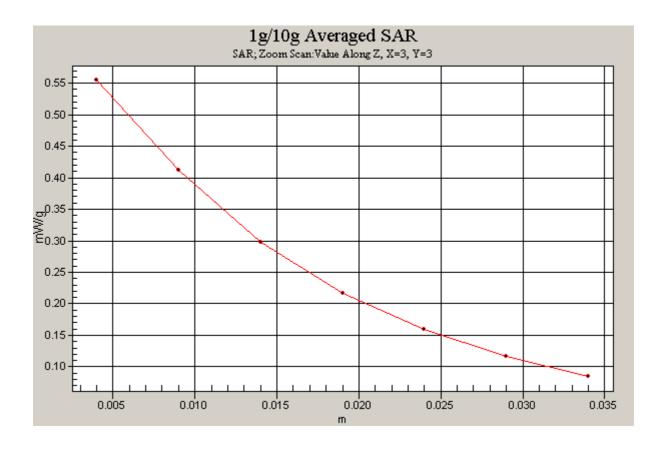


Figure 39 Z-Scan at power reference point (Body, Towards Phantom, CDMA Cellular Channel 777)

No. RZA2008-1258FCC Page 62of 90

CDMA Cellular Towards Phantom Middle

Communication System: CDMA Cellular; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.999$ mho/m; $\varepsilon_r = 55.6$; $\rho = 1000$ kg/m³

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE4 Sn452;

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.636 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.58 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.763 W/kg

SAR(1 g) = 0.582 mW/g; SAR(10 g) = 0.407 mW/g

Maximum value of SAR (measured) = 0.620 mW/g

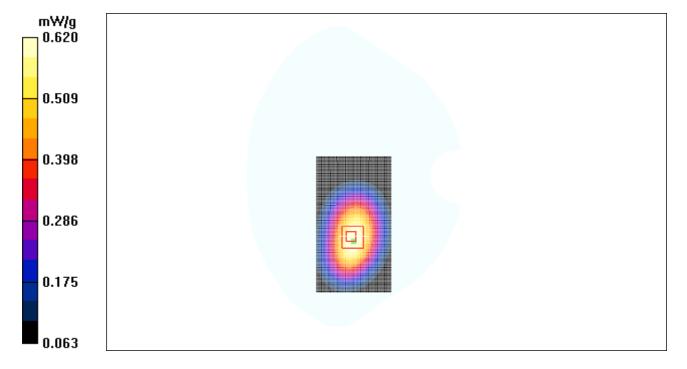


Figure 40 Body, Towards Phantom, CDMA Cellular Channel 384

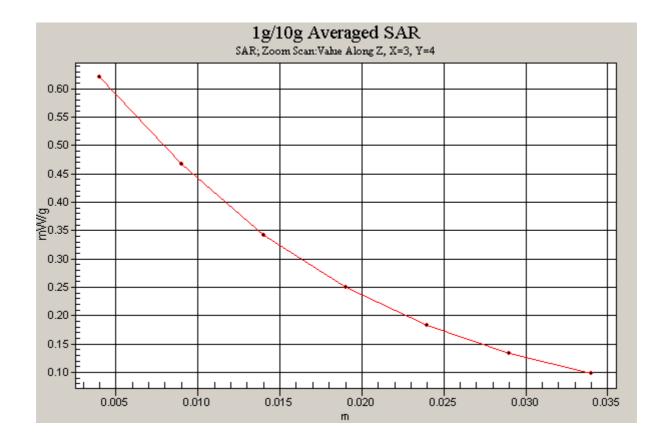


Figure 41 Z-Scan at power reference point (Body, Towards Phantom, CDMA Cellular Channel 384)

No. RZA2008-1258FCC Page 64of 90

CDMA Cellular Towards Phantom Low

Communication System: CDMA Cellular; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; $\sigma = 0.985 \text{ mho/m}$; $\epsilon_r = 55.7$; $\rho = 1000 \text{ kg/m}^3$

Probe: ET3DV6 - SN1531; ConvF(6.52, 6.52, 6.52);

Electronics: DAE4 Sn452;

Towards Phantom Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.643 mW/g

Towards Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.95 V/m; Power Drift = 0.093 dB

Peak SAR (extrapolated) = 0.764 W/kg

SAR(1 g) = 0.589 mW/g; SAR(10 g) = 0.415 mW/g

Maximum value of SAR (measured) = 0.625 mW/g

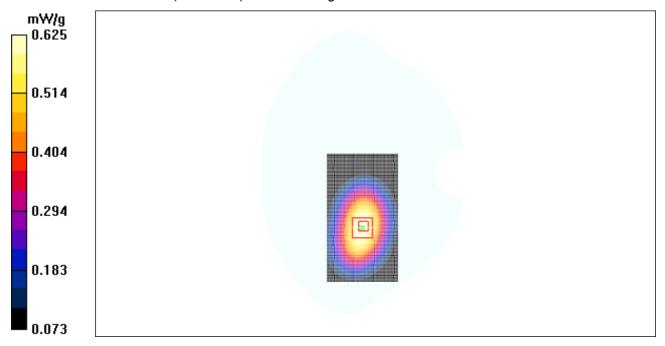


Figure 42 Body, Towards Phantom, CDMA Cellular Channel 1013

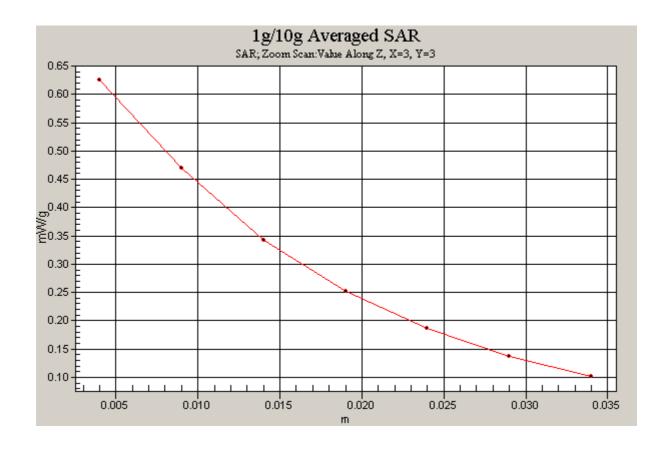


Figure 43 Z-Scan at power reference point (Body, Towards Phantom, CDMA Cellular Channel 1013)

No. RZA2008-1258FCC Page 66of 90

ANNEX D: SYSTEM VALIDATION RESULTS

System Performance Check at 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 835MHz

Medium parameters used: f = 835 MHz; σ = 0. 93 mho/m; ε_r = 41.38; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1531; ConvF(6.85, 6.85, 6.85);

- Electronics: DAE4 Sn452;

d=15mm, Pin=250mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.54 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.0 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.52 mW/g

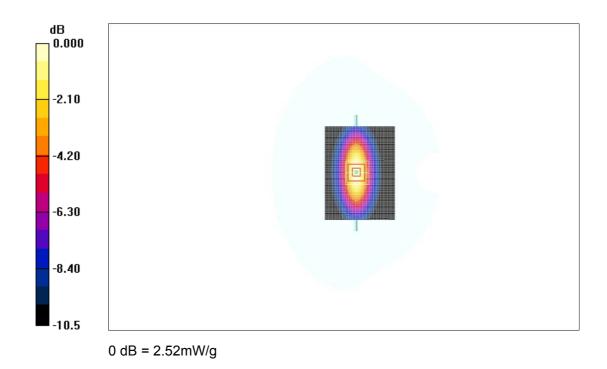
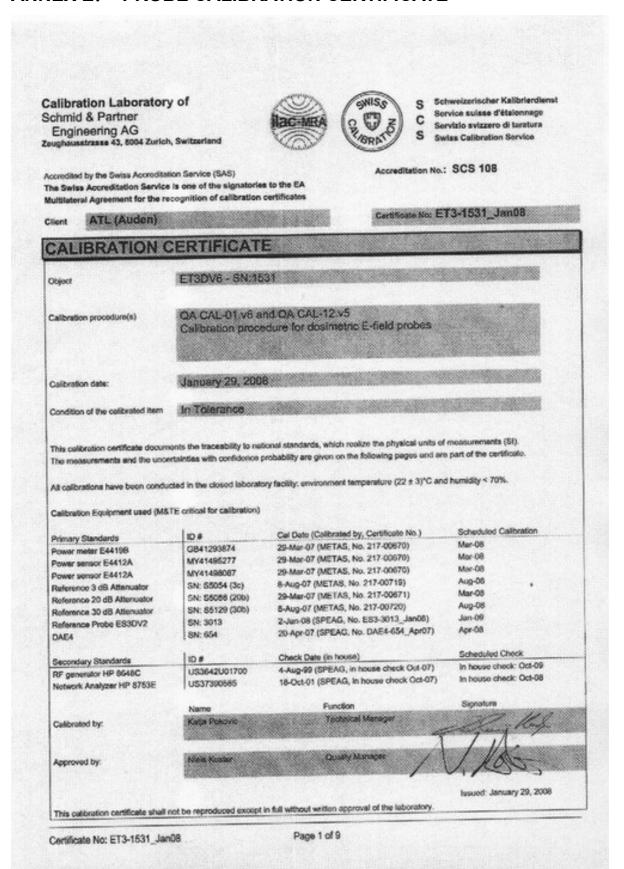



Figure 44 System Performance Check 835MHz 250mW

No. RZA2008-1258FCC Page 67of 90

ANNEX E: PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di faratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the aignatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z

DCP diode compression point

Polarization

representation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 8 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1531_Jan08

Page 69of 90

ET3DV6 SN:1531

January 29, 2008

Probe ET3DV6

SN:1531

Manufactured:

Last calibrated: Recalibrated: July 15, 2000

January 22, 2007 January 29, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1531

January 29,2008

DASY - Parameters of Probe: ET3DV6 SN:1531

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.52 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.66 ± 10.1%	μV/(V/m) ²	DCP Y	94 mV
NormZ	1.71 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TBL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR 1%]	Without Correction Algorithm	8.3	4.5
SAR [%]	With Correction Algorithm	0.7	0.0

TSL

1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm	
SAR. [%]	Without Correction Algorithm	11.9	8.0	
SAR. [%]	With Correction Algorithm	0.5	0.1	

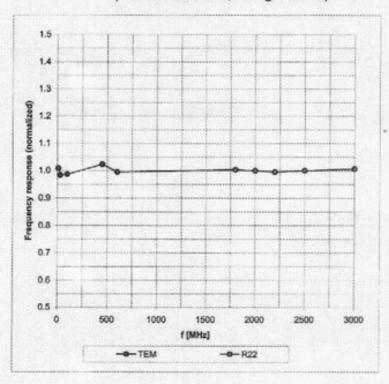
Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 6).

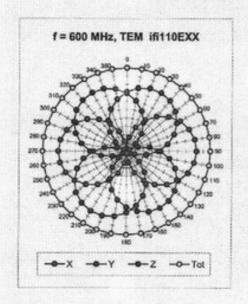

^{*} Numerical linearization parameter: uncertainty not required.

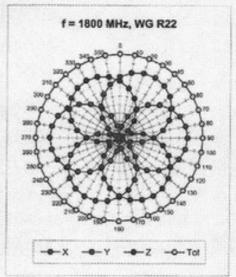
ET3DV6 SN:1531

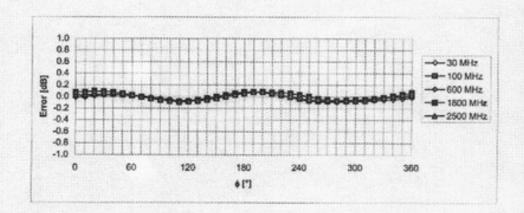
January 29, 2008

Frequency Response of E-Field

(TEM-Cell:Ifi110 EXX, Waveguide: R22)

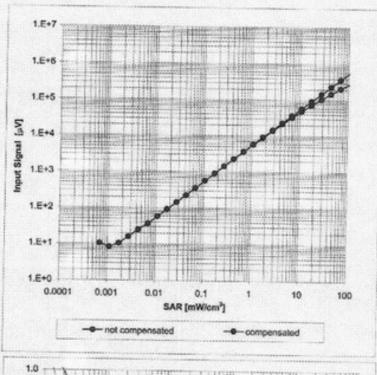


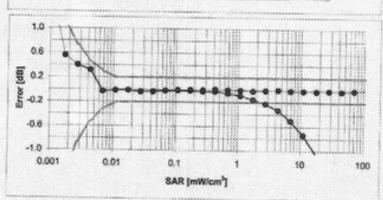

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



January 29, 2008

Receiving Pattern (\$\phi\$), \$\partial = 0°

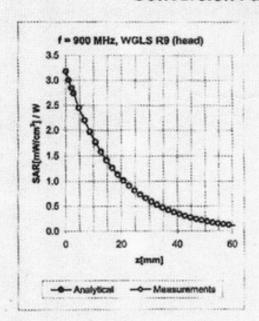


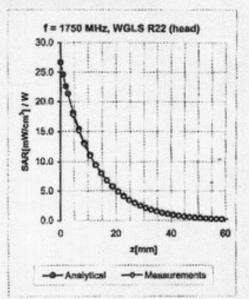

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ET3DV6 SN:1531

January 29, 2008

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

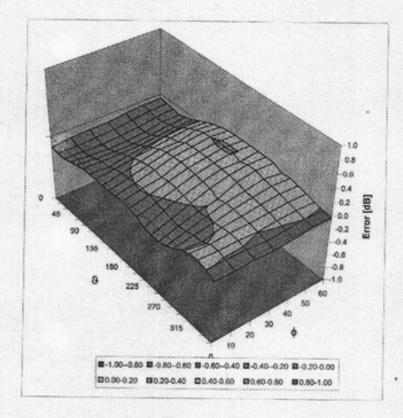



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6 SN:1531

January 29,2008

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.27	2.89	6.85 ± 11.0% (k=2)
1750	±50/±100	Head	40.1 ± 5%	1.37 ± 5%	0.52	2.56	5.42 ± 11.0% (k=2)
1950	±50/±100	Head	40.0 ± 5%	1.40 ± 5%	0.49	2.89	5.15 ± 11.0% (k=2)
900	±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.35	2.82	6.52 ± 11.0% (k=2)
1750	±50/±100	Body	53.4 ± 5%	1,49 ± 5%	0.56	2.68	4.97 ± 11.0% (k=2)
1950	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.88	2.07	4.64 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.66	2.16	4.10 ± 11.8% (k=2)

 $^{^{\}circ}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the Com/F uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6 SN:1531

January 29, 2008

Deviation from Isotropy in HSL Error (6, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1531_Jan08

Page 9 of 9

ANNEX F: D835V2 DIPOLE CALIBRATION CERTIFICATE

Calibration Laboratory of Schweizerischer Kalibrierdienst Schmid & Partner Service suisse d'étalonnage C Engineering AG Servizio svizzero di taratura Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation Accreditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC China Certificate No: D835V2-443_Dec07 **CALIBRATION CERTIFICATE** D835V2-SN: 443 Object QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: December 9, 2007 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted at an environment temperature (22±3)6C and humidity<70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Data (Calibrated by, Certification NO.) Scheduled Calibration Power meter EPM-442A GB37480704 13-Sep-07 (METAS, NO. 217-00608) Sep-08 Power sensor 8481A US37292783 13-Sep-07 (METAS, NO. 217-00608) Sep-08 SN:5086 (20g.) 12-Jul-07 (METAS, NO. 217-00591) Reference 20 dB Attenuator Jul-08 Reference 10 dB Attenuator SN:5047_2 (10r) 12-Jul-07 (METAS, NO. 217-00591) Jul-08 DAE4 30-Jan-07 (SPEAG, NO.DAE4-601_Jan07) SN:601 Jan-08 Reference Probe ET3DV8 (HF) SN: 1507 19-Sep-07 (SPEAG, NO. ET3-1507_Sep07) Sep-08 Secondary Standards ID# Check Data (in house) Scheduled Calibration Power sensor HP 8481A MY41092317 18-Oct-02(SPEAG, in house check Oct-07) In house check: Oct-09 RF generator Aglient E4421B MY41000878 11-May-05(SPEAG, in house check Nov-07) In house check: Nov-09 Network Analyzer HP 8753E US37390585S4208 18-Oct-01(SPEAG, in house check Oct-07) In house check: Oct-08 Name Function Signature Calibrated by: Marcel Fehr Laboratory Technician Approved by: Katja Pokovic Technical Director Issued: December 10, 2007 This calibration certificate shall not be reported except in full without written approval of the laboratory. Certificate No: D835V2-443_Dec07 Page 1 of 6

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-1258FCC

Page 77of 90

Calibration Laboratory of Schmid & Partner Engineering AG Zeophaustresse 43, 8004 Zerich, Switzerland

S Schweizerlischer Kalibrierdiens: C Service sulese d'étalonnage Servizio svizzero di tarsiura Swiss Celibration Service

Accreditation No.: SCS 108

Accredited by the Seise Federal Office of Motology and Accreditation.
The Series Accreditation Service is one of the signatories to the EA.
Multilateral Agreement for the recognition of calibration certificates.

Glossary:

TSL ConvF

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-443_Dec07

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom V4.9		
Distance Dipole Center - TSL	15 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	835 MHz ± 1 MHz		

Head TSL parameters The following parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0±0.2) °C	40.2±6%	0.89 mha/m ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C	_	-

SAR result with Head TSL

SAR averaged over 1 cm² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43mW/g
SAR normalized	normalized to 1W	9-72mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.70 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm* (10 g) of Head TSL	condition	
SAR measured	250 mW input power	158 mW/g
SAR normalized	normalized to 1W	6.24mW/g
SAR for nominal Head TSL perameters 1	normalized to 1W	6.31mW/g ± 16.5 % (k=2)

^{*}Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-1258FCC

Page 79of 90

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω - 6.8 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,402 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	September 3, 2001		

Certificate No: D835V2-443_Dec07

Page 4 of 6

DASY4 Validation Report for Head TSL

Date/Time: 9.12.2007 14:20:15

Test laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; serial: D835V2-SN: 443

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 835 MHz;

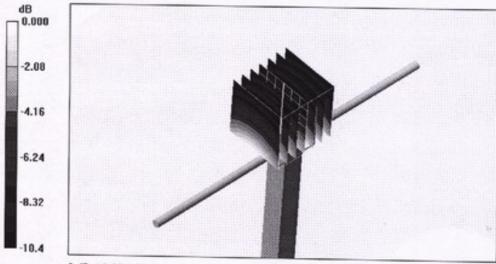
Medium parameters used: f=835 MHz; σ =0.89 mho/m; ϵ_r =40.2; ρ = 1000kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

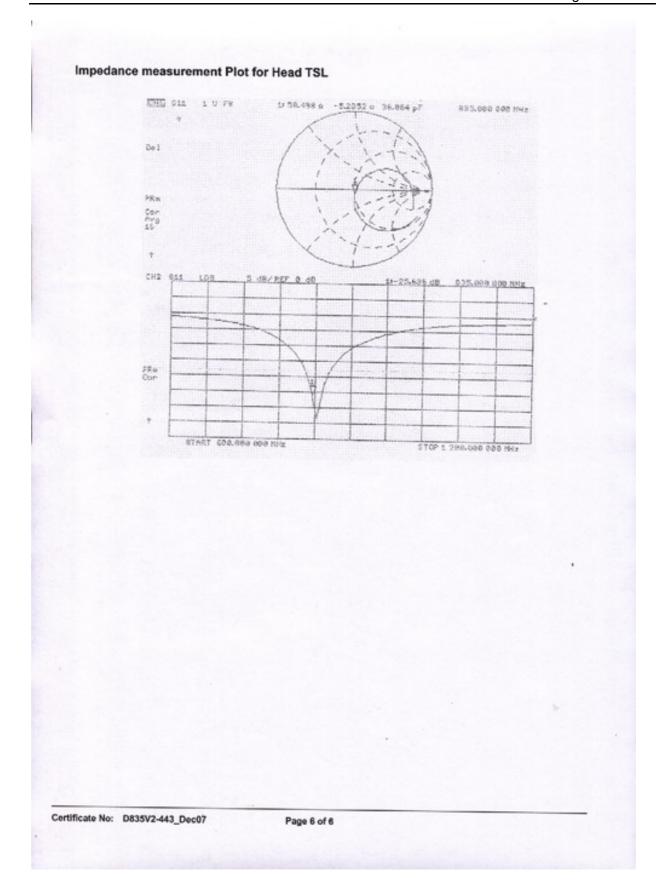
DASY4 Configuration:

- Probe: ET3DV6-SN1507(HF); ConvF(6.01,6.01,6.01); Calibrated: 19.9.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.1_2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172


Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.3 V/m; Power Drift = 0.015dB

Peak SAR (extrapolated) = 3.65 W/kg


SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.63 mW/g

0 dB = 2.63 mW/g

TA Technology (Shanghai) Co., Ltd. Test Report

ANNEX G: DAE4 CALIBRATION CERTIFICATE

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage C **Engineering AG** Servizio svizzero di taratura Zeughausstrasse 43, 8004 Zurich, Switzerland **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: DAE4-452 Jul08 Client TA (Auden) **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BA - SN: 452 Calibration procedure(s) QA CAL-06.v12 Calibration procedure for the data acquisition electronics (DAE) Calibration date: July 21, 2008 In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Primary Standards Cal Date (Certificate No.) Scheduled Calibration Fluke Process Calibrator Type 702 SN: 6295803 04-Oct-07 (No: 6467) Oct-08 Keithley Multimeter Type 2001 SN: 0810278 03-Oct-07 (No: 6465) Oct-08 Secondary Standards ID# Check Date (in house) Scheduled Check SE UMS 006 AB 1004 06-Jun-08 (in house check) Calibrator Box V1.1 In house check: Jun-09 Function Calibrated by: Andrea Guntli Technician R&D Director Approved by: Fin Bomholt Issued: July 21, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-452 Jul08

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

Glossary

DAE data acquisition electronics

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2008-1258FCC

Page 84of 90

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Y	Z
High Range	404.675 ± 0.1% (k=2)	404.426 ± 0.1% (k=2)	404.582 ± 0.1% (k=2)
Low Range	3.97902 ± 0.7% (k=2)	3.97676 ± 0.7% (k=2)	3.97703 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system 57 ° ±
--

Certificate No: DAE4-452_Jul08

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	199999.6	0.00
Channel X + Input	20000	20010.85	0.05
Channel X - Input	20000	-20007.22	0.04
Channel Y + Input	200000	199999.7	0.00
Channel Y + Input	20000	20004.64	0.02
Channel Y - Input	20000	-20007.87	0.04
Channel Z + Input	200000	199999.9	0.00
Channel Z + Input	20000	20006.37	0.03
Channel Z - Input	20000	-20004.56	0.02

Low Range	Input (μV)	Reading (μV)	Error (%)	
Channel X + Inpu	ıt 2000	2000.1	0.00	
Channel X + Inpu	ıt 200	200.31	0.16	
Channel X - Inpu	t 200	-200.05	0.03	
Channel Y + Inpi	ıt 2000	2000.1	0.00	
Channel Y + Inpu	ıt 200	200.32	0.16	
Channel Y - Inpu	t 200	-201.77	0.89	
Channel Z + Inpu	ıt 2000	1999.9	0.00	
Channel Z + Inpo	ıt 200	199.01	-0.50	
Channel Z - Inpu	t 200	-201.29	0.64	

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	4.04	3.25
	- 200	-2.86	-3.04
Channel Y	200	-8.82	-8.52
	- 200	6.51	7.21
Channel Z	200	10.37	10.27
	- 200	-12.69	-12.80

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.55	-0.94
Channel Y	200	0.77		2.38
Channel Z	200	-1.41	-0.39	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16118	16294
Channel Y	15879	15841
Channel Z	16155	16260

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MO

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.35	-1.09	1.93	0.35
Channel Y	-1.29	-2.07	-0.24	0.35
Channel Z	-0.68	-1.73	0.45	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)	
Channel X	0.2000	198.4	
Channel Y	0.2000	200.1	
Channel Z	0.2001	199.5	

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9