

Declaration of Electromagnetic Field Health Compliance

To whom it may concern,

As to the product <u>BTS3911B</u> made by Huawei Technologies Co., Ltd., we declare that it complies with the Basic restrictions/Reference levels for electric, magnetic and electromagnetic fields as specified in following standards(s):

Nr.	Standard
1	47CFR FCC Part 1 & OET Bulletin 65

The compliance is demonstrated based on the following calculation model assessment:

1. The power density according to far-field model is:

$$S = \frac{P \times G_{(\theta,\phi)}}{4 \times \pi \times R^2}$$

Where:

P = input power of the antenna.

G = antenna gain relative to an isotropic antenna.

 θ, ϕ = elevation and azimuth angles.

R = distance from the antenna to the point of investigation.

2. For single or multiple RF sources, the calculated power density should comply with following:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

Where:

 S_i = the power density when the f is i.

 $S_{Limit,i}$ = the reference level requirement for power density when f is i.

3. The calculation of the power density or safe distance is:

NOTE 1: The RF exposure evaluation is base on the far-field and the radiation exposure is over-estimated.

NOTE 2: The maximum output power level is taken into account as a worst case for the purpose of the calculation of power density or safe distance.

NOTE 3: The minimum antenna feed cable loss (assumed no cable loss) is taken into account as a worst case for the purpose of the calculation of power density or safe distance.

NOTE 4: The maximum antenna radiation exposure orientation and maximum antenna gain is taken into account as a worst case for the purpose of the calculation of power density or safe distance.

Wifi 2.4G:

Document No.: SYBH(R) 01787709EB-3

RF Source	Calculation for Individual Source		
RF Source #1	f =	2400 to 2483.5 MHz	

	$S_{Limit,i}$ =	10 W/m^2
	P , $G_{(\theta,\phi)}$ =	$ EIRP(=P \times G_{(\theta,\phi)}): $ $EIRP^{(*)} = $
	θ, ϕ =	The worst condition is considered, i.e. the max G is used.
	S_i =	$\frac{P \times G_{(\theta,\phi)}}{4 \times \pi} / R^2 = \underline{0.054} / R^2 \text{W/m}^2$
	$\frac{S_i}{S_{Limit,i}} =$	$0.0054 / R^2$

Wifi 5G:

Document No.: SYBH(R) 01787709EB-3

RF Source	Calculation for Individual Source		
	f =	5150 to 5850 MHz	
	$S_{Limit,i}$ =	10 W/m^2	
		$\square EIRP(=P\times G_{(\theta,\phi)}):$	
		$EIRP^{(*)} = $ W (=dBm, all ports)	
RF Source #1		$\bowtie P \times G_{(\theta,\phi)}$:	
	P , $G_{(\theta,\phi)}$ =	$P^{(*)} = 0.214 \text{ W } (=23.3 \text{ dBm}) \text{ (three ports, total)}$	
		rated power: 20.8dBm, tolerance: +/-2.5dB)	
		W (calculated, two ports)	
		$G_{(\theta,\phi)} = \underline{7.943} (=\underline{9} \text{ dBi}) \text{ (Integrated antenna)}$	
		*: The value is from:	

			 □ measured max (See relevant RF report), □ rated + declared tolerance, □ max allowed by RF standard. And, the transmission duty cycle is: □ ignored, □ used, that is: 100 %.
	θ,ϕ	=	The worst condition is considered, i.e. the max G is used.
	S_i	=	$\frac{P \times G_{(\theta,\phi)}}{4 \times \pi} / R^2 = \underline{0.135} / R^2 \text{W/m}^2$
	$\frac{S_i}{S_{Limit,i}}$	=	$0.0135 / R^2$

AWS Band:

RF Source	Calculation for Individual Source		
	f	=	2110 to 2155 MHz
	$S_{\mathit{Limit},i}$	=	10 W/m^2
			$\square EIRP(=P\times G_{(\theta,\phi)}):$
			$EIRP^{(*)} = $ W (=dBm, all ports)
			$igtherefore P\! imes\!G_{(heta,\phi)}$:
		=	$P^{(*)} = \underline{0.447} \text{ W } (=\underline{26.5} \text{ dBm}) \text{ (two ports, total rated)}$
			power: 24dBm, tolerance: +/-2.5dB)
	P , $G_{(heta,\phi)}$		W (calculated, two ports)
RF Source #1			$G_{(\theta,\phi)} = \underline{1.995} (=\underline{3} \text{ dBi}) \text{ (Integrated antenna)}$
			The value is from:
			measured max (See relevant RF report),
			□ rated + declared tolerance,□ max allowed by RF standard.
			And, the transmission duty cycle is:
			☐ ignored,
	0.4		\boxtimes used, that is: $\underline{100}$ %.
	θ, ϕ	=	The worst condition is considered, i.e. the max G is used.
	S_i	=	$\frac{P \times G_{(\theta,\phi)}}{4 \times \pi} / R^2 = \underline{0.071} / R^2 \text{W/m}^2$
	$\frac{S_i}{S_{Limit,i}}$	=	$0.0071 / R^2$

PCS Band:

Document No.: SYBH(R) 01787709EB-3

RF Source	Calculation for Individual Source		
RF Source #1	f =	<u>1930</u> to <u>1990</u> MHz	

	$S_{Limit,i}$ =	10 W/m^2
		$\square EIRP(=P \times G_{(\theta,\phi)}):$ $EIRP^{(*)} = \square W (= _ dBm, all ports)$
	P , $G_{(\theta,\phi)}$ =	$P \times G_{(\theta,\phi)}$: $P \times G_{(\theta,\phi)}$: $P^{(*)} = 0.447 \text{ W } (=26.5 \text{ dBm}) \text{ (two ports, total rated power: 24dBm, tolerance: +/-2.5dB)}$ $W \text{ (calculated, two ports)}$ $G_{(\theta,\phi)} = 1.995 \text{ (=3 dBi) (Integrated antenna)}$ $P \times G_{(\theta,\phi)} = 1.995 \text{ (=3 dBi) (Integrated antenna)}$ $P \times G_{(\theta,\phi)} = 0.447 \text{ W } (=26.5 \text{ dBm}) \text{ (two ports, total rated powers)}$ $G_{(\theta,\phi)} = 0.447 \text{ W } (=26.5 \text{ dBm}) \text{ (two ports, total rated powers)}$ $G_{(\theta,\phi)} = 0.447 \text{ W } (=26.5 \text{ dBm}) \text{ (two ports, total rated powers)}$ $G_{(\theta,\phi)} = 0.447 \text{ W } (=26.5 \text{ dBm}) \text{ (two ports, total rated powers)}$ $G_{(\theta,\phi)} = 0.447 \text{ W } (=26.5 \text{ dBm}) \text{ (two ports, total rated powers)}$ $G_{(\theta,\phi)} = 0.447 \text{ W } (=26.5 \text{ dBm}) \text{ (two ports, total rated powers)}$ $G_{(\theta,\phi)} = 0.447 \text{ W } (=26.5 \text{ dBm}) \text{ (two ports, total rated powers)}$
	θ, ϕ =	ignored, □ used, that is: 100 %. The worst condition is considered, i.e. the max G is used.
	S_i =	$\frac{P \times G_{(\theta,\phi)}}{4 \times \pi} / R^2 = \underline{0.071} / R^2 \text{W/m}^2$
	$\frac{S_i}{S_{Limit,i}} =$	$0.0071 / R^2$
Whole Product	Calculation for Whole Product	
Whole Product	$\sum_{i} \frac{S_{i}}{S_{Limit,i}} =$	$0.0331 / R^2 \le 1$
whole Product	$R \geq$	0.182 m (the minimum Safe Distance)
		alt is the worst case of each individual source and simultaneous ssion sources (if applicable).

Note: If the practical maximum antenna gain exceeds the value as described above, the safe distance must be recalculated and estimated.

Beyond the specified distance: 0.182 m

Document No.: SYBH(R) 01787709EB-3

Person responsible for making this declaration:

Hu Wei

Hu Wei

RF Engineer, EMC Lab

Reliability Laboratory of Huawei Technologies Co., Ltd.

May 4, 2015