

FCC Test Report

Product Name: Wireless Gateway

Model Number: B200

Report No: SYBHZ(R)E002072009EB-2

FCC ID: QISB200-40

Reliability Laboratory of Huawei Technologies Co., Ltd.

Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R. China

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

1.	The laboratory has obtained the accreditation of China National Accreditation
	Committee for Laboratories (CNAL), and accreditation number: L0310.
2.	The laboratory has obtained the accreditation of THE AMERICAN
	ASSOCIATION FOR LABORATORY ACCREDITATION (A2LA), and
	Accreditation Council Certificate Number: 2174.01.
3.	The laboratory has been listed on the US Federal Communications Commission
	list of test facilities recognized to perform electromagnetic emissions
	measurements. The site recognition number is 97456.
4.	The laboratory also has been listed by the VCCI to perform EMC
	measurements. The accreditation number is C2583, R2364, and T256.
5.	The test report is invalid if not marked with "exclusive stamp for the test report".
6.	Any copy of the test report is invalid if not re-marked with the "exclusive stamp
	for the test report".
7.	The test report is invalid if not marked with the stamps or the signatures of the
	persons responsible for performing, revising and approving the test report.
8.	The test report is invalid if there is any evidence of erasure and/or falsification.
9.	If there is any dissidence for the test report, please file objection to the test
	centre within 15 days from the date of receiving the test report.
10.	Normally, the test report is only responsible for the samples that have
	undergone the test.
11.	Context of the test report cannot be used partially or in full for publicity and/or
	promotional purposes without previous written approval of the laboratory.

Huawei Technologies Co Ltd Huawei Industrial Base, Bantian Longgang Shenzhen 518128, P.R China Tel: +86 755 89651014

Fax: +86 755 89652518

REPORT ON FCC Test of B200 Wireless Gateway

M/N: B200

Report No: SYBHZ(R) E002072009EB-2

REGULATION FCC CFR47 Part 2: Subpart J;

FCC CFR47 Part 22: Subpart H;

Final Judgement: Pass

General Manager 2009.07.21

Date Name

signature

Technical Responsibility

For Area of Testing 2009.07.2

2009.07.21 余 辉

Date Name signature

Test Lab Engineer 2009.07.21 胡 俊

Date Name signature

Contents

1 <u>S</u>	<u> </u>	5
2 <u>P</u>	Product Description	6
2.1	Production Information	
2.2	MODIFICATION INFORMATION	6
3 <u>T</u>	est Site Description	7
3.1	TESTING PERIOD	7
4 <u>P</u>	Product Description	8
4.1 4.2	TECHNICAL CHARACTERISTICSEUT IDENTIFICATION LIST	
5 <u>M</u>	Main Test Instruments	11
6 <u>T</u>	ransmitter Measurements	12
6.1	EFFECTIVE RADIATED POWER OF TRANSMITTER (ERP)	12
6.2	CONDUCTED POWER OF TRANSMITTER	16
6.3		
6.4 6.5		
6.6		
6.7		
7 <u>S</u>	System Measurement Uncertainty	31
8 A	Appendices	32

1 **Summary**

The table below summarizes the measurements and results for the HUAWEI WCDMA/GPRS/GSM/EDGE Wireless Gateway. Detailed results and descriptions are shown in the following pages.

Table 1 Summary of results

FCC Measurement Specification	FCC Limits Part(s)	Description	Result
2.1046	22.913	Effective Radiated Power of Transmitter	PASS
2.1046	22.913	Conducted Power of Transmitter	PASS
2.1047		Modulation Characteristics	PASS
2.1049		Occupied Bandwidth	PASS
2.1051	22.917	Band Edges compliance	PASS
2.1051	22.917	Spurious Emission at Antenna Terminal	PASS
2.1055	22.355	Frequency Stability	PASS
2.1053	22.917	Radiated Spurious Emissions	PASS

Note: The Radiated Spurious Emissions' test results are shown in the EMC report.

2 Product Description

2.1 Production Information

2.1.1 General Description

HUAWEI B200 Wireless Gateway is subscriber equipment in the UMTS/GSM system, also supports wireless Internet accessing function, routing function, and network address translation (NAT) function. The WCDMA frequency is Band I and V. The GSM/GPRS/EDGE frequency band includes 850M, EGSM900, DCS1800 and PCS1900, the WLAN frequency is 2.4G. B200 implements such functions as RF signal receiving/transmitting, HSDPA/ WCDMA and EDGE/GPRS/GSM protocol processing, data service ,etc. Externally it provides USB interface (to connect to the laptop etc.), USIM card interface, RJ11 interface (to connect to fixed telephone), RJ45 interface (to connect to pc).

2.1.2 Support function and Service

The HUAWEI WCDMA/GPRS/GSM/EDGE Wireless Gateway support the function and service as follows:

Table 2 Service and Test mode List

Service Name	Characteristic	Corresponding Test	Note
		Mode	
Voice and data	Modulation: GMSK	TM1	GPRS/GSM
Data	Modulation: 8PSK	TM2	EDGE
Data	Modulation: QPSK	TM3	WCDMA

Note: * The specified GPRS test conditions & settings are defined in 3GPP TS51.010 V5.4.0, the EDGE test conditions & settings are defined in 3GPP TS51.010 V5.4.0 and the WCDMA test conditions & settings are defined in 3GPP TS 34.121 V7.5.0:2007

2.2 Modification Information

For original equipment, following table is not application.

Table 3 Modification Information

Model Number	Board/M odule	Original Version	New Version	Modify Information
		ain		cable

3 Test Site Description

The test site of:

Huawei Technologies Co. Ltd. P.O. Box 518129 Huawei base, bantian, Longgang District, Shenzhen, China

3.1 Testing Period

The test have been performed during the period of

Jul. 11, 2009 -Jul. 18, 2009

4 Product Description

4.1 Technical Characteristics

4.1.1 Frequency Range

Table 4 Frequency Range

Uplink band:	824 to 849 MHz
Downlink band:	869 to 894 MHz

4.1.2 Channel Spacing / Separation

Table 5 Channel Spacing / Separation

	EDGE/GPRS/GSM	
Channel spacing	200 kHz	200 kHz
Channel separation:	200 kHz	5 MHz

4.1.3 Type of Emission

Table 6 Type of Emission

Table 0 Type of Efficiency		
	EDGE/GPRS/GSM	WCDMA
Emission Designation:	300KGXW (GMSK), 300KG7W (8PSK)	5M0F9W

According to CFR 47 (FCC) part 2, subpart C, section 2.201 and 2.202

4.1.4 Environmental Requirements

Table 7 Environmental Requirements

Minimum temperature:	-10 °C
Maximum temperature:	+ 45 °C
Relative Humidity:	5%-95%RH

4.1.5 Power Source

Table 8 Power Source

AC voltage nominal:	~120V
AC voltage range	~100V-240V
AC current maximal:	0.5A

4.1.6 Tune-up Procedure

According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (9).

Please reference the document Tune-up Procedure in TCF.

4.1.7 Applied DC Voltages and Currents

According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (8).

The voltage and current in the final RF stage is:

Table 9 Applied RF module DC Voltages and Currents

Voltage:	=== 2.85V
Current:	2A According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (8)

4.2 EUT Identification List

4.2.1 Board Information

Table 10 Board Information

Table 10 Board Information				
B200 Wireless Gateway				
B200				
Board and Module				
Equipment Designation / Description	Hardware Version	Serial Number	Remarks	
MAINBOARD	WLB3TILU	DE2AA10831402586	B200	

4.2.2 Adapter Technical Data

AC/DCAdapter Model	UE15W1-050200SPAV			
Manufacturer	Huawei Technologies CO.,LTD			
Input Voltage	100-240V ~50/60Hz 0.2 A			
Output Voltage	5V === 2A			
Rated Power	<9W			
S/N	UEP7328002672			

4.2.3 FCC Identification

Grantee Code: QIS Product Code: B200

FCC Identification: QISB200-40

5 Main Test Instruments

Table 11 Main Test Equipments

Equipment Description	Manufacturer	Model Serial Number		Calibrated until (MM.DD.YYYY)
Test Receiver Display Unit	R&S	ESMI 804.8932.52	829214/011	08.23.2009
Test Receiver RF Unit	R&S	ESMI 1032.5640.53	829550/008	08.23.2009
Receiver	R&S	ESIB 26	100318	05.29.2010
Receiver	R&S	ESCS30	830245/018	05.29.2010
Pre-Amplifier	Agilent	8447D	2944A10146	05.21.2010
Pre-Amplifier	Agilent	83017A	3950M00246	09.04.2009
Loop Antenna	Schwarzbeck	FMZB1516	1516115	06.20.2010
BiLog Antenna	Schaffner	CBL 6112B	2536	09.25.2009
Horn Antenna	ETS-Lindgren	3117	00062533	06.05.2010
Horn Antenna	ETS-Lindgren	3116	00031541	06.20.2010
Dipole	Schwarzbeck	D69250- UHAP/D69250-VHAP	979/917 08.27.2009	
Signal Generator	R&S	SMT06	830264/009 09.29.2009	
Signal Generator	R&S	SMU200A	3605062518 10.08.2009	
Signal Generator	R&S	SMR 40	100325 12.09.2009	
Power Supply	Keithley	2306	1045337 07.20.2009	
Climate Chamber	WEISS	ACS-1	3604040034 08.14.200	
Universal Radio Communication Tester	R&S	CMU200	108035 07.04.2010	
Wireless communication test set	Agilent	8960 GB43461081 06.1		06.15.2010
Power Splitter	Agilent	11667B	3586M000159	07.20.2009
Spectrum Analyzer	Agilent	E4440A	N/A	09.26.2009

6 Transmitter Measurements

6.1 Effective Radiated Power of Transmitter (ERP)

6.1.1 Test Conditions

Table 12 Test Conditions

	Table 12 Test Schallene
Preconditioning:	0.5 hour
Measured at:	enclosure
Ambient temperature:	25℃
Relative humidity:	55%
Test Configurations:	TM1/TM2/TM3 at frequency Bottom、Middle、Top

6.1.2 Test Specifications and Limits

6.1.2.1 Specification

CFR 47 (FCC) part 2.1046 and part 22.913

6.1.2.2 Supporting Standards

Table 13 Supporting Standards:

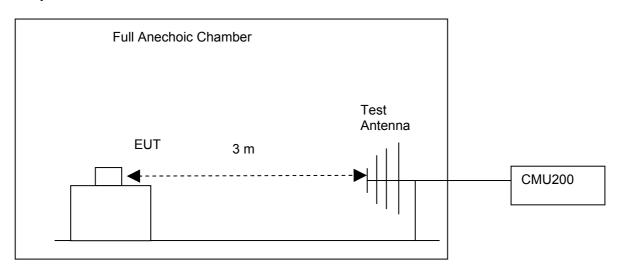
ANSI/TIA-603-C:2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station
	(MS) conformance specification;
3GPP TS 34.121 V7.5.0:2007	Technical Specification Group Radio Access Network;
	User Equipment (UE) conformance specification; Radio
	transmission and reception (FDD);

6.1.2.3 Limits

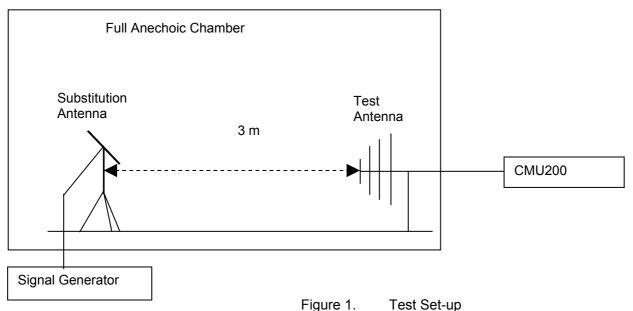
Compliance with part 22.913, mobile/portable stations are limited to 7 watts ERP peak power. W (dBm)= $10*\log (W_{in mW})$.

Table 14 Limits

Maximum Output Power (Watts)	< 7 Watts
Maximum Output Power (dBm)	< 38.5 dBm


6.1.3 Test Method and Setup

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, ERP shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the Wireless Gateway to the wireless communication tester R&S CMU200 via the air interface. The band class is set as 850M.
- (b) Test the Radiated maximum output power by the R&S CMU200 received from test antenna.
- (c) Use substitution method to verify the maximum output power. The EUT is substituted by a dipole antenna. The dipole is connected to a signal generator. And then adjust the output level of the


signal generator to get the same received power recorded in step (b) on R&S CMU200, and record the power level of Signal Generator. Of course, the cable loss at the test frequency should be compensated.

Test setup

Step 1: Pre-test

Step 2: Substitution method to verify the maximum ERP

NOTE: Effective radiated power (ERP) refers to the radiation power output of the EUT, assuming all emissions are radiated from half-wave dipole antennas.

6.1.4 Measurement Results

6.1.4.1 Pre-test Results

Table 15 Measurement Results

		RF Output Power (ERP)						
TEST CONDITIONS		Channel128(B) 824.2MHz		Channel192 (M) 837MHz		Channel251(T) 848.8MHz		
		dBr		dBm		dBm		
		Measured	Limit	Measured	Limit	Measured	Limit	
TM1	T _{nom} (25 °C)	33.05	38.5	33.13	38.5	22.02	38.5	
	V _{nom} (5V)	33.05	30.5	33.13	36.5	32.92	36.3	
TM2	T _{nom} (25 °C)	22.85	38.5	22.79	38.5	22.70	38.5	
	V _{nom} (5V)	22.03	30.5	22.19	36.5	22.10	30.3	
TEST COND	ITIONS	Channel4132(B)		Channel4182(M)		Channel4233(T)		
			826.4MHz		836.4MHz		846.6MHz	
		dBm dBn		n	dBm			
		Measured	Limit	Measured	Limit	Measured	Limit	
TM3	Tnom (25 °C)	22.74	38.5	22.69	38.5	22.80	38.5	
	Vnom (5V)		30.5	22.09	36.5			

6.1.4.2 Substitution Results

Table 16 Substitution Results

Test Mode	Freq. [MHz]	Meas. Level [dBm]	Substitution Antenna Type	SGP [dBm]	Substitution Gain [dBd]	Cable Loss [dB]	Substitution Level (ERP) [dBm]	Limit [dBm]	Result
TM1	824.2	33.05	Dipole Ant.	36.61	-2.95	0.6	33.06	38.5	Pass
TM1	837	33.13	Dipole Ant.	36.83	-3.06	0.6	33.17	38.5	Pass
TM1	848.8	32.92	Dipole Ant.	36.68	-3.11	0.6	32.97	38.5	Pass
TM2	824.2	22.85	Dipole Ant.	26.44	-2.95	0.6	22.89	38.5	Pass
TM2	837	22.79	Dipole Ant.	26.47	-3.06	0.6	22.81	38.5	Pass
TM2	848.8	22.70	Dipole Ant.	26.44	-3.11	0.6	22.73	38.5	Pass
TM3	826.4	22.74	Dipole Ant.	26.35	-2.95	0.6	22.80	38.5	Pass
TM3	836.4	22.69	Dipole Ant.	26.41	-3.06	0.6	22.75	38.5	Pass
ТМЗ	846.6	22.80	Dipole Ant.	26.52	-3.11	0.6	22.81	38.5	Pass

Note: a, For get the ERP (Efficient Radiated Power) in substitution method, the following formula should take to calculate it,

ERP [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBd]

NOTE: SGP- Signal Generator Level

b, A wcdma signal with bandwidth of 5MHz and a GSM/GPRS/EDGE signal with bandwidth of

200kHz are created by the vector generator R&S SMU200A.

c, RBW=10kHz, VBW=300kHz, and integrated by the instrument to 200kHz for TM1\TM2 and 5MHz for TM3

6.1.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.2 Conducted Power of Transmitter

6.2.1 Test Conditions

Table 17 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	52 %
Test Configurations:	TM1/TM2/TM3 at frequency Bottom、Middle、Top

6.2.2 Test Specifications and Limits

6.2.2.1 Specification

CFR 47 (FCC) part 2.1047 and part 22 subpart H

6.2.2.2 Supporting Standards

Table 18 Supporting Standards:

	rabio io cappoining caminatinas
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station
	(MS) conformance specification;
3GPP TS 34.121 V7.5.0:2007	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio
	transmission and reception (FDD);

6.2.2.3 Limits

Compliance with part 22.913, in no any case may the peak power of a mobile station transmitter exceed 7 W. The calculated longitude ERP by following formula:

ERP(dBm)= 10*log (ERP_{in mwatts}).

And for conducted power, we can use Antenna Gain to calculate the limit. So the conducted power:

 P_{cod} .(dBm)=ERP(dBm)- Gain(dBd). and Gain (dBd)= Gain(dBi)- 2.15dB

Table 19 Limits

Maximum Output Power (Watts)	< 7 Watts (38.5dBm)
Antenna Gain(dBi):	2.75dBi
Antenna Gain(dBd):	0.6dBd
Maximum Conducted Output Power (dBm)	< 37.9dBm

6.2.3 Test Method and Setup

(a)For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, Conducted maximum power shall be measured when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). Connect the Wireless Gateway to the wireless communication tester R&S CMU200 via the antenna connector. The band class is set as US Cellular. (b)Test the Conducted maximum output power by the R&S CMU200.

Test setup

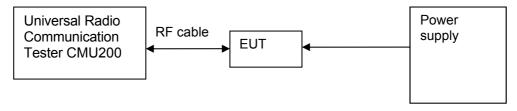


Figure 2. Test Set-up

6.2.4 Measurement Results

Table 20 Measurement Results

	Table 20 Measurement Results						
		RF Output Power (Conducted)					
TEST CONDITIONS		Channel128(B)		Channel192 (M)		Channel251(T)	
		824.2MHz		837MHz		848.8MHz	
		dBm		dBm		dBm	
		Measured	Limit	Measured	Limit	Measured	Limit
TM1	T _{nom} (25 °C)	00.40	27.0	00.57	27.0	20.07	37.9
	V _{nom} (5V)	32.46	37.9	32.57	37.9	32.37	
TM2	T _{nom} (25 °C)	00.00	37.9	22.21	37.9	22.13	37.9
	V _{nom} (5V)	22.29					
TEST CONI	DITIONS	Channel4132(B)		Channel4182(M)		Channel4233(T)	
		826.4MHz		836.4MHz		846.6MHz	
		dBm		dBm		dBm	
		Measured	Limit	Measured	Limit	Measured	Limit
TM3	T _{nom} (25 °C)	22.20	07.0	22.45	37.9	22.21	37.9
	V _{nom} (5V)	22.20	37.9	22.15			

6.2.5 Conclusion

The equipment **PASSED** the requirement of this clause.

6.3 Modulation Characteristics

6.3.1 Test Conditions

Table 21 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	52 %
Test Configurations:	TM1/TM2/TM3 at frequency Middle

6.3.2 Test Specifications and Limits

6.3.2.1 Specification

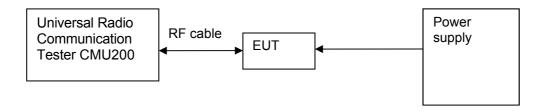
CFR 47 (FCC) part 2.1047 and part 22 subpart H

6.3.2.2 Supporting Standards

Table 22 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station
	(MS) conformance specification;
3GPP TS 34.121 V7.5.0:2007	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio
	transmission and reception (FDD);

6.3.2.3 Limits


No specific modulation characteristics requirement limits in part 2.1047 and part 22 subpart H. Table 23 Limits

Limits	Not applicable	
--------	----------------	--

6.3.3 Test Method and Setup

Connect the Wireless Gateway to Wireless Communication Test Set R&S CMU200 via the antenna connector. The band class is set as GSM850M; the Wireless Gateway's output is matched with 50 Ω loads, test method was according to 3GPP TS 51.010 and TS 34.121. The waveform quality and constellation of the Wireless Gateway was tested.

Test setup

Figure 3. Test Set-up

6.3.4 Measurement Results

Table 24 Measurement Results

		Modulation Characteristic			
TEST CONDITIONS		Channel192(M) 837MHz			
		Mea	sured		
		TM1	TM2		
T _{nom} (25 °C)	V _{nom} (5V)	Refer to Appendix A	Refer to Appendix A		
			Characteristic		
TEST CO	NDITIONS	Channe	el4182(M)		
TEST CO	NDITIONS	Channe 836.	el4182(M) 4MHz		
TEST CO	NDITIONS	Channe 836. Mea	el4182(M) 4MHz sured		
TEST CO	NDITIONS	Channe 836. Mea	el4182(M) 4MHz		

6.3.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix A.

6.4 Occupied Bandwidth

6.4.1 Test Conditions

Table 25 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	TM1/TM2/TM3 at frequency Bottom、Middle、Top

6.4.2 Test Specifications and Limits

6.4.2.1 Specification

CFR 47 (FCC) part 2.1049 and part 22 subpart H.

6.4.2.2 Supporting Standards

Table 26 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
ANSI/TIA-003-C. 2004	
	Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station
	(MS) conformance specification;
3GPP TS 34.121 V7.5.0:2007	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio
	transmission and reception (FDD);

6.4.2.3 Limits

No specific occupied bandwidth requirement in part 22 subpart H, but the occupied bandwidth was defined in part 2.1049: the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Table 27 Limits

Upper /lower frequency limits	0.5% of the mean power
-------------------------------	------------------------

6.4.3 Test Method and Setup

Wireless Gateway was connected to the Spectrum Analyzer Agilent E4440A via the one RF connector. The band class is set as GSM850M; Wireless Gateway was controlled to transmit maximum power. Measure and record the occupied bandwidth of the Wireless Gateway by the Agilent E4440A.

The OBW, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

Refer to 47CFR part2.1049 section (g)&(h).

(g) Transmitter in which the modulating base band comprises not more than three independent channels - when modulated by the full complement of signals for which the transmitter is rated. The

FCC ID: QISB200-40

level of modulation for each channel should be set to that prescribed in rule parts applicable to the services for which the transmitter is intended. If specific modulation levels are not set forth in the rules, the tests should provide the manufacturer's maximum rated condition.

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudorandom generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at discretion of the user.

For TM1/TM2 following RBW and VBW are employed:

Measurement bandwidth (RBW): 3 kHz (Resolution bandwidth)

Video bandwidth (VBW): 10 kHz

For TM3 system following RBW and VBW are employed:

Measurement bandwidth (RBW): 51 kHz (Resolution bandwidth)

Video bandwidth (VBW): 510 kHz

Test Set-up

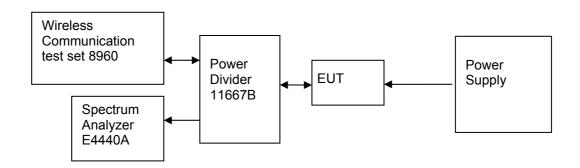


Figure 4. Test Set-up

6.4.4 Measurement Results

Table 28 Measurement Results

				Occupied I	Bandwidth		
TEST CONDITIONS		Channel128 (B)		Channel192 (M)		Channel251 (T)	
		824.2MHz		837MHz		848.8MHz	
		Meas	sured	Measured		Measured	
		(kHz)		(kHz)		(kHz)	
			TM2	TM1	TM2	TM1	TM2
T _{nom} (25 °C) V _{nom} (5V)	99%	254.2	254.2 250.7		254.5	257.0	257.1
TEST CONDITIONS Channel41		Occupied Bandwidth					
		Channel4132(B)		Channel4182(M)		Channel4233 (T)	
		826.4	IMHz	836.4MHz		846.6MHz	
		Measured		Meas	sured	Measured	

		(MHz)	(MHz)	(MHz)
TM3		TM3 TM3		
T _{nom} (25 °C) V _{nom} (5V)	99%	4.2031	4.1796	4.1508

6.4.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix B.

6.5 Band Edges Compliance

6.5.1 Test Conditions

Table 29 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55 %
Test Configurations:	TM1/TM2/TM3 at frequency Bottom、Top

6.5.2 Test Specifications and Limits

6.5.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 22.917

6.5.2.2 Supporting Standards

Table 30 Supporting Standards:

ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment
	Measurement and Performance Standards
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station (MS)
	conformance specification;
3GPP TS 34.121 V7.5.0:2007	Technical Specification Group Radio Access Network; User
	Equipment (UE) conformance specification; Radio transmission
	and reception (FDD);

6.5.2.3 Limits

Compliance with part 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 $\log_{10} P$ (W) . (Whereas P is the rated power of the EUT).

Table 31 Limits

1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
	TM1	TM2	TM3	
Rated Power:	33 dBm	27 dBm	24 dBm	
Required attenuation:	43+10log (2) = 46 , 33 dBm - 46 dB	43+10log (0.5) = 40 , 27 dBm - 40 dB	43+10log (0.25) = 37; 24 dBm - 37 dB	
Absolute level	- 13 dBm	- 13 dBm	- 13 dBm	

6.5.3 Test Method and Setup

Wireless Gateway was connected to the wireless signal analyzer Agilent E4440A via the one RF connector, the band class is set as 850M. Wireless Gateway was controlled to transmit maximum power. Measure and record band edges compliance of the Wireless Gateway by the E4440A.

The limit is -13dBm.

For TM1/TM2 following RBW and VBW are employed:

Measurement bandwidth (RBW): 3 kHz (Resolution bandwidth)

Video bandwidth (VBW): 10 kHz

For TM3 system following RBW and VBW are employed:

Measurement bandwidth (RBW): 51 kHz (Resolution bandwidth)

Video bandwidth (VBW): 200 kHz

Test Set-up

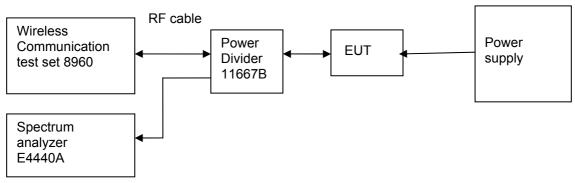


Figure 5. Test Set-up

6.5.4 Measurement Results

Table 32 Measurement Results outside Band Edges-- Single Carrier

Band	Frequency of Band edges [MHz]	Channel Number	Test Mode	Spurious Level measured [dBm]	FCC limit	Result
			T _{nom} (25 °C), V	nom (5V)		
	824.2	128	TM1	<-13(See appendix C)	- 13 dBm	Pass
	848.8	251	TM1	<-13(See appendix C)	- 13 dBm	Pass
Cellular	824.2	128	TM2	<-13(See appendix C)	- 13 dBm	Pass
	848.8	251	TM2	<-13(See appendix C)	- 13 dBm	Pass
	826.4	4132	TM3	<-13(See appendix C)	- 13 dBm	Pass
	846.6	4233	TM3	<-13(See appendix C)	- 13 dBm	Pass

6.5.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix C.

6.6 Spurious Emission at Antenna Terminal

6.6.1 Test Conditions

Table 33 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	50 %
Test Configurations:	TM1/TM2/TM3 at frequency B、M、T

6.6.2 Test Specifications and Limits

6.6.2.1 Specification

CFR 47 (FCC) part 2.1051 and part 22.917

6.6.2.2 Supporting Standards

Table 34 Supporting Standards:

	Table 34 Supporting Standards.				
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment				
	Measurement and Performance Standards				
3GPP TS51.010 V6.1.0:2005	Recommended GSM/EDGE MS conformance specification				
3GPP TS 34.121 V7.5.0:2007	Technical Specification Group Radio Access Network; User				
	Equipment (UE) conformance specification; Radio transmission				
	and reception (FDD);				

6.6.2.3 Limits

Compliance with part 22.917, all spurious emission must be attenuated below the transmitter power by at least 43 +10 \log_{10} P. (Whereas P is the rated power of the EUT).

Table 35 Limits

1 200 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
	TM1	TM2	TM3		
Rated Power:	33dBm	27 dBm	24 dBm		
Required attenuation:	43+10log (2) = 46 , 33 dBm - 46 dB	43+10log (0.5) = 40 , 27 dBm - 40 dB	43+10log (0.25) = 37; 24 dBm - 37 dB		
Absolute level	- 13 dBm	- 13 dBm	- 13 dBm		

6.6.3 Test Method and Setup

Wireless Gateway was connected to the wireless signal analyzer Agilent E4440A via the one RF connector, the band class is set as 850M. Wireless Gateway was controlled to transmit maximum power. Measure and record the Conducted Spurious Emission of the Wireless Gateway by the Agilent E4440A.

According to part 22.917, the defined measurement bandwidth as following:

22.917 (b) Measurement procedure: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

Measurement bandwidth (RBW) for 9 kHz up to 150 kHz: 1 kHz; Measurement bandwidth (RBW) for 150 kHz up to 30 MHz: 10 kHz; Measurement bandwidth (RBW) for 30 MHz up to 1 GHz: 100 kHz; Measurement bandwidth (RBW) for 1 GHz up to 12.75 GHz: 1 MHz;

Test Set-up

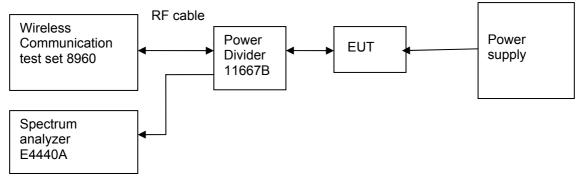


Figure 6. Test Set-up

6.6.4 Measurement Results

Table 36 Measurement Results

			DIE 30 IVIE	easurement Results		ı
Channel Number	Test Mode	Test Range (Frequency)	Output Power	Spurious Level measured [dBm]	FCC limit	Result
		(1.1040.00)	[dBm]			
	TM1	9 kHz~12.75GHz	33	<- 13 dBm	- 13	Pass
Channel	I IVI I	9 KHZ~12.73GHZ	3	(See appendix D)	dBm	F d 5 5
128(B)	TM2	9 kHz~12.75GHz	27	<- 13 dBm	- 13	Dace
	I IVIZ	9 KHZ~12.73GHZ	21	(See appendix D)	dBm	Pass
Channel	TM3	0 kHz~12 750Hz	24	<- 13 dBm	- 13	Pass
4132(B)	1 1013	9 kHz~12.75GHz	24	(See appendix D)	dBm	Pass
	TM1	9 kHz~12.75GHz	33	<- 13 dBm	- 13 dBm	Pass
Channel	I IVI I			(See appendix D)		F455
192(M)	TM2	9 kHz~12.75GHz	27	<- 13 dBm	- 13	Pass
	I IVIZ	9 KHZ~12.73GHZ	21	(See appendix D)	dBm	F d 5 5
Channel	TM3	9 kHz~12.75GHz	24	<- 13 dBm	- 13	Pass
4182(M)	11013	9 KHZ~12.73GHZ	24	(See appendix D)	dBm	F d 5 5
	TM1	9 kHz~12.75GHz	33	<- 13 dBm	- 13	Pass
Channel	I IVI I	9 KHZ~12./3GHZ	აა	(See appendix D)	dBm	F488
251(T)	TMO	0 kHz~12 75CHz	27	<- 13 dBm	- 13	Page
	I IVIZ	TM2 9 kHz~12.75GHz		(See appendix D)	dBm	Pass

Channel	TM3	9 kHz~12.75GHz	24	<- 13 dBm	- 13	Pass
4233(T)	TIVIS	9 KHZ*12.73GHZ	24	(See appendix D)	dBm	газэ

6.6.5 Conclusion

The equipment **PASSED** the requirement of this clause. For the measurement results refer to appendix D.

6.7 Frequency Stability

6.7.1 Test Conditions

Table 37 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	See below
Relative humidity:	55 % at 25 °C
Test Configurations:	TM1/TM2/TM3 at frequency M

6.7.2 Test Specifications and Limits

6.7.2.1 Specification

CFR 47 (FCC) part 2.1055 and part 22.355

6.7.2.2 Supporting Standards

Table 38 Supporting Standards:

	rable de Capperting Ctandarde:		
ANSI/TIA-603-C: 2004	Land Mobile FM or PM Communications Equipment		
	Measurement and Performance Standards		
3GPP TS51.010 V6.1.0:2005	Digital cellular telecommunications system Mobile Station		
	(MS) conformance specification;		
3GPP TS 34.121 V7.5.0:2007	Technical Specification Group Radio Access Network; User		
	Equipment (UE) conformance specification; Radio		
	transmission and reception (FDD);		

6.7.2.3 Limits

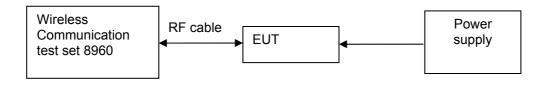
According to part 22.355, from 821MHz to 896MHz, for mobile device, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances 2.5ppm.

6.7.3 Test Method and Setup

The frequency stability shall be measured with variation of ambient temperature as follows: (1) From -30 ° to +50 ° centigrade for all equipment except that specified in subparagraphs

- (2) and (3) of paragraph 2.1055
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient

FCC Test Report of HUAWEI B200 FCC ID: QISB200-40


temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.

- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point, which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment. or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment.)

The EUT can only work in such extreme voltage 4.75V and 5.6V, so here the EUT is tested in the 4.75V and 5.6V.

Test Set up

Connect the Wireless Gateway to the Wireless Communication test set 8960 via the connector. Then measure the frequency error by the Wireless Communication test set 8960. The Wireless Gateway's output is matched with a 50 Ω load.

Test Set up Figure 7.

6.7.4 Measurement Results

6.7.4.1 Measurement Results vs. Variation of Temperature

TM1, 5V DC Channel No.192(837.0MHz)

Table 39	Measurement Results v	/s. Variation of	Temperature

Temperature	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
-30 °C	33	837.0	10	Pass
-20 °C	33	837.0	5	Pass
-10 °C	33	837.0	21	Pass
0 °C	33	837.0	29	Pass
+10 °C	33	837.0	11	Pass
+20 °C	33	837.0	-5	Pass
+30 °C	33	837.0	20	Pass

+40 °C	33	837.0	28	Pass
+50 °C	33	837.0	27	Pass

TM2, 5V DC Channel No.192(837.0MHz)

Table 40 Measurement Results vs. Variation of Temperature

Table 40 Measurement Results vs. Variation of Temperature					
Temperature	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result	
-30 °C	27	837.0	13	Pass	
-20 °C	27	837.0	15	Pass	
-10 °C	27	837.0	16	Pass	
0 °C	27	837.0	9	Pass	
+10 °C	27	837.0	17	Pass	
+20 °C	27	837.0	15	Pass	
+30 °C	27	837.0	12	Pass	
+40 °C	27	837.0	9	Pass	
+50 °C	27	837.0	8	Pass	

• TM3, 5V DC Channel No.4182(836.4MHz)

Table 41 Measurement Results vs. Variation of Temperature

Tabic	Table 41 Measurement Nesults vs. Variation of Temperature					
Temperature	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result		
		,				
-30 °C	24	836.4	16	Pass		
-20 °C	24	836.4	9	Pass		
-10 °C	24	836.4	-1	Pass		
0 °C	24	836.4	2	Pass		
+10 °C	24	836.4	7	Pass		
+20 °C	24	836.4	0	Pass		
+30 °C	24	836.4	12	Pass		
+40 °C	24	836.4	11	Pass		
+50 °C	24	836.4	11	Pass		

6.7.4.2 Measurement Results vs. Variation of Voltage

● TM1, 25 °C ,Channel No. 192(837.0MHz)

Table 42 Measurement Results vs. Variation of Voltage

				<u> </u>
Voltage	Power	Nominal	Measured	Result
	(dBm)	Frequency	Frequency	

		(MHz)	Error(Hz)	
4.75	33	837.0	7	Pass
5	33	837.0	5	Pass
5.6	33	837.0	9	Pass

TM2, 25 °C ,Channel No. 192(837.0MHz)

Table 43 Measurement Results vs. Variation of Voltage

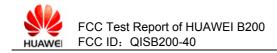
Table 40 Medadicinent Results vs. vanation of voltage				
Voltage	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
4.75	27	837.0	10	Pass
5	27	837.0	8	Pass
5.6	27	837.0	9	Pass

• TM3, 25 °C ,Channel No. 4182(836.4MHz)

Table 44 Measurement Results vs. Variation of Voltage

Voltage	Power (dBm)	Nominal Frequency (MHz)	Measured Frequency Error(Hz)	Result
4.75	24	836.4	11	Pass
5	24	836.4	9	Pass
5.6	24	836.4	7	Pass

6.7.5 Conclusion


The equipment **PASSED** the requirement of this clause.

7 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Table 45 System Measurement Uncertainty

Items		Extended Uncertainty
Effective Radiated Power of Transmitter	ERP (dBm)	U=3dB; k=2
Band Width	Magnitude (%)	U=0.2%; k=2
Band Edge Compliance	Disturbance Power (dBm)	U=2.0dB; k=2
Conducted Spurious Emission at Antenna Terminal	Disturbance Power (dBm)	U=2.0dB; k=2
Frequency Stability	Frequency Accuracy(ppm)	U=0.21ppm; k=2
Field Strength of Spurious Radiation	ERP(dBm)	U=2.2dB; k=2

8 Appendices

Appendix A	Measurement Results Modulation Characteristics	10 pages
Appendix B	Measurement Results Occupied Bandwidth	10 pages
Appendix C	Measurement Results Band Edges Compliance	7 pages
Appendix D	Measurement Results Spurious Emission at Antenna Terminal	37 pages