

FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Videoconferencing Endpoint

MODEL: HUAWEI Bar 500

FCC ID: QIS-BAR500

IC: 6369A-BAR500

REPORT NUMBER: 4788832561.1-3

ISSUE DATE: January 16, 2019

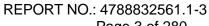
Prepared for

HUAWEI TECHNOLOGIES CO., LTD.

Administration Building, Huawei Technologies Co., Ltd. Bantian, Longgang
District, Shenzhen, P.R. China, 518129

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China


Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 280

Revision History

Rev.	Issue Date	Revisions	Revised By
	01/16/2019	Initial Issue	

Page 3 of 280

	Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results			
1	6dB Bandwidth and 99% Bandwidth	FCC 15.247 (a) (2) RSS-247 Clause 5.2 (a)	PASS			
2	Conducted Output Power	FCC 15.247 (b) (3) RSS-247 Clause 5.4 (e)	PASS			
3	Power Spectral Density	FCC 15.247 (e) RSS-247 Clause 5.2 (b)	PASS			
4	Conducted Bandedge and Spurious Emission	FCC 15.247 (d) RSS-247 Clause 5.5	PASS			
5	Radiated Bandedge and Spurious Emission	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	PASS			
6	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	PASS			
7	Antenna Requirement	FCC 15.203 RSS-GEN Clause 8.3	PASS			

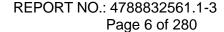


TABLE OF CONTENTS

1.	Α	ATTESTATION OF TEST RESULTS	6
2.	TE	EST METHODOLOGY	7
3.	F	ACILITIES AND ACCREDITATION	7
4.	C	CALIBRATION AND UNCERTAINTY	8
4	4.1.	. MEASURING INSTRUMENT CALIBRATION	8
4	4.2.	. MEASUREMENT UNCERTAINTY	8
5.	E	QUIPMENT UNDER TEST	9
	5.1.	. DESCRIPTION OF EUT	9
	5.2.	. MAXIMUM OUTPUT POWER	9
	5.3.	. CHANNEL LIST	9
	5.4.	. TEST CHANNEL CONFIGURATION	10
	5.5.	. DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.6.	. WORST-CASE CONFIGURATIONS	12
I	DES	SCRIPTION OF TEST SETUP	13
6.	M	MEASURING INSTRUMENT AND SOFTWARE USED	14
7.	M	MEASUREMENT METHODS	15
8.	ΑI	ANTENNA PORT TEST RESULTS	
,			16
,	8.1.		
	8.1. 8.2.	ON TIME AND DUTY CYCLE	16
	8.2. 8.:	ON TIME AND DUTY CYCLE	16 19
	8.2. 8.1 8.1	ON TIME AND DUTY CYCLE	16 19 20
ł	8.2. 8.1 8.1	. ON TIME AND DUTY CYCLE	16 19 20 26
8	8.2. 8.3 8.3 8.3	ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 3.2.1. 802.11b MODE 3.2.2. 802.11g MODE 3.2.3. 802.11n HT20 MODE Maximum conducted (Average and Peak) output power	16 19 20 26 32
8	8.2. 8.3 8.3. 8.4. 8.4.	ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 3.2.1. 802.11b MODE 3.2.2. 802.11g MODE 3.2.3. 802.11n HT20 MODE Maximum conducted (Average and Peak) output power POWER SPECTRAL DENSITY 3.4.1. 802.11b	16 20 26 32 38 41
8	8.2. 8.3 8.3. 8.4. 8.4.	ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 3.2.1. 802.11b MODE 3.2.2. 802.11g MODE 3.2.3. 802.11n HT20 MODE Maximum conducted (Average and Peak) output power POWER SPECTRAL DENSITY	16 20 26 32 38 41 43
8	8.2. 8.3. 8.4. 8.4. 8.4. 8.4.	ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 3.2.1. 802.11b MODE 3.2.2. 802.11g MODE 3.2.3. 802.11n HT20 MODE Maximum conducted (Average and Peak) output power POWER SPECTRAL DENSITY 3.4.1. 802.11b 3.4.2. 802.11g 3.4.3. 802.11n HT20. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	
8	8.2. 8.3. 8.4. 8.4. 8.4. 8.4.	. ON TIME AND DUTY CYCLE . 6 dB DTS BANDWIDTH AND 99% BANDWIDTH 2.1. 802.11b MODE 2.2. 802.11g MODE 2.3. 802.11n HT20 MODE Maximum conducted (Average and Peak) output power POWER SPECTRAL DENSITY 4.1. 802.11b 4.2. 802.11g.	
8	8.2. 8.3 8.3. 8.4. 8.4. 8.4. 8.5 8.6 8.6	. ON TIME AND DUTY CYCLE	1619203238414349556162
8 8	8.2. 8.3. 8.3. 8.4. 8.4. 8.4. 8.7 8.7 9.	. ON TIME AND DUTY CYCLE	
8 8	8.2. 8.3. 8.3. 8.4. 8.4. 8.5. 8.7. 8.7. 9.	. ON TIME AND DUTY CYCLE	

ANTENNA REQUIREMENTS	280
AC POWER LINE CONDUCTED EMISSIONS	277
9.6.1. 802.11n20 MODE	271
6. SPURIOUS EMISSIONS BELOW 30M	
5. SPURIOUS EMISSIONS (30M ~ 1 GHz) 9.5.1. 802.11n20 MODE	
9.4.2. 802.11n20 MODE	
6 SPURIOUS EMISSIONS (26~40GHz)	
9.4.1. 802.11n20 MODE	
4. SPURIOUS EMISSIONS (18~26GHz)	265
9.3.3. 802.11n HT20 MODE	245
3. SPURIOUS EMISSIONS For 2.4G(1~18GHz)	
9.2.3. 802.11g MODE	
9.2.1. 802.11b MODE	
2. RESTRICTED BANDEDGE	
	9.2.1. 802.11b MODE

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: HUAWEI TECHNOLOGIES CO., LTD.

Administration Building, Huawei Technologies Co., Ltd. Address: Bantian, Longgang District, Shenzhen, P.R. China, 518129

Manufacturer Information

HUAWEI TECHNOLOGIES CO., LTD. **Company Name:**

Administration Building, Huawei Technologies Co., Ltd. Address:

Bantian, Longgang District, Shenzhen, P.R. China, 518129

EUT Name: Videoconferencing Endpoint

Model: **HUAWEI Bar 500**

Sample Status: Normal **Brand:** HUAWEI Sample Received: Dec.24, 2018

Date of Tested: Dec.26, 2018 ~ Jan.14, 2019

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC Part 15 Subpart C	PASS			
ISED RSS-247 Issue 2	PASS			
ISED RSS-GEN Issue 5	PASS			

Prepared By:		Checked By:
Miller	Ma	Shementer

Engineer Project Associate

Miller Ma

Shawn Wen

Operations Leader

Approved By:

Miller Ma

Stephen Guo

Operations Manager

REPORT NO.: 4788832561.1-3 Page 7 of 280

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB558074 D01 DTS Meas Guidance v05, KDB414788 D01 Radiated Test Site v01, ANSI C63.10-2013 and KDB 662911 D01 Multiple Transmitter Output v02r01.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	·

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 8 of 280

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Uncertainty for Conduction emission test	2.90dB	
Uncertainty for Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB	
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB	
Uncertainty for Radiation Emission test	5.04dB(1-6GHz)	
(1GHz to 26GHz)(include Fundamental	5.30dB (6GHz-18Gz)	
emission)	5.23dB (18GHz-26Gz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Videoconferencing Endpoint		
Model Name	HUAWEI Bar 500		
Band Name	HUAWEI		
Power Rate (AC/DC POWER ADAPTER)	Input:100-240Vac,50/60 Hz,2.5A Output:19Vdc; 7.89A (Input: 100-176V) Output:19Vdc; 9.5A (Input: 176-240V)		

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)
1	IEEE 802.11b	2412-2472	1-13[13]	14.67
1	IEEE 802.11g	2412-2472	1-13[13]	20.35
2	IEEE 802.11n HT20	2412-2472	1-13[13]	20.25

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452	13	2472
2	2417	6	2437	10	2457		
3	2422	7	2442	11	2462		
4	2427	8	2447	12	2467		

Page 10 of 280

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency	
WiFi TX(802.11b)	CH 01, CH 06, CH 11, CH 12,CH13	2412MHz, 2437MHz, 2462MHz, 2467MHz,2472MHz	
WiFi TX(802.11g)	CH 01, CH 06, CH 11, CH 12,CH13	2412MHz, 2437MHz, 2462MHz, 2467MHz,2472MHz	
WiFi TX(802.11n VHT20)	CH 01, CH 06, CH 11, CH 12,CH13	2412MHz, 2437MHz, 2462MHz, 2467MHz,2472MHz	

Page 11 of 280

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna manufacturer: NIPPO

Chain Ant.	Frequency (MHz)	Max Antenna Gain (dBi)	Antenna Type
0	2412-2472	4.65	Dipole Antenna
1	2412-2472	5.55	Dipole Antenna

Antenna manufacturer: Amphenol

Chain Ant.	Frequency (MHz)	Max Antenna Gain (dBi)	Antenna Type			
0	2412-2472	4.50	Dipole Antenna			
1	2412-2472	4.10	Dipole Antenna			

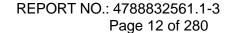
Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	Chain 1 or Chain 2 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	Chain 1 or Chain 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠2TX, 2RX	Chain 1 and Chain 2 can be used as transmitting/receiving antenna.

	Directional gain						
Mode	Frequency (MHz)	Max Antenna Gain (dBi)	For power measurements Directional gain Gain (dBi)	For power spectral density (PSD) measurements Gain (dBi)			
SISO	2412-2472	5.55	4.7	4.7			
CDD 2TX HT20MHz	2412-2472	5.55	4.7	8.55			

Note: Directional gain = GANT + Array Gain

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(Nant/NSS) dB.


For power measurements on IEEE 802.11 devices, 1,2

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any NANT;

Array Gain = 5 log(NANT/NSS) dB or 3 dB, whichever is less, for 20-MHz channel widths with NANT ≥ 5.

Note: The antenna of the EUT is provided by two manufacturers. The antenna types of the two manufacturers are the same, NIPPO antenna gain is greater, So the NIPPO antenna is selected for the test.

5.6. WORST-CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Softw	<i>r</i> are	adb					
NA LLG	Transmit	Test Channel					
Modulation Mode	Chain	NCB: 20MHz					
Wiode		CH 1	CH 6	CH 11	CH 12	CH 13	
802.11b	0&1	14	14.5	14.5	14	10.5	
802.11g	0&1	14	14	13	9	5.5	
802.11n HT20	0&1	12	12	12	9	5.5	

IEE Std. 802.11	Modulation Technology	Modulation Type	Data Rate (Mbps)	Worst Case (Mbps)
b	DSSS	CCK	11/5.5/2/1	1
g	OFDM	BPSK, QPSK, 16QAM, 64QAM	54/48/36/24/18/12/9/6	6
n HT20	OFDM	BPSK, QPSK, 16QAM, 64QAM	(MCS0~MCS9)	MCS0

Remarks: EUT support for SISO and CDD MIMO Transmission, only 802.11n supports CDD MIMO Mode, SISO mode sets the same power level as MIMO mode, so MIMO mode is the worst case.

REPORT NO.: 4788832561.1-3 Page 13 of 280

DESCRIPTION OF TEST SETUP

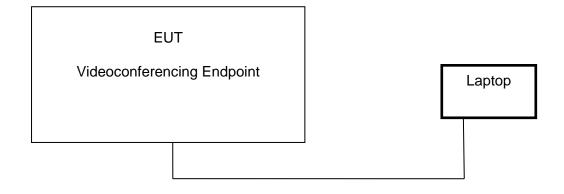
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS
2	Highpass Filter	Wi	WHKX10-2700-3000- 18000-40SS	23
3	Band Reject Filter	Wainwright	WRCJV8-2350-2400- 2483.5-2533.5-40SS	4

Note: Item2 and Item3 only use for radiated test.

I/O CABLES

Cable N	Port	Connector Type	Shield	Cable Length(m)	Remarks
1	RJ45	RJ45	Yes	5	/

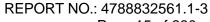

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	POWER ADPTER	HUAWEI	HW- 190950T0D	Input:100-240Vac,50/60 Hz,2.5A Output: 19Vdc; 7.89A (Input: 100-176V) Output:19Vdc; 9.5A (Input: 176-240V)

TEST SETUP

The EUT can work in engineering mode with the inside software.

SETUP DIAGRAM FOR TESTS



Page 14 of 280

6. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions							
Used	Equipment	Manufacturer	Mod	del No.	Seri	al No.	Last Cal.	Next Cal.
V	EMI Test Receiver	R&S	Е	ESR3		1961	Dec.10,2018	Dec.09,2019
V	Two-Line V- Network	R&S	EN	IV216	10	1983	Dec.10,2018	Dec.09,2019
	Software							
Used	Des	cription		Man	ufactu	ırer	Name	Version
$\overline{\mathbf{V}}$	Test Software for C	Conducted distu	rbance	е	UL		Antenna port	Ver. 7.2
	Radiated Emissions							
Used	Equipment	Manufacturer	Mod	del No.	Seri	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	NS	9038A		6400 36	Dec.10,2018	Dec.09,2019
V	Hybrid Log Periodic Antenna	TDK	HLP-3003C			960	Sep.17, 2018	Sep.16, 2021
V	Preamplifier	HP	8447D			1A090 99	Dec.10,2018	Dec.09,2019
V	EMI Measurement Receiver	R&S	ESR26		10	1377	Dec.10,2018	Dec.09,2019
	Horn Antenna	TDK	HRN-0118		130	939	Sep.17, 2018	Sep.16, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBHA-9170		6	91	Sep.17, 2018	Sep.16, 2021
V	Preamplifier	TDK	PA-0	02-0118		-305- 066	Dec.10,2018	Dec.09,2019
V	Preamplifier	TDK	PA	A-02-2		-307- 003	Dec.10,2018	Dec.09,2019
V	Preamplifier	TDK	PA	A-02-3		-308- 002	Dec.10,2018	Dec.09,2019
$\overline{\checkmark}$	Loop antenna	Schwarzbeck	1	519B	00	800	Mar. 26, 2016	Mar. 26, 2019
			Soft	tware				
Used	Descr	ription	I	Manufac	turer		Name	Version
\checkmark	Test Software for Radiated disturbance Farad			b		EZ-EMC	Ver. UL-3A1	
	Other instruments							
Used	Equipment	Manufacturer	Mod	del No.	Seri	al No.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	NS	9030A		5410 12	Dec.10,2018	Dec.09,2019
V	Power Sensor	Keysight	U20	021XA		7030 04	Dec.10,2018	Dec.09,2019

Page 15 of 280

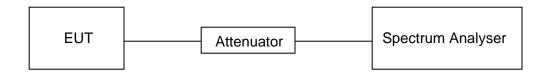
7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 DTS Meas Guidance v05	8.2
2	Peak& Average Output Power	KDB 558074 D01 DTS Meas Guidance v05	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 DTS Meas Guidance v05	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 DTS Meas Guidance v05	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 DTS Meas Guidance v05	8.6
6	Band-edge	KDB 558074 D01 DTS Meas Guidance v05	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 280

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

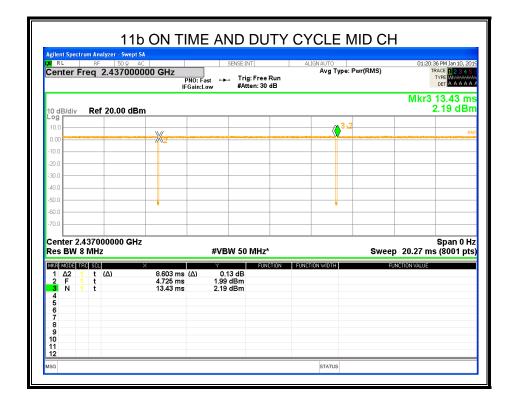
RESULTS

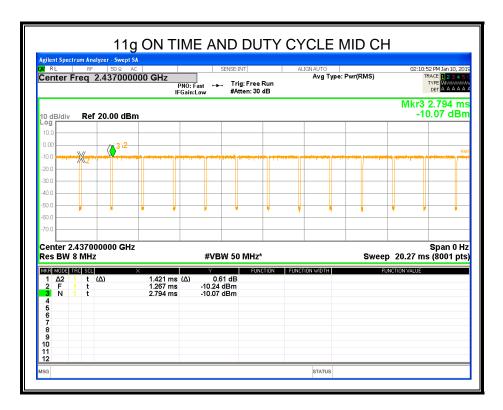
Chain 0

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11b	8.603	8.705	0.9883	98.83	0.05	0.12	200
11g	1.421	1.527	0.9306	93.06	0.31	0.70	1
11n H20	1.330	1.437	0.9255	92.55	0.34	0.75	1

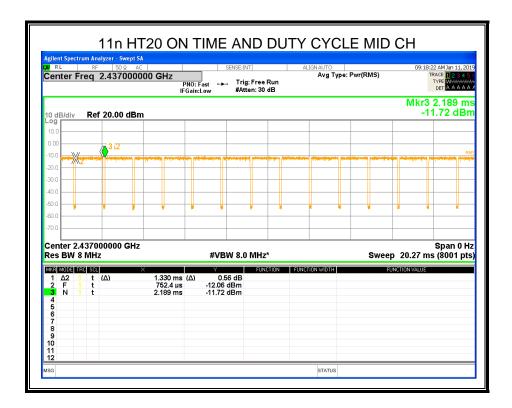
Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)


Where: T is On Time

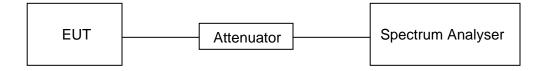
If that calculated VBW is not available on the analyzer then the next higher value should be used.


Chain 0 and Chain 1 has the same duty cycle, only Chain 0 data show here.

8.2. 6 dB DTS BANDWIDTH AND 99% BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC 15.247(a)(2) RSS-247 5.1 (a)	6 dB Bandwidth	>= 500KHz	2400-2483.5	
RSS-Gen Clause 6.6	99% Bandwidth	For reporting purposes only.	2400-2483.5	


TEST PROCEDURE

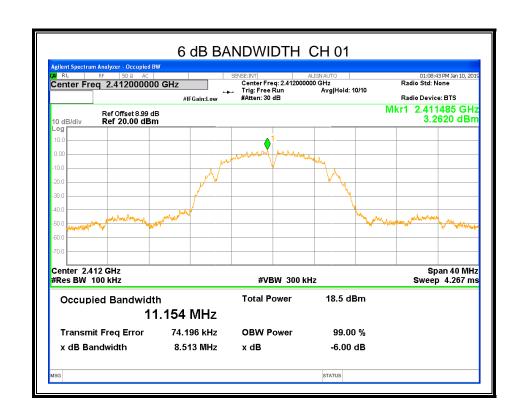
Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
IRRW	For 6dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
IV/BW/	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

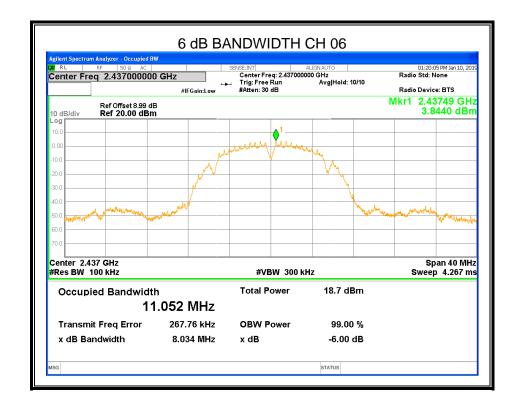
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

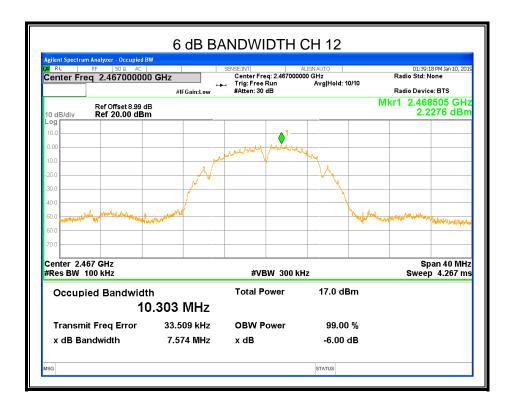

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

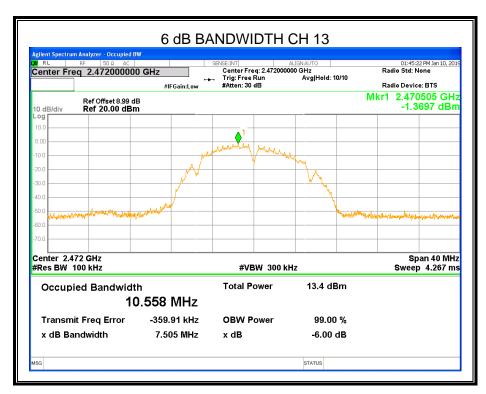
<u>RESULTS</u>

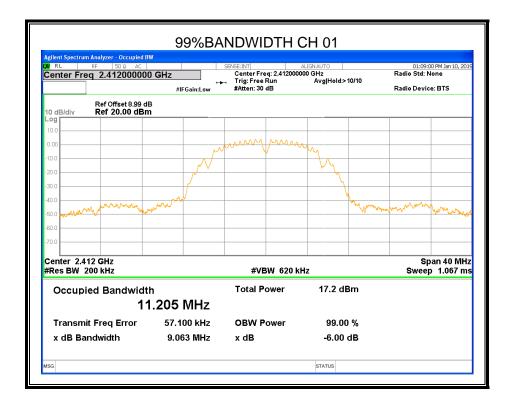

Chain 0 (WORST-CASE CONFIGURATION)

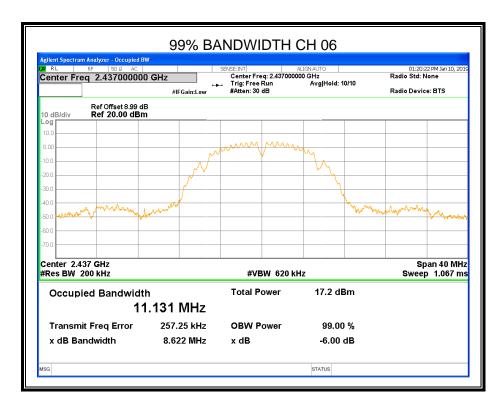

8.2.1. 802.11b MODE

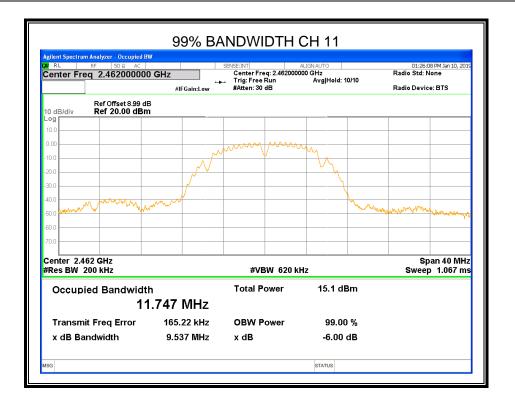
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
01	8.513	11.205	≥500	Pass
06	8.034	11.131	≥500	Pass
11	8.572	11.747	≥500	Pass
12	7.574	10.323	≥500	Pass
13	7.505	10.511	≥500	Pass

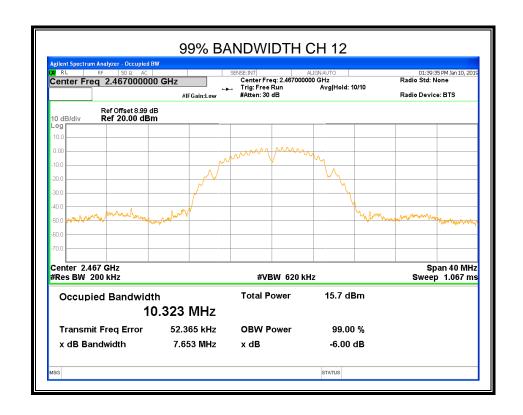


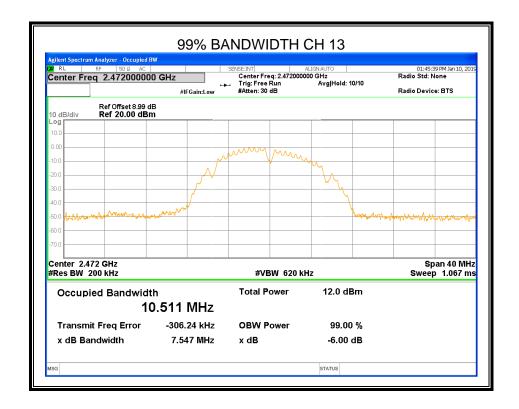


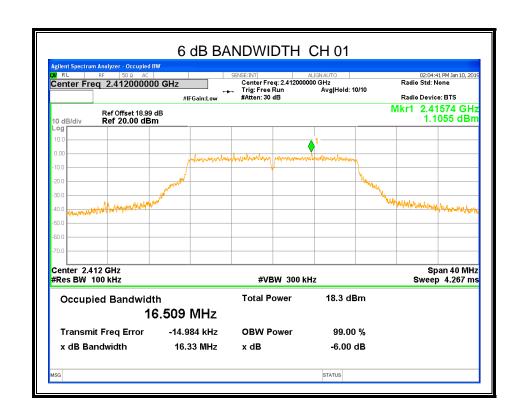


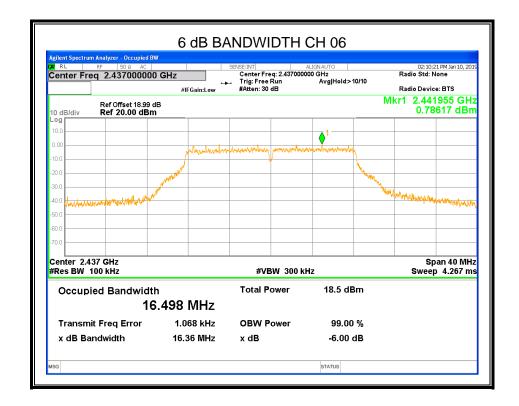






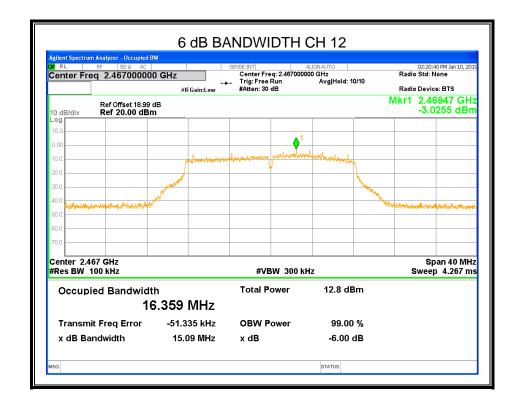


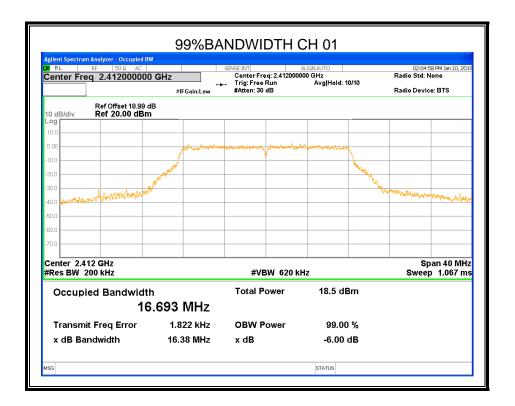


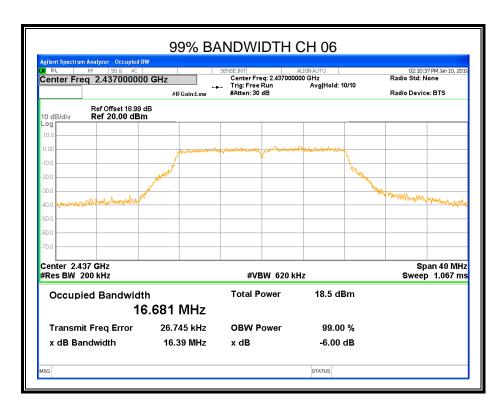


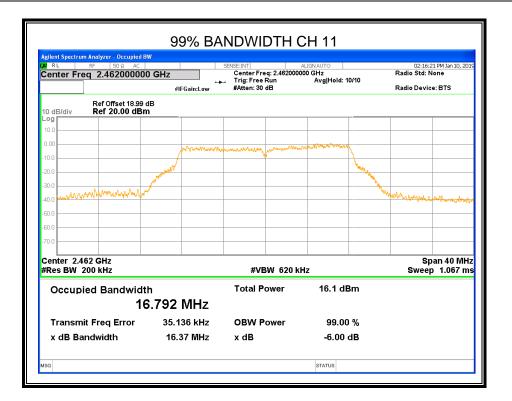
8.2.2. 802.11g MODE

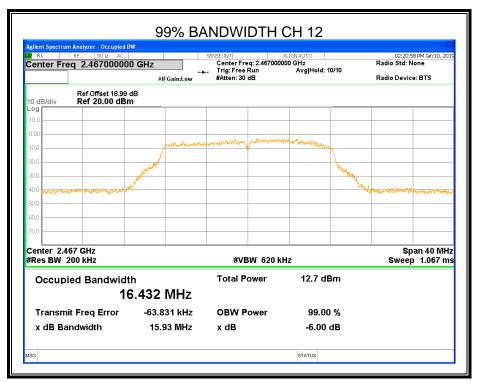
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
01	16.33	16.693	≥500	Pass
06	16.36	16.681	≥500	Pass
11	16.36	16.792	≥500	Pass
12	15.09	16.432	≥500	Pass
13	15.68	16.490	≥500	Pass

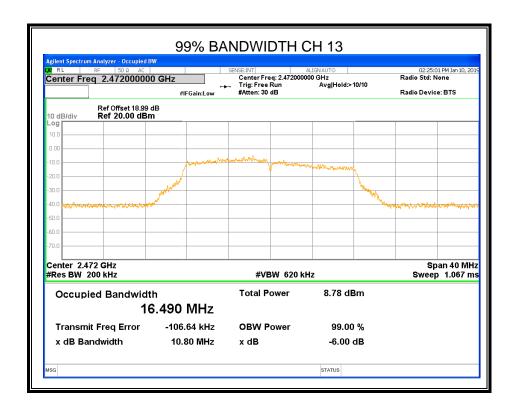


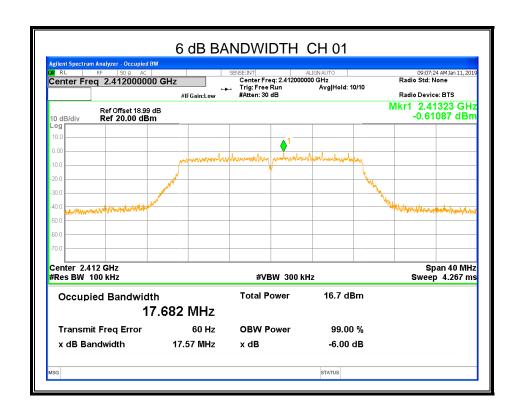


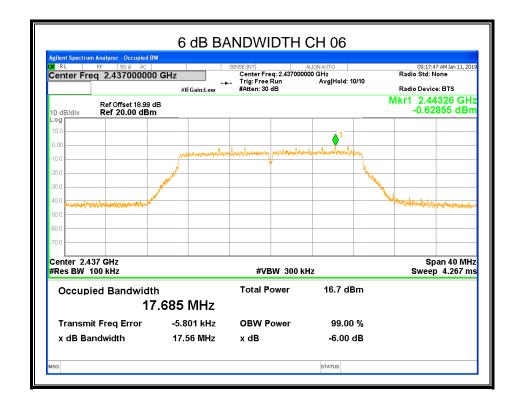






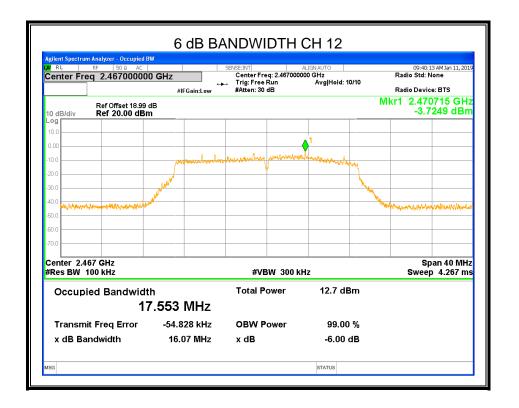


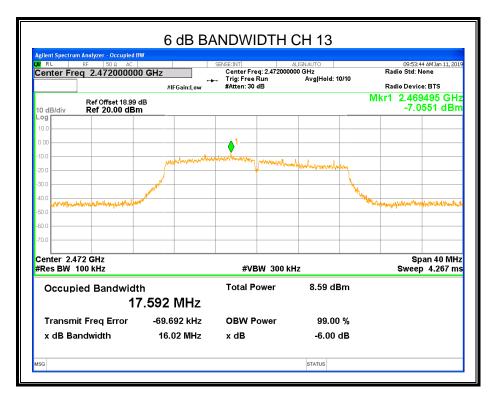


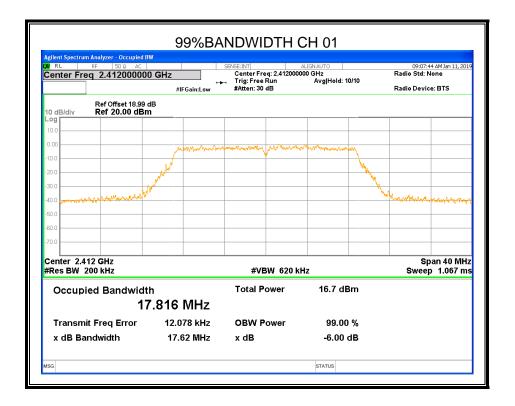


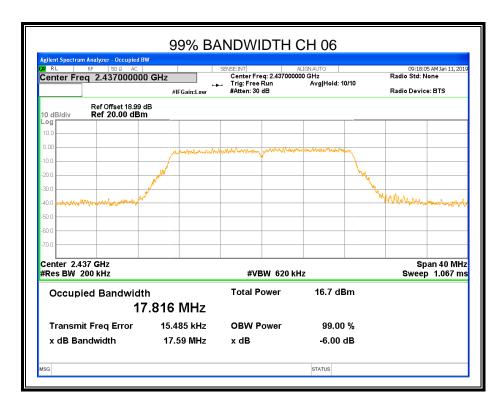
8.2.3. 802.11n HT20 MODE

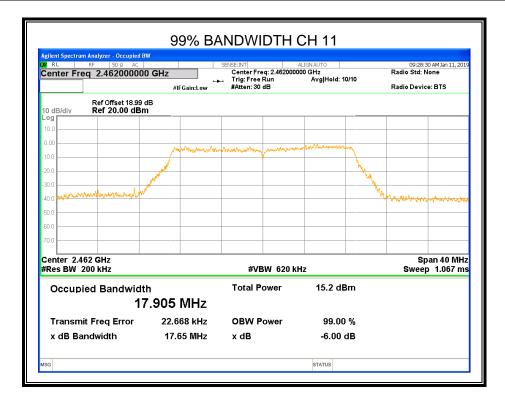
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
01	17.57	17.816	≥500	Pass
06	17.56	17.816	≥500	Pass
11	17.57	17.905	≥500	Pass
12	16.07	17.567	≥500	Pass
13	16.02	17.679	≥500	Pass

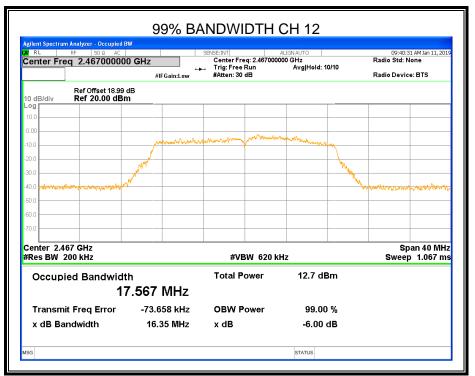


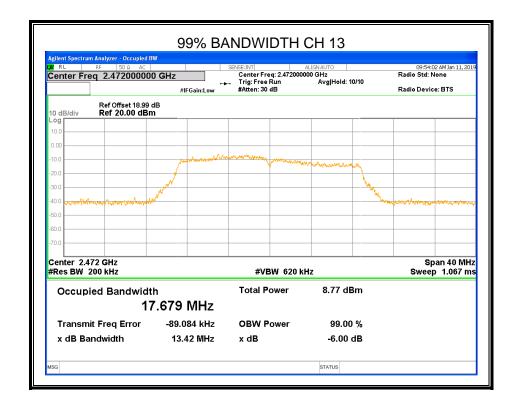












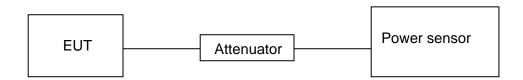
8.3. Maximum conducted (Average and Peak) output power

LIMITS

FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2							
;	Section Test Item Limit Frequency Range (MHz)						
FCC 15.247(b)(3) Conducted RSS-247 5.4 (e) Output Power			1 watt or 30dBm (See Note 1/2)	2400-2483.5			
Note:	1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. 2. Limit=30dBm – (Directional gain -6)dBi Directional gain: Please refer to the description in section 5.4.						

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

RESULTS

Maximum Conducted AVG Outpower

Mode: SISO for 802.11b and 802.11g, MIMO CDD for 802.11n						
Mode	Channel	Chain		Maximum Conducted AVG Outpower [dBm]		
		- Criaiii	Single	Total	[dBm]	Verdict
	01	0	12.01		20	
	01	1	12.55		30	PASS
	06	0	12.01		20	
	06	1	12.27		30	PASS
002.116	11	0	9.78		20	
802.11b	11	1	11.95		30	PASS
	12	0	10.49		20	
	12	1	11.14		30	PASS
	13	0	6.89		20	
		1	7.08		30	PASS
	01	0	12.52		30	
		1	13.17			PASS
	06	0	12.60		20	
		1	12.84		30	PASS
002.44-	11	0	10.15		20	
802.11g		1	11.61		30	PASS
	12	0	6.87		30	
		1	7.29			PASS
	12	0	2.94		20	
	13	1	3.06		30	PASS
	01	0	10.65	12.00	20	
	01	1	11.26	13.98	30	PASS
	06	0	10.73	14.02	20	
	06	1	11.30	14.03	30	PASS
802.11n	11	0	9.30	12.15	20	
HT20	11	1	10.84	13.15	30	PASS
	12	0	6.75	10.00	20	
	12	1	7.37	10.08	30	PASS
	12	0	2.75	E 0/I	30	
	13	1	2.90	5.84	30	PASS

Note: All the modulation and antennas had been tested, but only the worst data recorded in the report.

Maximum Conducted Peak Outpower

	Mode: SISO for 802.11b and 802.11g, MIMO CDD for 802.11n						
Mode	Channel	Chain	Maximum Conducted Peak Outpower [dBm]		Limit		
			Single	Total	[dBm]	Verdict	
	01	0	14.14		20		
	01	1	14.67		30	PASS	
	00	0	14.01		20		
	06	1	14.35		30	PASS	
002.445	44	0	11.96		20		
802.11b	11	1	14.10		30	PASS	
	12	0	12.48		20		
	12	1	13.23		30	PASS	
	13	0	8.83		20		
		1	9.17		30	PASS	
	01	0	19.47		20		
		1	20.35		30	PASS	
	06	0	19.56		20		
		1	19.78		30	PASS	
002.11~	11	0	17.07		20		
802.11g	11	1	18.74		30	PASS	
	12	0	13.86		20		
		1	14.29		30	PASS	
	12	0	9.88		20		
	13	1	9.97		30	PASS	
	01	0	18.28	22.20	20		
	01	1	20.25	22.39	30	PASS	
	06	0	18.37	22.41	20		
	06	1	20.23	22.41	30	PASS	
802.11n	11	0	16.82	24.52	30		
HT20	11	1	19.74	21.53	30	PASS	
	12	0	14.28	10.25	30		
	12	1	16.19	18.35	30	PASS	
	12	0	10.34	12.05	20		
	13	1	11.46	13.95	30	PASS	

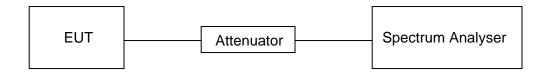
Note: All the modulation and antennas had been tested, but only the worst data recorded in the report.

8.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2						
S	Section Test Item Limit Frequency Range (MHz)					
FCC §15.247 (e) Power Spectral Density			8 dBm in any 3 kHz band	2400-2483.5		
Note:	1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. 2. Limit=8dBm – (Directional gain -6)dBi Directional gain: Please refer to the description in section 5.4.					

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test		
Detector	Peak		
RBW	3 kHz ≤ RBW ≤ 100 kHz.		
VBW	≥3 × RBW		
Span	1.5 x DTS bandwidth		
Trace	Max hold		
Sweep time	Auto couple.		

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

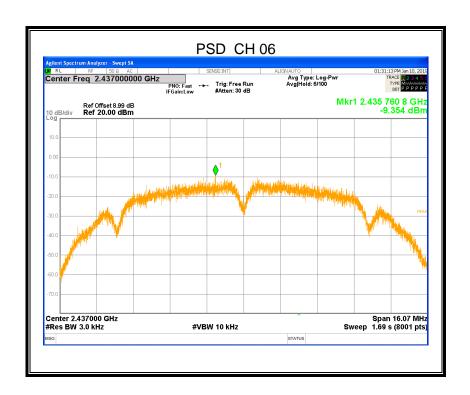
TEST SETUP

REPORT NO.: 4788832561.1-3

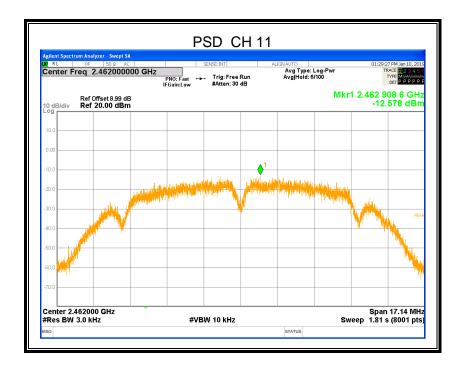
Page 42 of 280

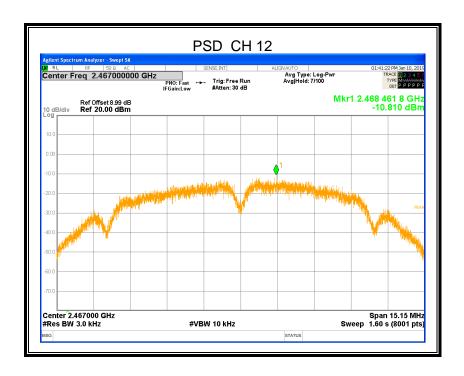
TEST ENVIRONMENT

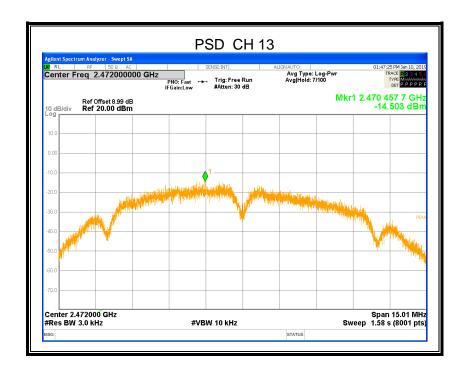

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

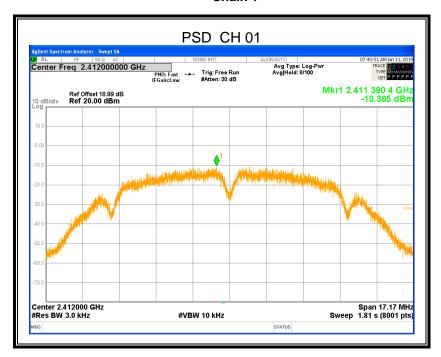

RESULTS

<u>ULIS</u>	Mode: SISO for 802.11b and 802.11g, MIMO CDD for 802.11n						
Mode	Channel	Chain	Meas.Level [dBm/3kHz]	Total [dBm/3kHz]	Limit (dBm/3KHz)	Verdict	
	01	0	-9.965		8		
	UI	1	-10.365			PASS	
	06	0	-9.354		8		
		1	-10.190		O	PASS	
802.11b	11	0	-12.578		8		
802.110	11	1	-10.411		0	PASS	
	12	0	-10.810		8		
	12	1	-11.244		O	PASS	
	13	0	-14.503		8		
	13	1	-15.122		ŏ	PASS	
	01	0	-12.820				
	01	1	-11.140		8	PASS	
	06	0	-13.245				
		1	-12.966		8	PASS	
802.11g	11	0	-15.667				
002.11g		1	-13.452		8	PASS	
	12	0	-17.651		8		
	12	1	-17.779		0	PASS	
	13	0	-20.452		8		
	13	1	-21.252		O	PASS	
	01	0	-14.927	-11.869			
	01	1	-14.832	-11.009	5.45	PASS	
	06	0	-15.006	-11.587			
		1	-14.224	-11.507	5.45	PASS	
802.11n	11	0	-13.717	-10.537			
HT20	11	1	-13.384	-10.001	5.45	PASS	
	12	0	-17.627	14 440	5.45		
	12	1	-17.228	-14.413	3.43	PASS	
	40	0	-20.848	47.004	5 45	DAGG	
	13	1	-20.835	-17.831	5.45	PASS	

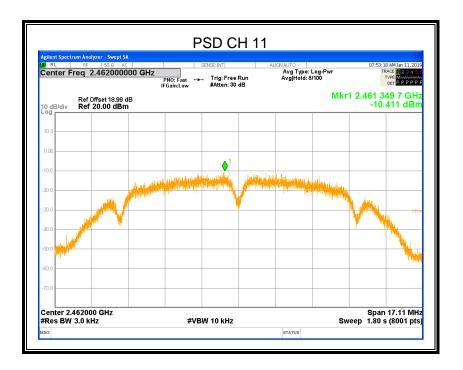



8.4.1. 802.11b

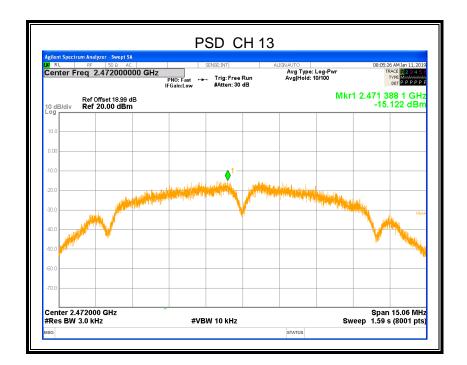


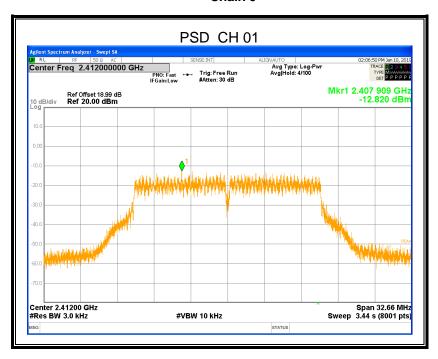


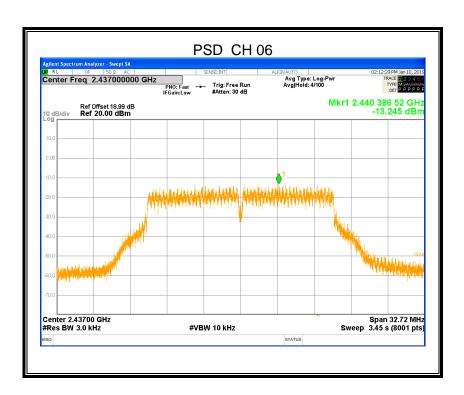


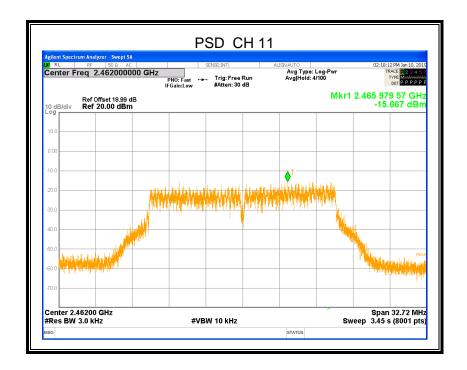


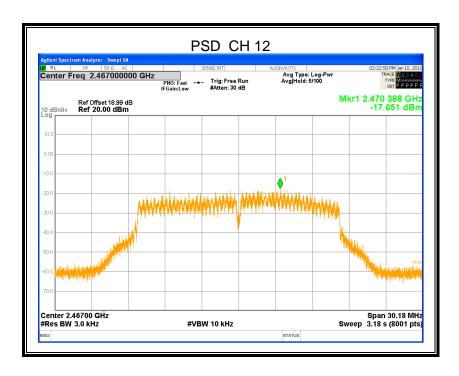
Chain 1

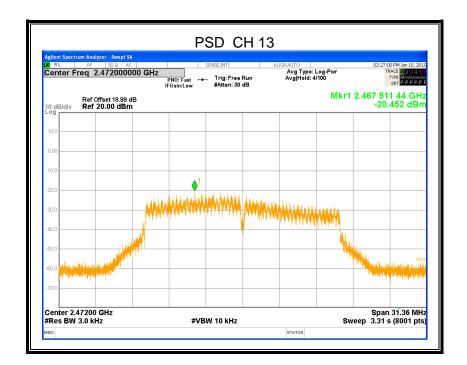


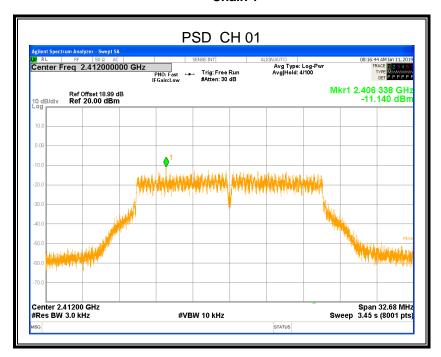


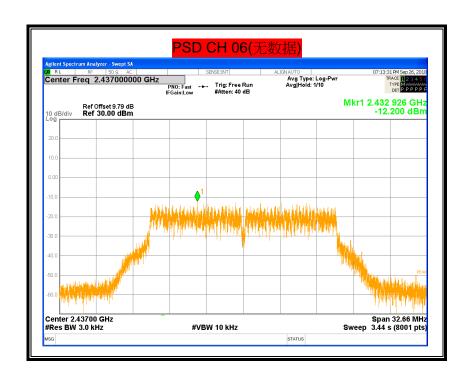


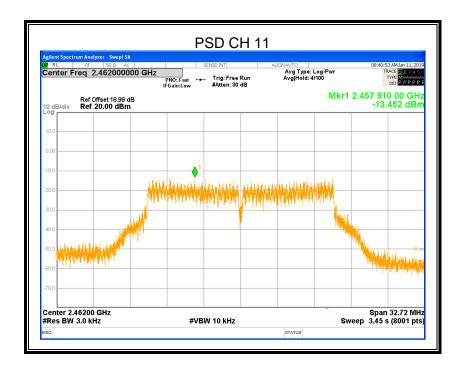


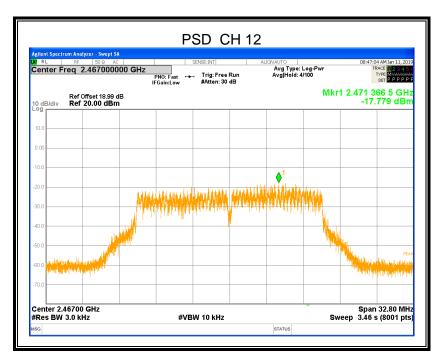

8.4.2. 802.11g

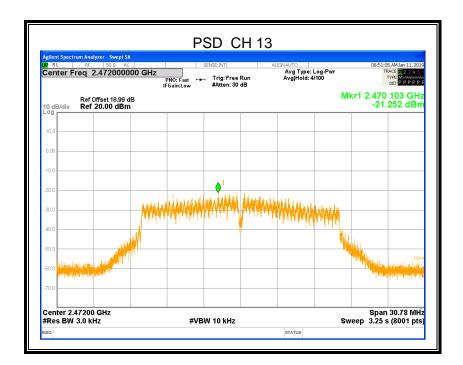


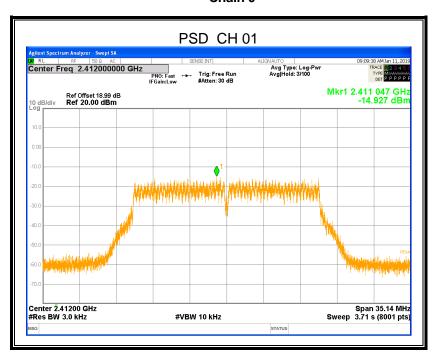


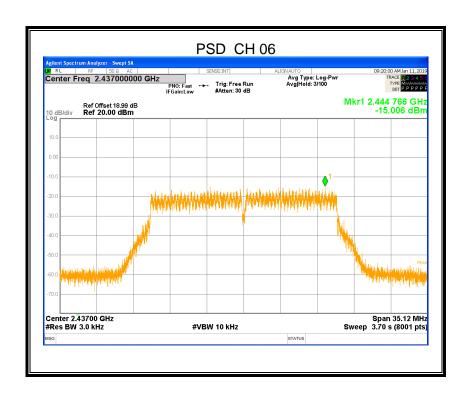


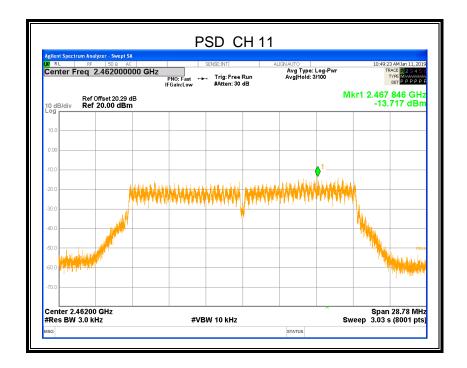


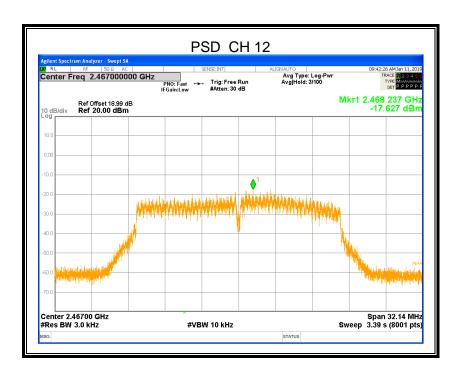


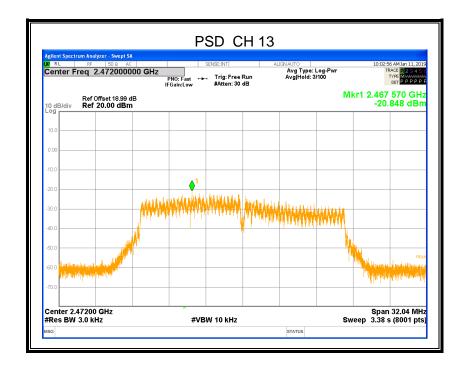


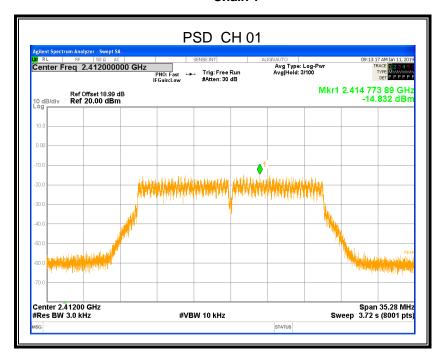


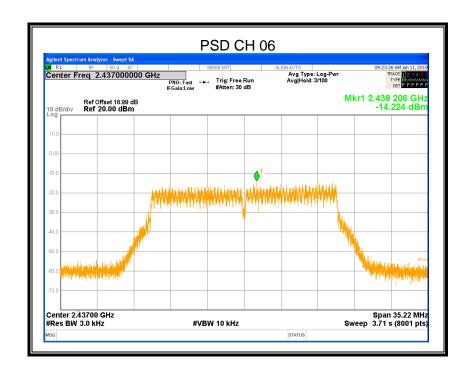


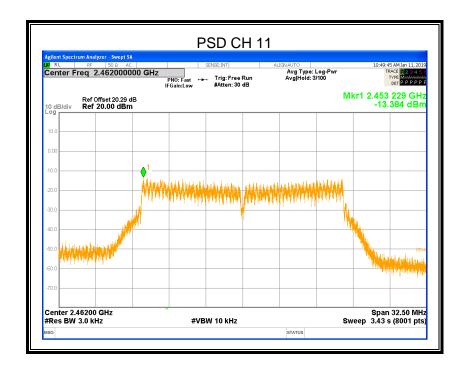


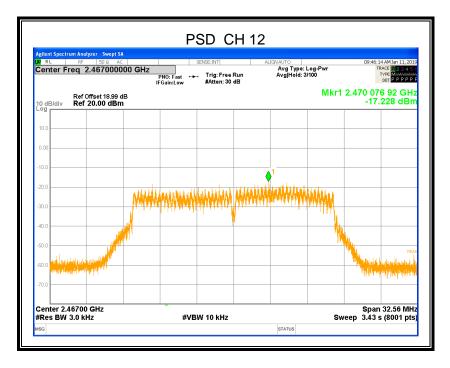

8.4.3. 802.11n HT20

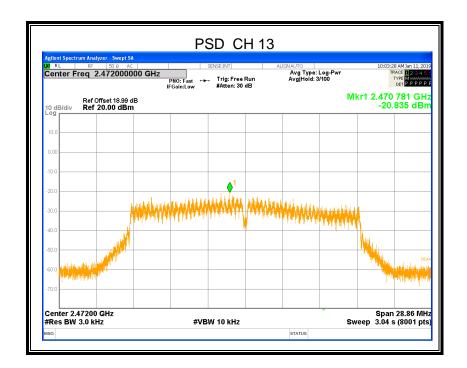












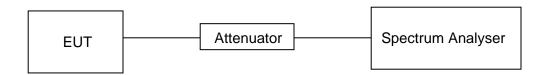
8.1. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

FCC Part15 (15.247) Subpart C RSS-247 ISSUE 2						
Section	Section Test Item Limit					
FCC §15.247 (d) RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power				

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum PSD level.

12090	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP


TEST ENVIRONMENT

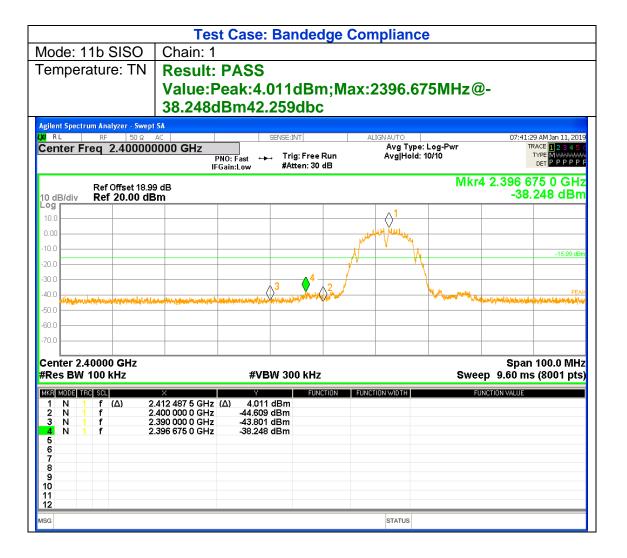
Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

RESULTS

8.1.1. 802.11b MODE

Low Channel 01

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Pref:2413.490MHz@3.439 dBm Agilent Spectrum Analyzer - Swept SA 01:17:21 PM Jan 10, 2019 Avg Type: Log-Pwr Avg|Hold: 10/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 2.413 490 GHz Ref Offset 8.99 dB Ref 20.00 dBm 3.439 dBm 10 dB/div Log 10.0 n no -20.0 -30.0 -40.0 -50.0 Municipal -60.0 -70.0 Center 2.41200 GHz Span 40.00 MHz Sweep 4.00 ms (10000 pts) **#VBW** 300 kHz #Res BW 100 kHz STATUS



Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:30~10000;6278.824MHz@-46.001 dBm Agilent Spectrum Analyzer - Swept SA 01:17:35 PM Jan 10, 2019 TRACE 1 2 3 Avg Type: Log-Pwr Avg|Hold: 6/10 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr2 6.278 8 GHz Ref Offset 8.99 dB Ref 20.00 dBm -46.001 dBm 10 dB/div Log 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 30 MHz Stop 10.000 GHz Sweep 953 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25985.599MHz@-40.279 dBm Agilent Spectrum Analyzer - Swept SA 01:17:47 PM Jan 10, 2019 Avg Type: Log-Pwr Avg|Hold: 4/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 25.985 6 GHz Ref Offset 8.99 dB Ref 20.00 dBm 10 dB/div Log -40.279 dBm 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Pref:2412.978MHz@3.846 dBm Agilent Spectrum Analyzer - Swept SA 07:41:44 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 10/10 Trig: Free Run TYPE PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 2.412 978 GHz Ref Offset 18.99 dB Ref 20.00 dBm 3.846 dBm 10 dB/div Log 10.0 n no -16.15 dE -20.0 -30.0 -40.0 day Andrew Andrew -50.0 -60.0 -70.0 Center 2.41200 GHz Span 40.00 MHz Sweep 4.00 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:30~10000;6399.473MHz@-36.728 dBm Agilent Spectrum Analyzer - Swept SA 07:41:59 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 5/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr2 6.399 5 GHz Ref Offset 18.99 dB Ref 20.00 dBm -36.728 dBm 10 dB/div Log 10.0 n no -16.15 dE -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 30 MHz Stop 10.000 GHz Sweep 953 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25963.196MHz@-29.372 dBm Agilent Spectrum Analyzer - Swept SA RF 50Ω AC 07:42:10 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 3/10 TRACE 1 2 3 Center Freq 18.000000000 GHz Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 25.963 2 GHz Ref Offset 18.99 dB Ref 20.00 dBm 10 dB/div Log -29.372 dBm 10.0 n no -16.15 dE -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

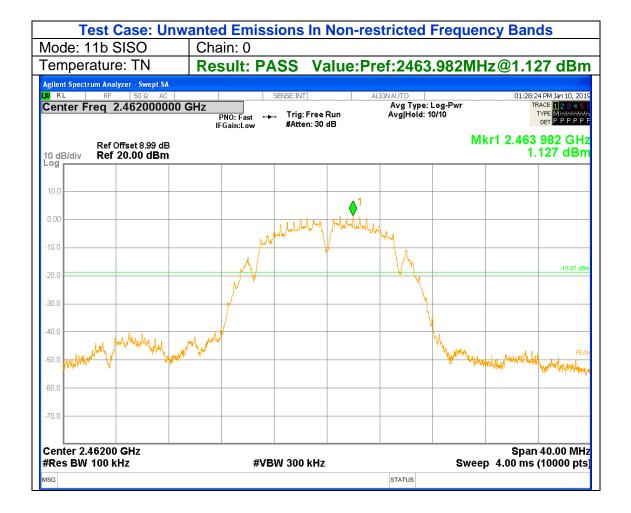
Middle Channel 06

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:30~10000;5393.399MHz@-45.457 dBm Agilent Spectrum Analyzer - Swept SA 01:22:48 PM Jan 10, 2019 Avg Type: Log-Pwr Avg|Hold: 5/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr2 5.393 4 GHz Ref Offset 8.99 dB Ref 20.00 dBm -45.457 dBm 10 dB/div Log 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 30 MHz Stop 10.000 GHz Sweep 953 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

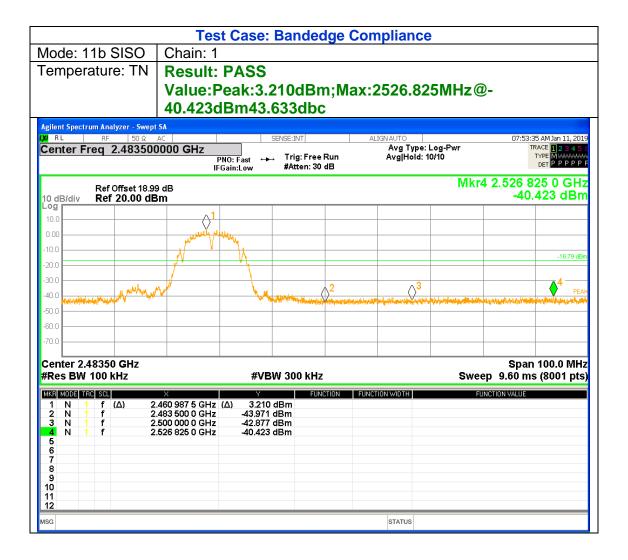
Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25993.599MHz@-40.293 dBm Agilent Spectrum Analyzer - Swept SA XI RL RF 50Ω AC 01:22:59 PM Jan 10, 2019 Avg Type: Log-Pwr Avg|Hold: 3/10 TRACE 1 2 3 Center Freq 18.000000000 GHz Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 25.993 6 GHz Ref Offset 8.99 dB Ref 20.00 dBm 10 dB/div Log -40.293 dBm 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Pref:2435.986MHz@3.857 dBm Agilent Spectrum Analyzer - Swept SA 07:48:30 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 10/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 2.435 986 GHz Ref Offset 18.99 dB Ref 20.00 dBm 3.857 dBm 10 dB/div Log 10.0 n no -16.14 dE -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Center 2.43700 GHz Span 40.00 MHz Sweep 4.00 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

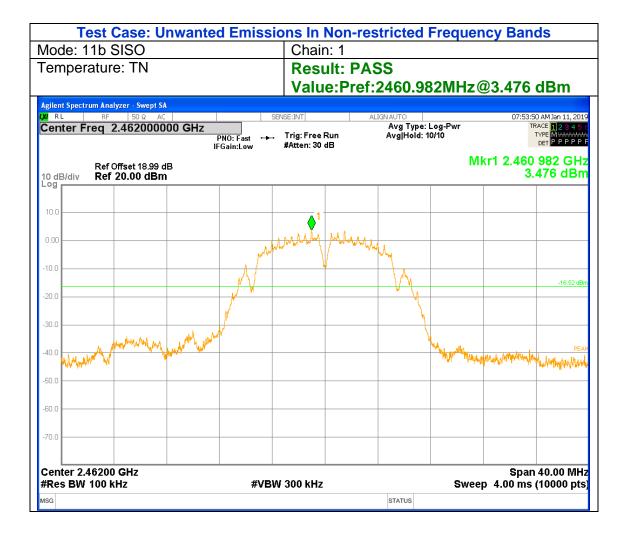

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:30~10000;6398.476MHz@-36.472 dBm Agilent Spectrum Analyzer - Swept SA 07:48:45 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 6/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr2 6.398 5 GHz Ref Offset 18.99 dB Ref 20.00 dBm -36.472 dBm 10 dB/div Log 10.0 n no -16.14 dE -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 30 MHz Stop 10.000 GHz Sweep 953 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS


Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25969.597MHz@-29.843 dBm Agilent Spectrum Analyzer - Swept SA XI RL RF 50Ω AC 07:48:57 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 3/10 TRACE 1 2 3 Center Freq 18.000000000 GHz PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Mkr1 25.969 6 GHz Ref Offset 18.99 dB Ref 20.00 dBm 10 dB/div Log -29.843 dBm 10.0 n no -16.14 dE -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

High Channel 11



Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:30~10000;5342.547MHz@-46.291 dBm Agilent Spectrum Analyzer - Swept SA 01:28:39 PM Jan 10, 2019 Avg Type: Log-Pwr Avg|Hold: 6/10 Center Freq 5.015000000 GHz TRACE 1 2 3 4 5 6
TYPE MINIMUM
DET PPPPF Trig: Free Run #Atten: 30 dB PNO: Fast IFGain:Low Mkr2 5.342 5 GHz Ref Offset 8.99 dB -46.291 dBm 10 dB/div Log Ref 20.00 dBm 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 30 MHz Stop 10.000 GHz #Res BW 100 kHz Sweep 953 ms (10000 pts) **#VBW** 300 kHz STATUS



Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25481.548MHz@-39.812 dBm Agilent Spectrum Analyzer - Swept SA XI RL RF 50Ω AC 01:28:51 PM Jan 10, 2019 Avg Type: Log-Pwr Avg|Hold: 4/10 TRACE 1 2 3 Center Freq 18.000000000 GHz Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 25.481 5 GHz Ref Offset 8.99 dB Ref 20.00 dBm 10 dB/div Log -39.812 dBm 10.0 n no -18.87 dE -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:30~10000;6413.432MHz@-35.989 dBm Agilent Spectrum Analyzer - Swept SA 07:54:05 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 6/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr2 6.413 4 GHz Ref Offset 18.99 dB Ref 20.00 dBm -35.989 dBm 10 dB/div Log 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 30 MHz Stop 10.000 GHz Sweep 953 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25907.191MHz@-29.678 dBm Agilent Spectrum Analyzer - Swept SA 07:54:17 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 3/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 25.907 2 GHz Ref Offset 18.99 dB Ref 20.00 dBm 10 dB/div Log -29.678 dBm 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

High Channel 12

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Pref:2467.482MHz@2.664 dBm Agilent Spectrum Analyzer - Swept SA Center Freq 2.467000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 TRACE 1 2 3 4 5 6
TYPE M WWW. Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 2.467 482 GHz Ref Offset 8.99 dB 2.664 dBm 10 dB/div Log Ref 20.00 dBm 10.0 -17.34 dE -40.0 -60.0 Center 2.46700 GHz Span 40.00 MHz #Res BW 100 kHz **#VBW** 300 kHz Sweep 4.00 ms (10000 pts)

Test Case: Unwanted Emissions In Non-restricted Frequency Bands

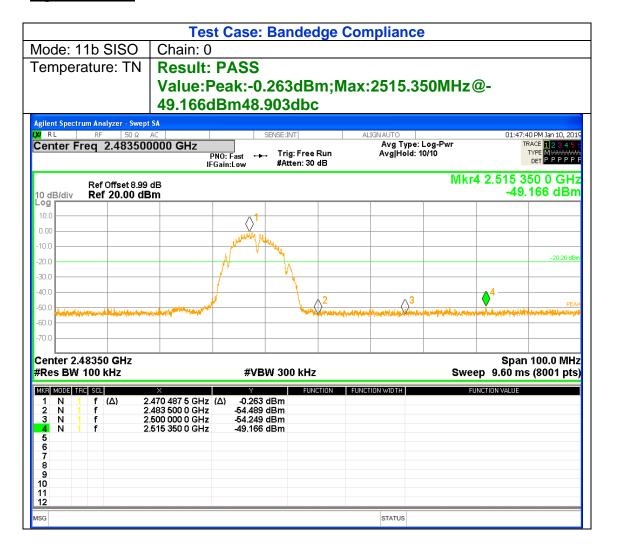
Mode: 11b SISO Chain: 0

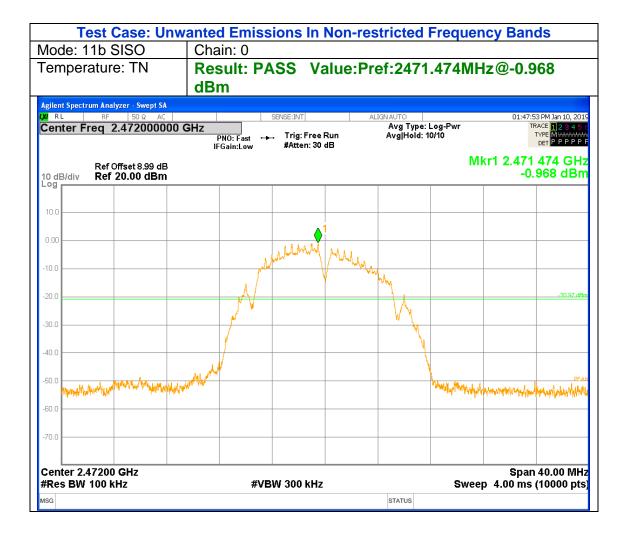
Temperature: TN Result: PASS
Value:Puw:30~10000;6556.018MHz@-46.240 dBm

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25462.346MHz@-39.076 dBm Agilent Spectrum Analyzer - Swept SA XI RL RF 50Ω AC Avg Type: Log-Pwr Avg|Hold: 3/10 Center Freq 18.000000000 GHz Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 25.462 3 GHz Ref Offset 8.99 dB Ref 20.00 dBm 10 dB/div Log -39.076 dBm 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Bandedge Compliance Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Peak:2.831dBm;Max:2522.538MHz@-39.634dBm42.465dbc Agilent Spectrum Analyzer - Swept SA RF 07:59:00 AM Jan 11, 2019 TRACE 1 2 3 Avg Type: Log-Pwr Center Freq 2.483500000 GHz Trig: Free Run Avg|Hold: 10/10 PNO: Fast IFGain:Low #Atten: 30 dB Mkr4 2.522 537 5 GHz Ref Offset 18.99 dB Ref 20.00 dBm -39.634 dBm 10 dB/div Log 10.0 -17.17 dE -2n r -30.0 -40.C -50.0 -60.0 -70.0 Center 2.48350 GHz Span 100.0 MHz #Res BW 100 kHz **#VBW 300 kHz** Sweep 9.60 ms (8001 pts) FUNCTION FUNCTION WIDTH 2.467 987 5 GHz (Δ) 2.483 500 0 GHz 2.500 000 0 GHz 2.522 537 5 GHz 2.831 dBm (A) 1 2 3 4 5 6 7 8 9 10 11 12 ZZZZ -43.998 dBm -43.777 dBm -39.634 dBm STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Pref:2468.490MHz@2.804 dBm Agilent Spectrum Analyzer - Swept SA 07:59:15 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 10/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 2.468 490 GHz Ref Offset 18.99 dB Ref 20.00 dBm 2.804 dBm 10 dB/div Log 10.0 n no -20.0 -30.0 -40.0 the state of the tenth of the state of the s -50.0 -60.0 -70.0 Center 2.46700 GHz Span 40.00 MHz Sweep 4.00 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS


Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:30~10000;2654.366MHz@-36.729 dBm Agilent Spectrum Analyzer - Swept SA 07:59:30 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 6/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr2 2.654 4 GHz Ref Offset 18.99 dB Ref 20.00 dBm -36.729 dBm 10 dB/div Log 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 30 MHz Stop 10.000 GHz Sweep 953 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS


Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25859.186MHz@-29.248 dBm Agilent Spectrum Analyzer - Swept SA RF 50Ω AC 07:59:42 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 3/10 TRACE 1 2 3 Center Freq 18.000000000 GHz Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 25.859 2 GHz Ref Offset 18.99 dB Ref 20.00 dBm 10 dB/div Log -29.248 dBm 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

High Channel 13

Stop 10.000 GHz

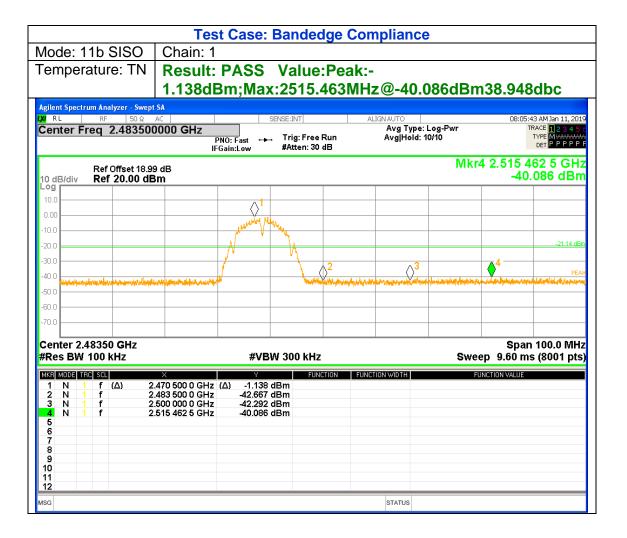
Sweep 953 ms (10000 pts)

-70.0

Start 30 MHz

#Res BW 100 kHz

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:30~10000;6454.313MHz@-45.582 dBm Agilent Spectrum Analyzer - Swept SA 01:48:08 PM Jan 10, 2019 Avg Type: Log-Pwr Avg|Hold: 6/10 Center Freq 5.015000000 GHz TRACE 1 2 3 4 5 6
TYPE MINIMUM
DET P P P P P F Trig: Free Run #Atten: 30 dB PNO: Fast IFGain:Low Mkr2 6.454 3 GHz Ref Offset 8.99 dB -45.582 dBm 10 dB/div Log Ref 20.00 dBm 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0


#VBW 300 kHz

STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 0 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25793.579MHz@-39.576 dBm Agilent Spectrum Analyzer - Swept SA XI RL RF 50Ω AC 01:48:20 PM Jan 10, 2019 Avg Type: Log-Pwr Avg|Hold: 3/10 TRACE 1 2 3 Center Freq 18.000000000 GHz Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 25.793 6 GHz Ref Offset 8.99 dB Ref 20.00 dBm 10 dB/div Log -39.576 dBm 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Pref:2471.486MHz@-0.466 dBm Agilent Spectrum Analyzer - Swept SA 08:05:58 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 10/10 TRACE 123 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr1 2.471 486 GHz Ref Offset 18.99 dB Ref 20.00 dBm -0.466 dBm 10 dB/div Log 10.0 n no -20.0 -30.0 -40.0 Jakahannan and Jakahan Jakahan Alandah arthritalogicheanteanthan de arthritanteanthan de l'arthritant de l'arthritant de l'arthritant de l'arthrital -50.0 -60.0 -70.0 Center 2.47200 GHz Span 40.00 MHz Sweep 4.00 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:30~10000;2702.227MHz@-36.929 dBm Agilent Spectrum Analyzer - Swept SA 08:06:13 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 5/10 TRACE 1 2 3 Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Mkr2 2.702 2 GHz Ref Offset 18.99 dB Ref 20.00 dBm -36.929 dBm 10 dB/div Log 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 30 MHz Stop 10.000 GHz Sweep 953 ms (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

Test Case: Unwanted Emissions In Non-restricted Frequency Bands Mode: 11b SISO Chain: 1 Temperature: TN **Result: PASS** Value:Puw:10000~26000;25951.995MHz@-29.611 dBm Agilent Spectrum Analyzer - Swept SA 08:06:24 AM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold: 3/10 TRACE 1 2 3 PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Mkr1 25.952 0 GHz Ref Offset 18.99 dB Ref 20.00 dBm 10 dB/div Log -29.611 dBm 10.0 n no -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Start 10.000 GHz Stop 26.000 GHz Sweep 1.53 s (10000 pts) #Res BW 100 kHz **#VBW 300 kHz** STATUS

REPORT NO.: 4788832561.1-3

Page 100 of 280

9. RADIATED TEST RESULTS

9.1.1. LIMITS

Please refer to FCC §15.205 and §15.209

Please refer to RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

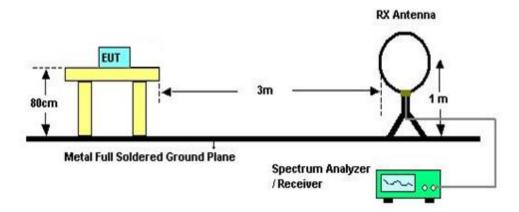
(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)			
Frequency (Minz)	Peak	Average		
Above 1000	74	54		

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10

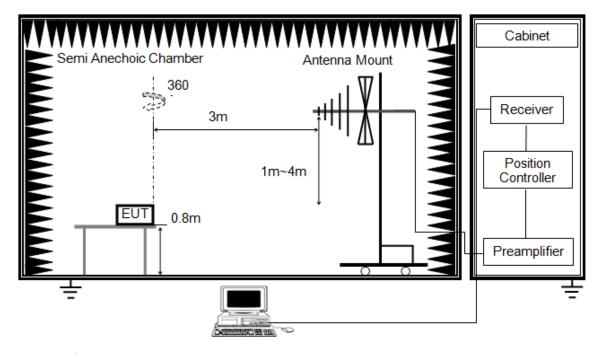
FCC Restricted bands of operation:


MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(²)	
13.36-13.41				

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

9.1.2. TEST SETUP AND PROCEDURE

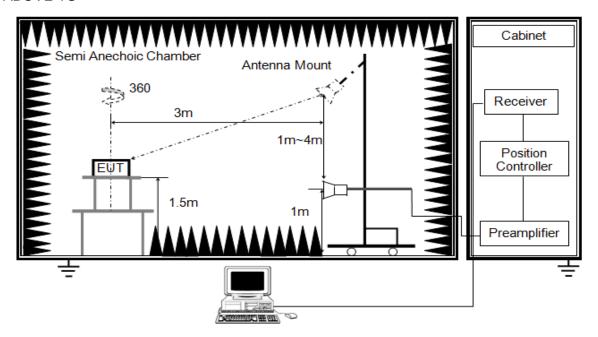
Below 30MHz


The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Below 1G


The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

ABOVE 1G

The setting of the spectrum analyser

RBW	1M
IV/RW/	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

REPORT NO.: 4788832561.1-3

Page 105 of 280

9.1.3. TEST ENVIRONMENT

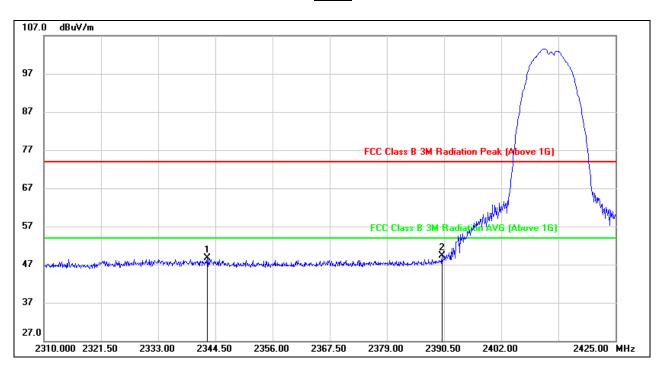
Temperature	24.3°C	Relative Humidity	57%
Atmosphere Pressure	101kPa	Test Voltage	AC120V

9.1.4. **RESULTS**

Note 1: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

Note 3. The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is No limit for Peak, No limit for AVG. For example, the frequency of 2000MHz did not fall on the Restricted Bands, although the Peak exceeds the 54dBuV limit value, but it is not necessary to read AVG. All test results are in compliance with the limits.


9.2. RESTRICTED BANDEDGE

9.2.1. 802.11b MODE

SISO CHAIN 0

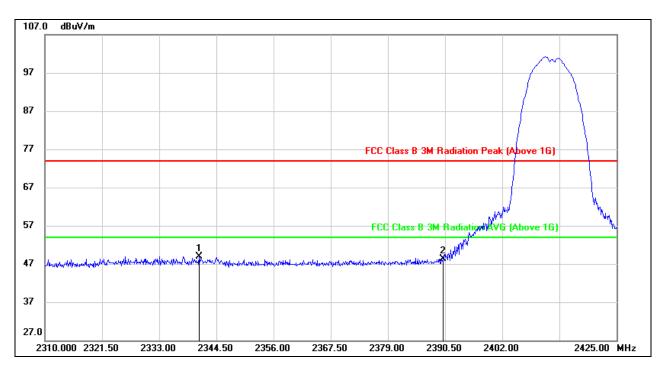
RESTRICTED BANDEDGE (LOW CHANNEL 01, HORIZONTAL)

PRAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2342.890	15.82	32.79	48.61	74.00	-25.39	peak
2	2390.000	16.30	32.94	49.24	74.00	-24.76	peak

Note: 1. Measurement = Reading Level + Correct Factor.

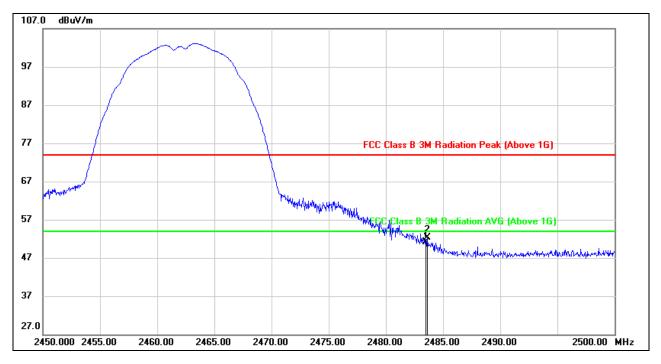
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.



RESTRICTED BANDEDGE (LOW CHANNEL 01, VERTICAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2341.050	16.20	32.78	48.98	74.00	-25.02	peak
2	2390.000	15.44	32.94	48.38	74.00	-25.62	peak


Note: 1. Measurement = Reading Level + Correct Factor.

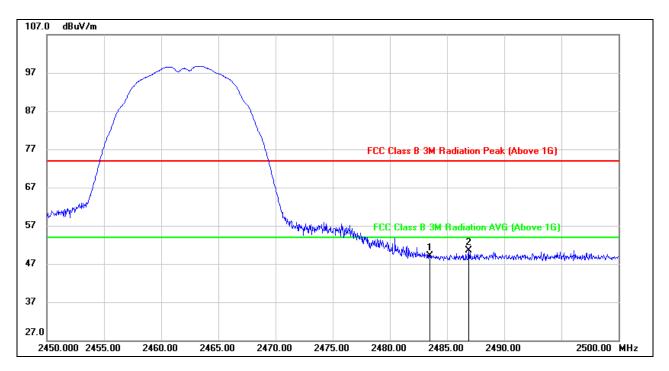
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

RESTRICTED BANDEDGE (CHANNEL11, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.47	33.58	51.05	74.00	-22.95	peak
2	2483.600	18.65	33.58	52.23	74.00	-21.77	peak

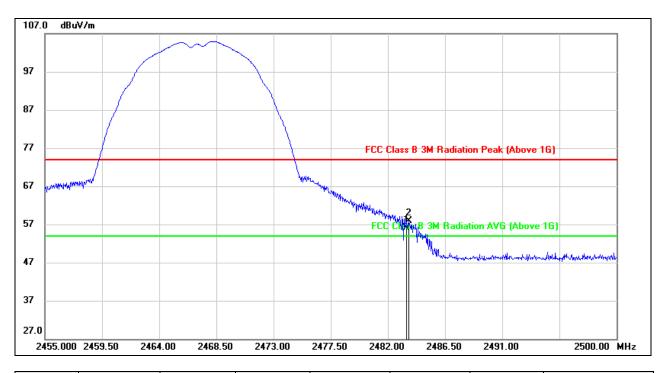
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

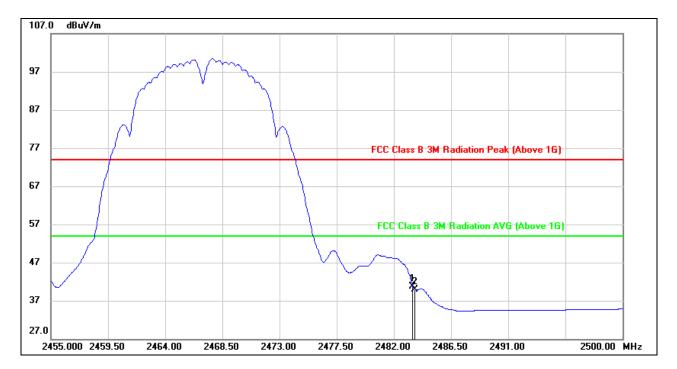
RESTRICTED BANDEDGE (CHANNEL11, VERTICAL)

PEAK


N	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2483.500	15.44	33.58	49.02	74.00	-24.98	peak
	2	2486.900	16.81	33.61	50.42	74.00	-23.58	peak

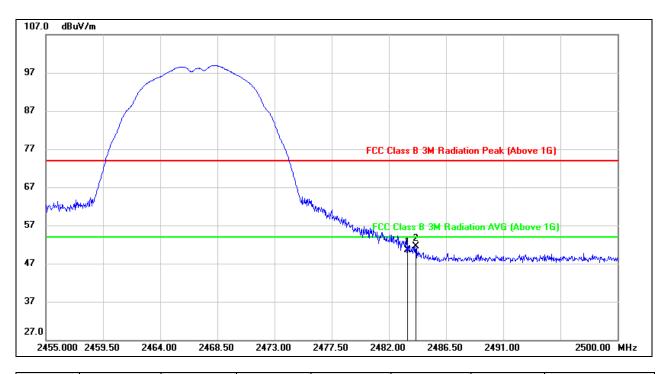
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

RESTRICTED BANDEDGE (CHANNEL12, HORIZONTAL)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	22.58	33.58	56.16	74.00	-17.84	peak
2	2483.665	24.30	33.58	57.88	74.00	-16.12	peak

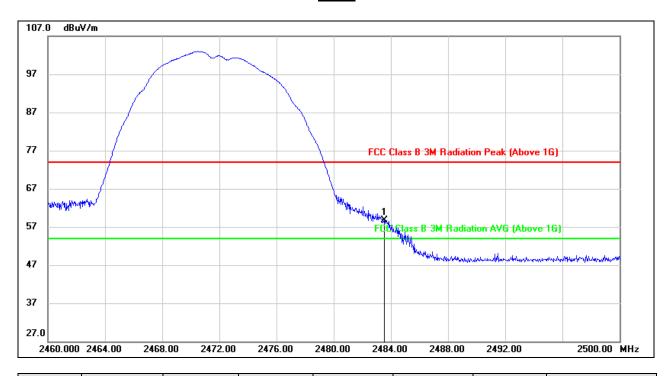
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	7.06	33.58	40.64	54.00	-13.36	AVG
2	2483.665	6.24	33.58	39.82	54.00	-14.18	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 8.1.

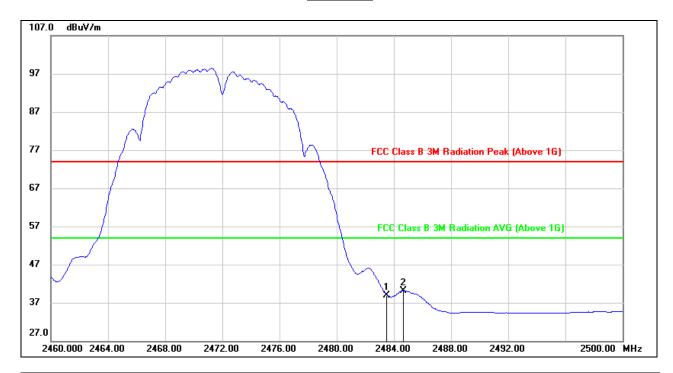
RESTRICTED BANDEDGE (CHANNEL12, VERTICAL)

PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.85	33.58	50.43	74.00	-23.57	peak
2	2484.115	17.91	33.58	51.49	74.00	-22.51	peak

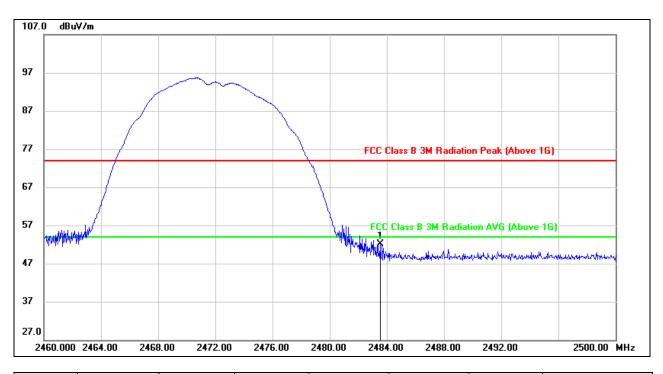
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL 13, HORIZONTAL)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	25.22	33.58	58.80	74.00	-15.20	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

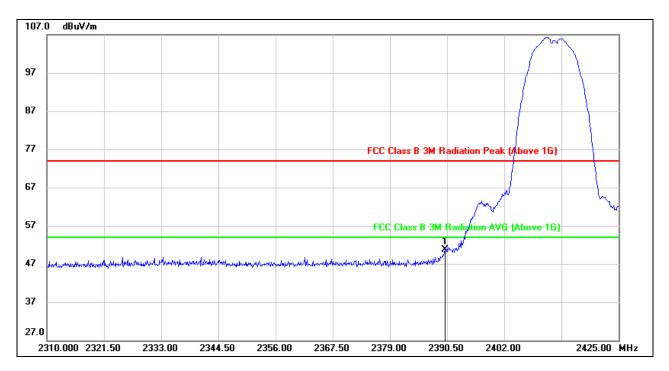

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	5.37	33.58	38.95	54.00	-15.05	AVG
2	2484.680	6.52	33.59	40.11	54.00	-13.89	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL 13, VERTICAL)

PEAK

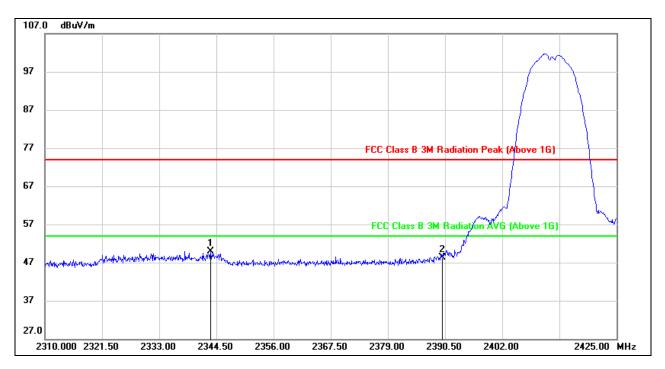
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.43	33.58	52.01	74.00	-21.99	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

SISO CHAIN 1

RESTRICTED BANDEDGE (LOW CHANNEL 01, HORIZONTAL)

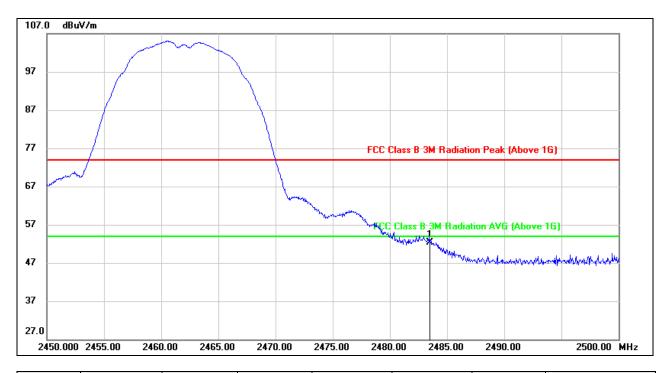
<u>PRAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	17.86	32.94	50.80	74.00	-23.20	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL 01, VERTICAL)

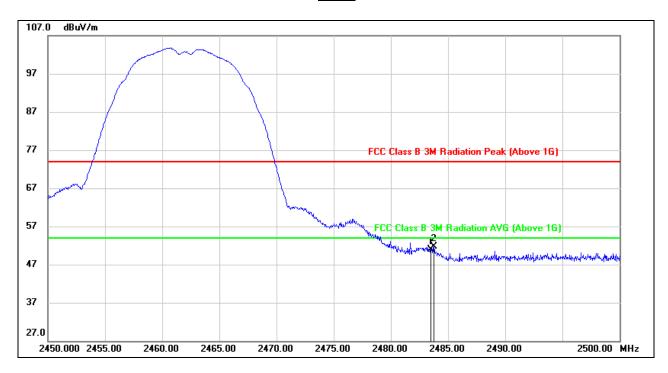
PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2343.350	17.16	32.79	49.95	74.00	-24.05	peak
2	2390.000	15.42	32.94	48.36	74.00	-25.64	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

RESTRICTED BANDEDGE (CHANNEL11, HORIZONTAL)

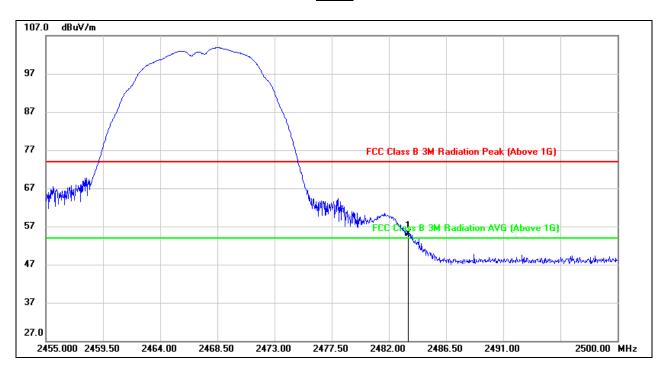
PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.70	33.58	52.28	74.00	-21.72	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

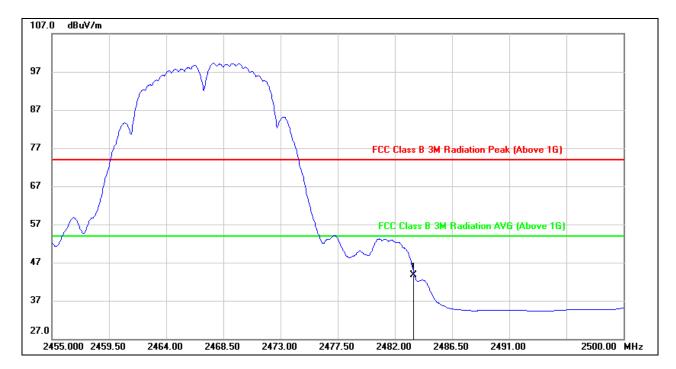
RESTRICTED BANDEDGE (CHANNEL11, VERTICAL)

PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.33	33.58	50.91	74.00	-23.09	peak
2	2483.750	18.04	33.58	51.62	74.00	-22.38	peak

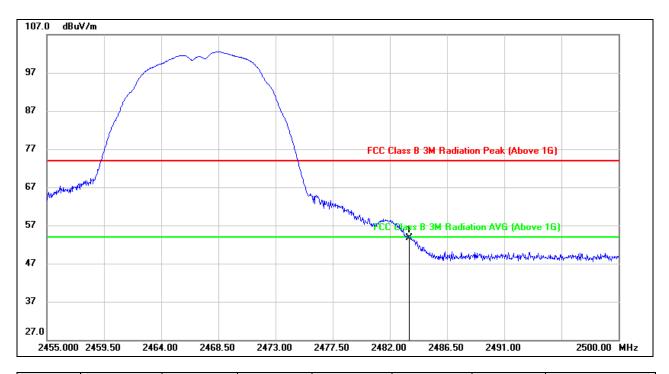
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

RESTRICTED BANDEDGE (CHANNEL12, HORIZONTAL)


PEAK

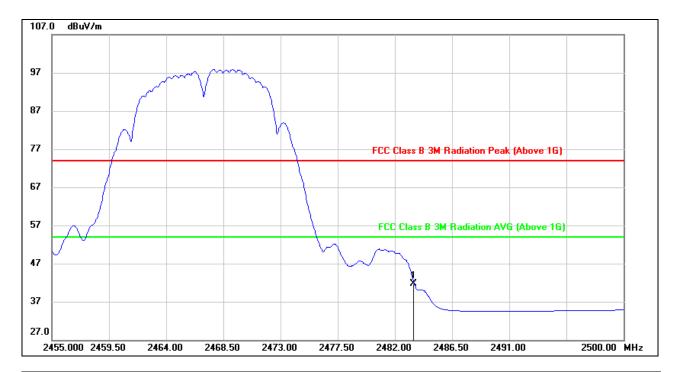
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	21.43	33.58	55.01	74.00	-18.99	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	10.17	33.58	43.75	54.00	-10.25	AVG

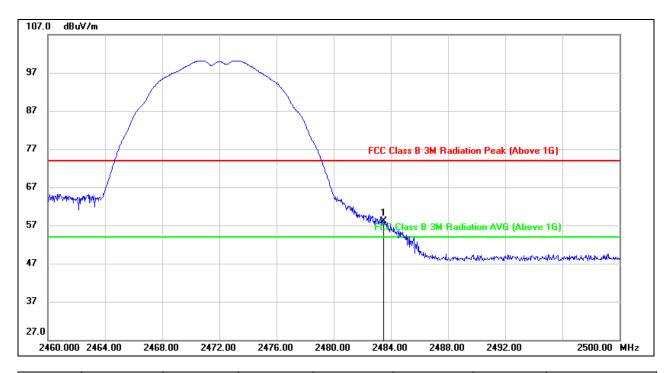
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (CHANNEL12, VERTICAL)


PEAK

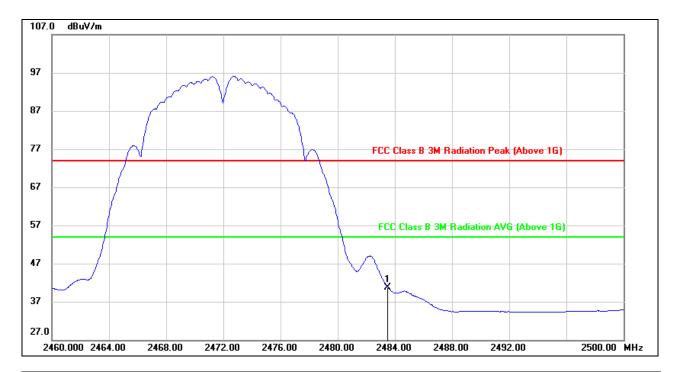
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	20.19	33.58	53.77	74.00	-20.23	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.07	33.58	41.65	54.00	-12.35	AVG

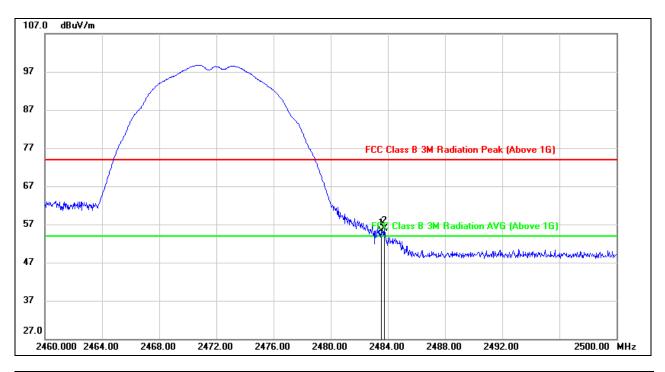
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL 13, HORIZONTAL)


PEAK

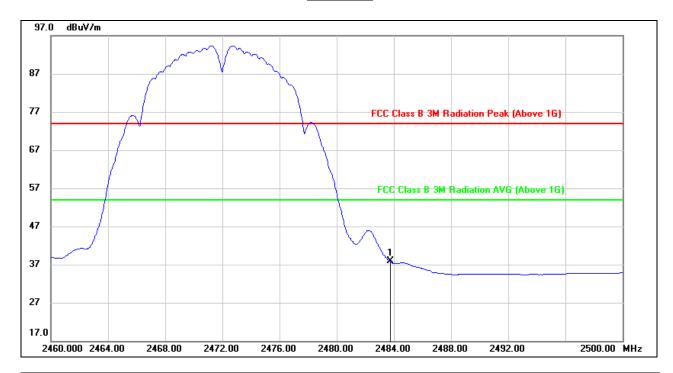
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	24.55	33.58	58.13	74.00	-15.87	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	7.18	33.58	40.76	54.00	-13.24	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL 13, VERTICAL)


PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	21.74	33.58	55.32	74.00	-18.68	peak
2	2483.760	22.29	33.58	55.87	74.00	-18.13	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.760	4.26	33.58	37.84	54.00	-16.16	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 8.1.