

TEST REPORT

Product Name: Global LTE Cat.M1/LTE Cat.NB2 /2G Data-Only Module
Trade Mark: CINTERION
Model No.: TX82-W
Report Number: 200529019EMC-1
Test Standards: FCC 47 CFR Part 15 Subpart B
ICES-003 Issue 6
FCC ID: QIPTX82-W
IC: 7830A-TX82W
Test Result: PASS
Date of Issue: January 29, 2021

Prepared for:

Thales DIS AIS Deutschland GmbH
Siemensdamm 50, 13629 Berlin, Germany

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
16/F, Block A, Building 6, Baoneng Science and Technology Park,
Qingxiang Road No.1, Longhua New District, Shenzhen, China
TEL: +86-755-2823 0888
FAX: +86-755-2823 0886

Prepared by: Henry Lu

Reviewed by: Kevin Liang

Henry Lu

Team Leader

Kevin Liang

Assistant Manager

Approved by:

Date: January 29, 2021

Billy Li

Technical Director

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@utllab.com <http://www.utllab.com>
UTTR-EMC-ICES003-V1.0

Version

Version No.	Date	Description
V1.0	January 29, 2021	Original

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com <http://www.uttlab.com>
UTTR-EMC-ICES003-V1.0

CONTENTS

1. GENERAL INFORMATION	4
1.1 CLIENT INFORMATION	4
1.2 EUT INFORMATION	4
1.2.1 GENERAL DESCRIPTION OF EUT	4
1.2.2 DESCRIPTION OF ACCESSORIES.....	4
1.3 DESCRIPTION OF SUPPORT UNITS	4
1.4 TEST LOCATION.....	4
1.5 TEST FACILITY.....	5
1.6 DEVIATION FROM STANDARDS	5
1.7 ABNORMALITIES FROM STANDARD CONDITIONS.....	5
1.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER.....	5
1.9 MEASUREMENT UNCERTAINTY	5
2. TEST SUMMARY	6
3. EQUIPMENT LIST	7
4. TEST CONFIGURATION	8
4.1 ENVIRONMENTAL CONDITIONS FOR TESTING	8
4.1.1 NORMAL OR EXTREME TEST CONDITIONS	8
4.1.2 RECORD OF NORMAL ENVIRONMENT.....	8
4.2 TEST MODES.....	8
4.3 TEST SETUP	9
4.3.1 FOR RADIATED EMISSIONS TEST SETUP	9
4.3.2 FOR CONDUCTED EMISSIONS TEST SETUP	10
4.4 SYSTEM TEST CONFIGURATION	10
5. REFERENCE DOCUMENTS FOR TESTING.....	11
6. EMC REQUIREMENTS SPECIFICATION	12
6.1 RADIATED EMISSION	12
6.2 CONDUCTED EMISSION	17
APPENDIX 1 PHOTOS OF TEST SETUP	20
APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	20

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Thales DIS AIS Deutschland GmbH
Address of Applicant:	Siemensdamm 50, 13629 Berlin, Germany
Manufacturer:	Thales DIS AIS Deutschland GmbH
Address of Manufacturer:	Werinherstr.81, 81541 Munich, Germany

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Global LTE Cat.M1/LTE Cat.NB2 /2G Data-Only Module
Model No.:	TX82-W(See Note)
Trade Mark:	CINTERION
DUT Stage:	Production Unit
Rated Voltage:	<input checked="" type="checkbox"/> DC3.8V provide from adaptor 120V~60Hz
Classification of digital devices:	Class B
Highest Internal Frequency:	1914.3MHz
Sample Received Date:	May 23, 2020
Sample Tested Date:	May 29, 2020 to June 4, 2020
Note: This product TX82-W include two SIM types: SIM and ESIM	

1.2.2 Description of Accessories

None.

1.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Antenna	SMARTEQ	MiniMag	--	Applicant
Adapter	Lenovo	HKA02412020-3K	N/A	Applicant
PCB board	N/A	W30880-Q9812-X-2	N/A	Applicant
Notebook	Lenovo	B40-80	MP12NEQ6	UnionTrust
Mouse	DELL	MS111	CN-011D3V-738	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
--	--	--	--	--

1.4 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

<http://www.uttlab.com>

UTTR-EMC-ICES003-V1.0

Telephone: +86 (0) 755 2823 0888
Fax: +86 (0) 755 2823 0886

1.5 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.6 DEVIATION FROM STANDARDS

None.

1.7 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.9 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.2 dB
2	Conducted emission 150KHz-30MHz	±2.7 dB
3	Radiated emission 9KHz-30MHz	± 4.7 dB
4	Radiated emission 30MHz-1GHz	± 4.6 dB
5	Radiated emission 1GHz-18GHz	± 4.4 dB
6	Radiated emission 18GHz-26GHz	± 4.6 dB
7	Radiated emission 26GHz-40GHz	± 4.6 dB

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com <http://www.uttlab.com>
UTTR-EMC-ICES003-V1.0

2. TEST SUMMARY

Test Cases			
Test Item	Test Requirement	Test Method	Result
Conducted Emission	FCC 47 CFR Part 15.107 ICES-003 Issue 6 Section 6.1	ANSI C63.4-2014	PASS
Radiated Emission	FCC 47 CFR Part 15.109 ICES-003 Issue 6 Section 6.2	ANSI C63.4-2014	PASS

3. EQUIPMENT LIST

Radiated Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021
<input checked="" type="checkbox"/>	Receiver	R&S	ESIB26	100114	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	6dB Attenuator	Talent	RA6A5-N-18	18103001	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Preamplifier	HP	8447F	2805A02960	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jun. 23, 2019	Jun. 23, 2020
<input checked="" type="checkbox"/>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323		

Conducted Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	Receiver	R&S	ESR7	1316.3003K07-101181-K3	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2019	Nov. 23, 2020
<input type="checkbox"/>	LISN	ETS-Lindgren	3816/2SH	00201088	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323		

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests		
Test Condition	Ambient		
	Temperature (°C)	Voltage (V)	Relative Humidity (%)
NT/NV	+15 to +35	120	20 to 75
Remark: 1) NV: Normal Voltage; NT: Normal Temperature			

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
Conducted Emission	23.6	51	99.8	Andy Lin
Radiated Emission	23.6	51	99.8	Bert Xiong

4.2 TEST MODES

Test Item	EMI Test Modes
Radiated Emission	<p>SIM:</p> <p>Mode 1: Charging from adapter + CAT-M BAND 2 Mode 2: Charging from adapter + NB-IOT BAND 2 Mode 3: Charging from adapter + Working mode</p> <p>ESIM:</p> <p>Mode 4: Charging from adapter + CAT-M BAND 2 Mode 5: Charging from adapter + NB-IOT BAND 2 Mode 6: Charging from adapter + Working mode</p>
Conducted Emission	<p>SIM:</p> <p>Mode 2: Charging from adapter + NB-IOT BAND 2 Mode 1: Charging from adapter + CAT-M BAND 2 Mode 3: Charging from adapter + Working mode</p> <p>ESIM:</p> <p>Mode 4: Charging from adapter + CAT-M BAND 2 Mode 5: Charging from adapter + NB-IOT BAND 2 Mode 6: Charging from adapter + Working mode</p>
Remark:	
All test modes are performed, only the worst cases test data are recorded in this report.	

4.3 TEST SETUP

4.3.1 For Radiated Emissions test setup

Figure 1. 30MHz to 1GHz

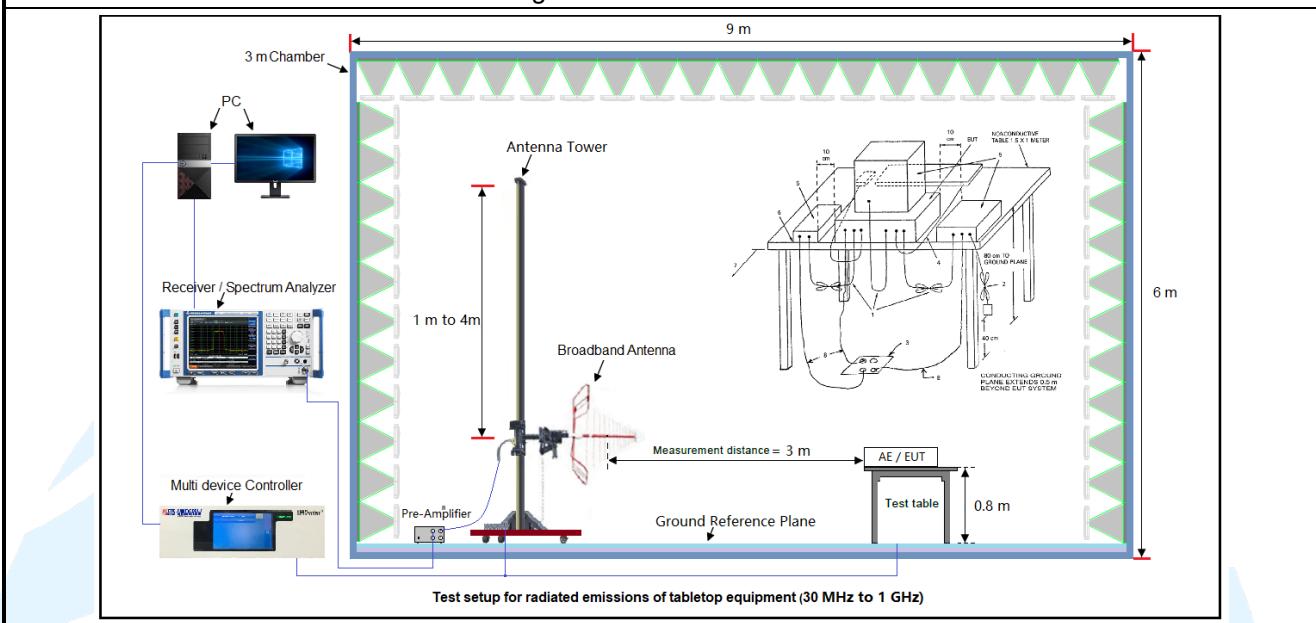
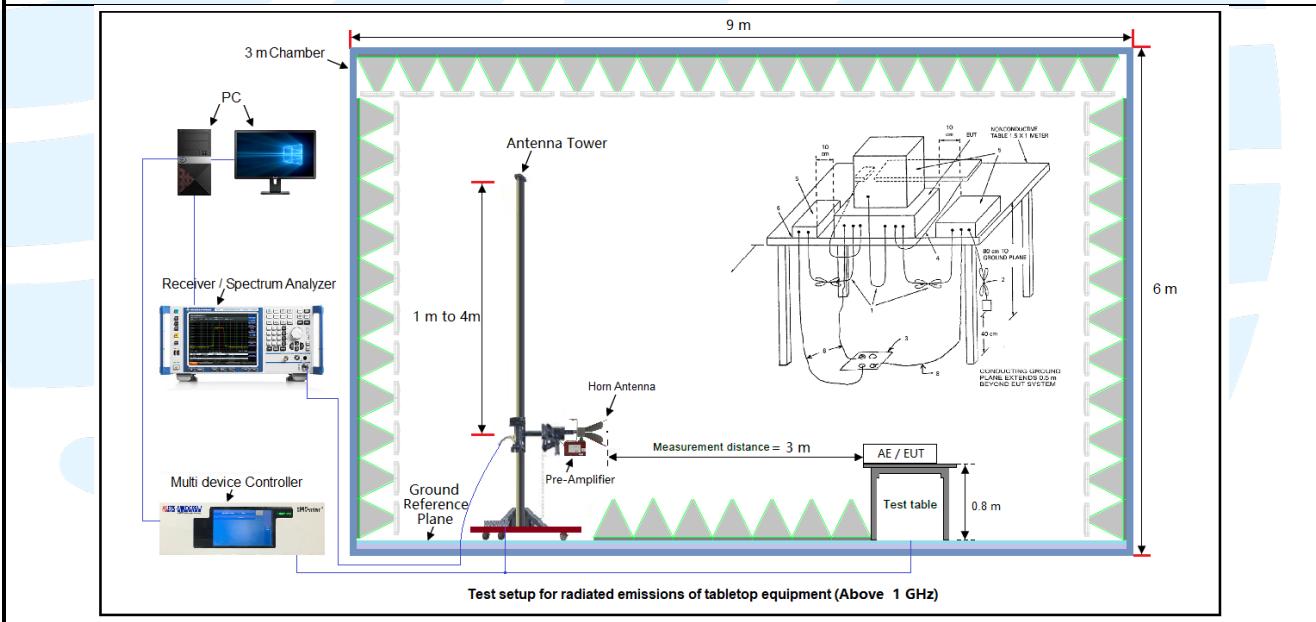
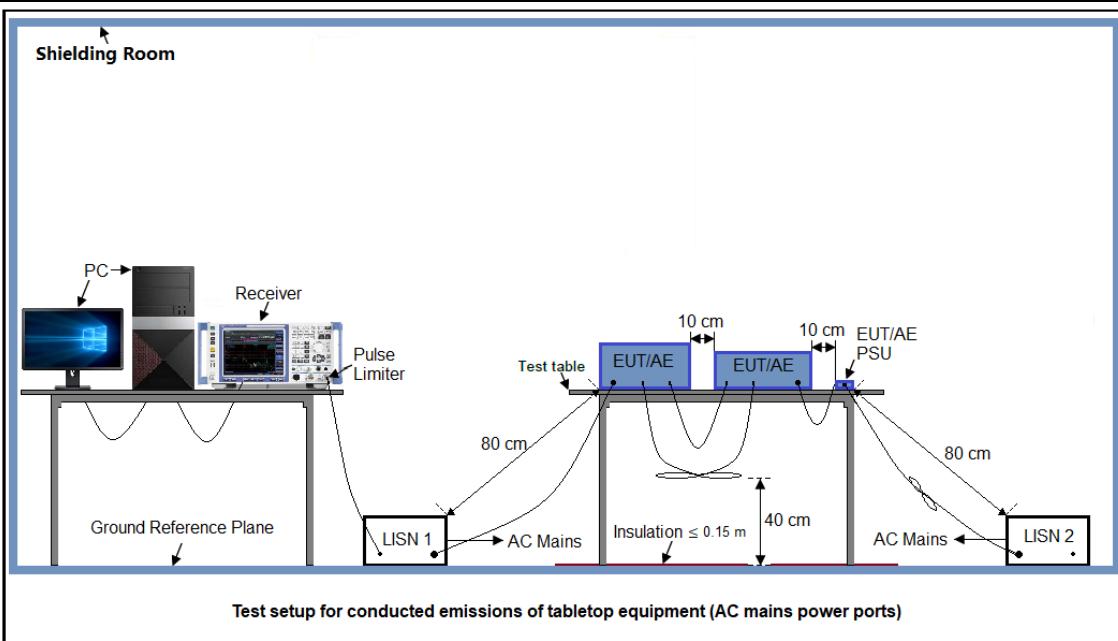




Figure 2. Above 1GHz

4.3.2 For Conducted Emissions test setup

Figure 3. Conducted Emissions setup

4.4 SYSTEM TEST CONFIGURATION

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic (according to KDB 896810 D02 SDoC FAQ v01r01) of the highest fundamental frequency or to 40 GHz, whichever is lower.

5. REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part15 Subpart B	Unintentional Radiators
2	ICES-003 Issue 6	Information Technology Equipment (Including Digital Apparatus) — Limits and Methods of Measurement
3	ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
4	KDB 174176 D01 Line Conducted FAQ v01r01	AC power-line conducted emission frequency asked questions
5	KDB 896810 D02 SDoC FAQ v01r02	Supplier's Declaration of Conformity frequency asked questions

6. EMC REQUIREMENTS SPECIFICATION

6.1 RADIATED EMISSION

Test Requirement: FCC 47 CFR Part 15.109
ICES-003 Issue 6 Clause 6.2

Test Method: ANSI C63.4-2014

Receiver Setup:

Frequency: (f) (MHz)	Detector type	Measurement receiver bandwidth	
		RBW	VBW
30 ≤ f ≤ 1 000	Quasi Peak	120 kHz	300 kHz
f ≥ 1000	Peak	1 MHz	3 MHz
	Average	1 MHz	3 MHz

Measured frequency range

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30.
1.705-108	1000.
108-500	2000.
500-1000	5000.
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

Limits:

Limits for Class B devices

Frequency (MHz)	limits at 3m (dB μ V/m)		
	QP Detector	PK Detector	AV Detector
30-88	40.0	--	--
88-216	43.5	--	--
216-960	46.0	--	--
960 to 1000	54.0	--	--
Above 1000	--	74.0	54.0

Remark:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.3.1 for details.

Test Procedures:

1. From 30 MHz to 1GHz test procedure as below:

- 1) The Product was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- 2) Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- 3) For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

2. Above 1GHz test procedure as below:

- 1) The Product was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- 2) Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

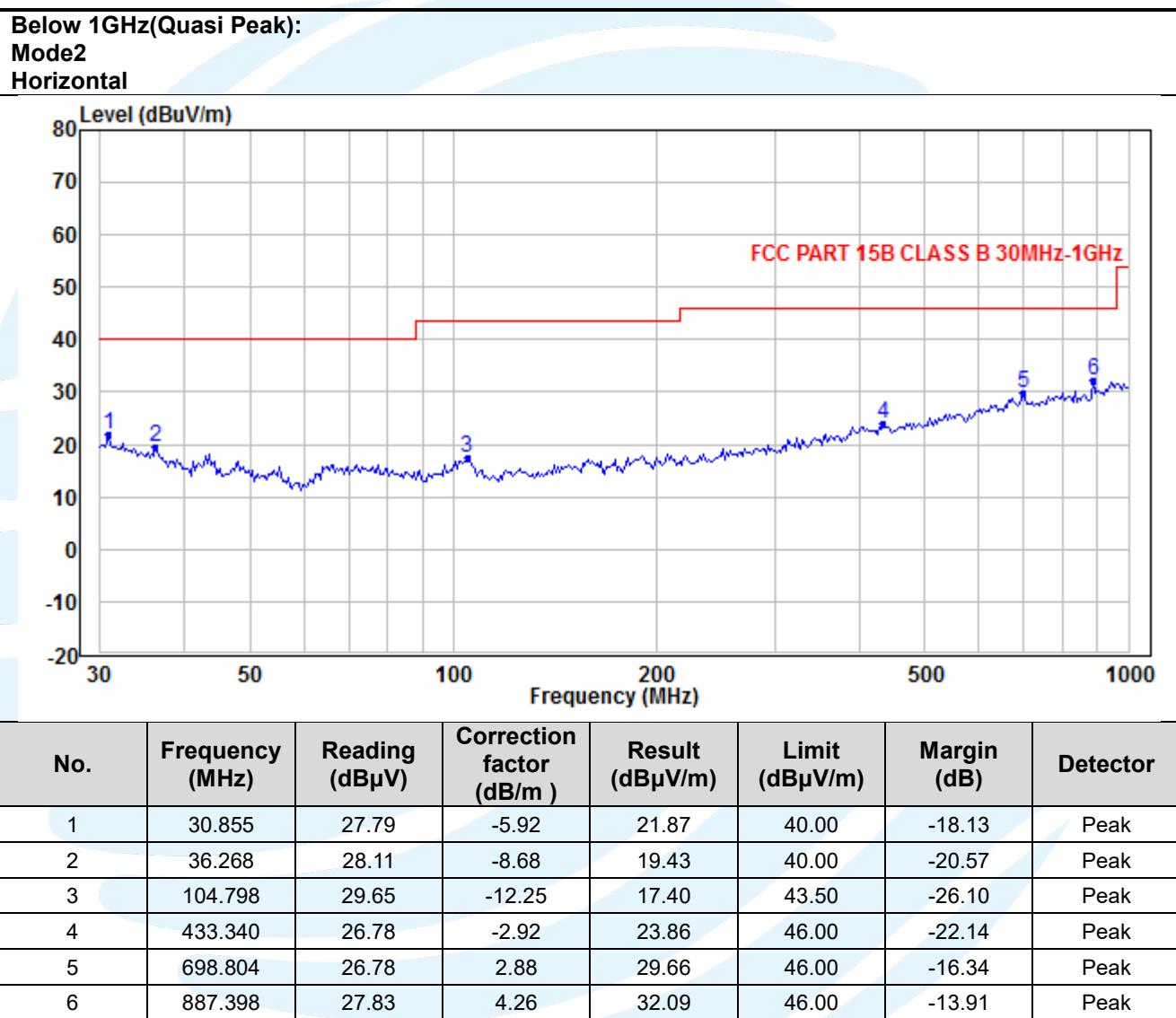
Tel: +86-755-28230888

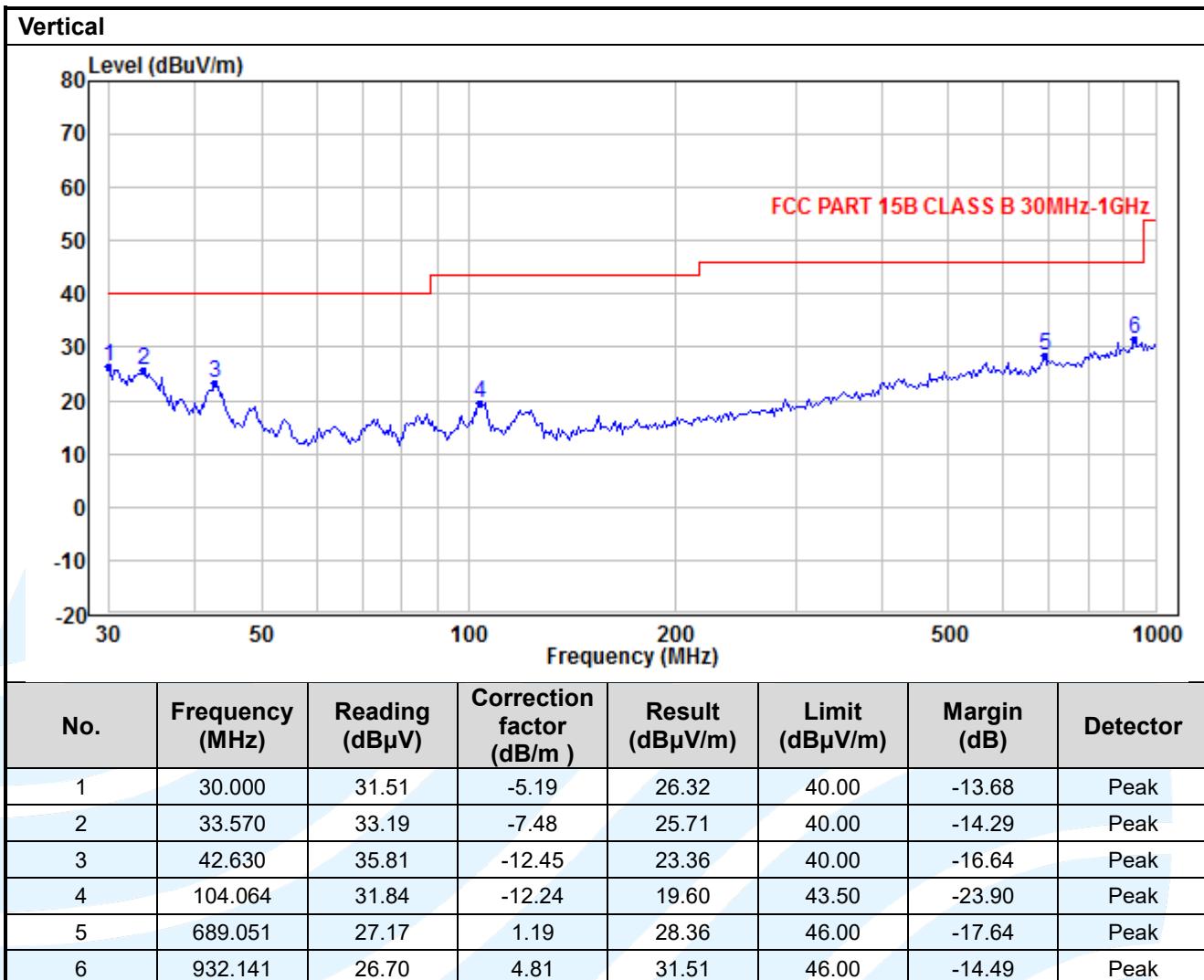
Fax: +86-755-28230886

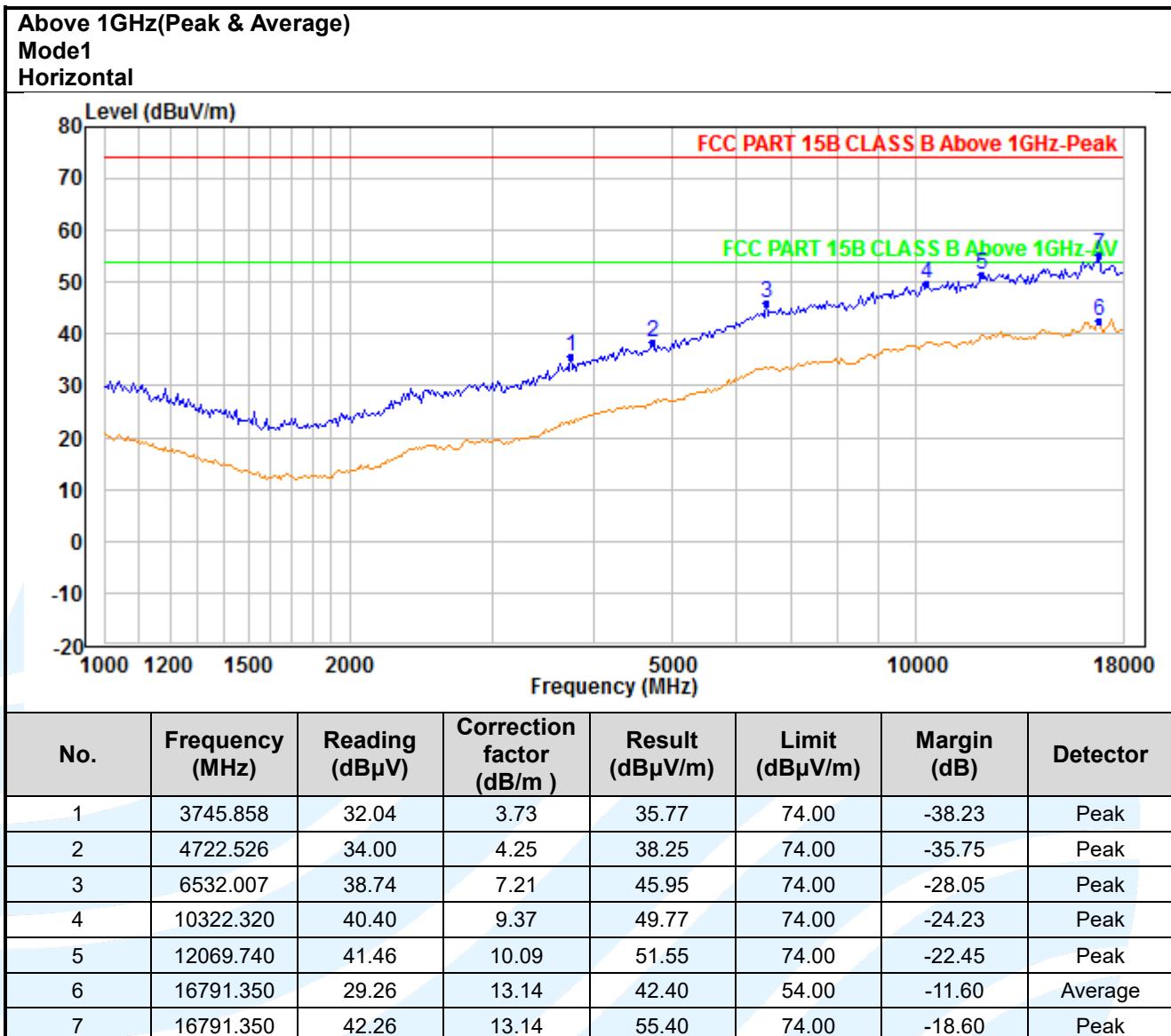
E-mail: info@uttlab.com

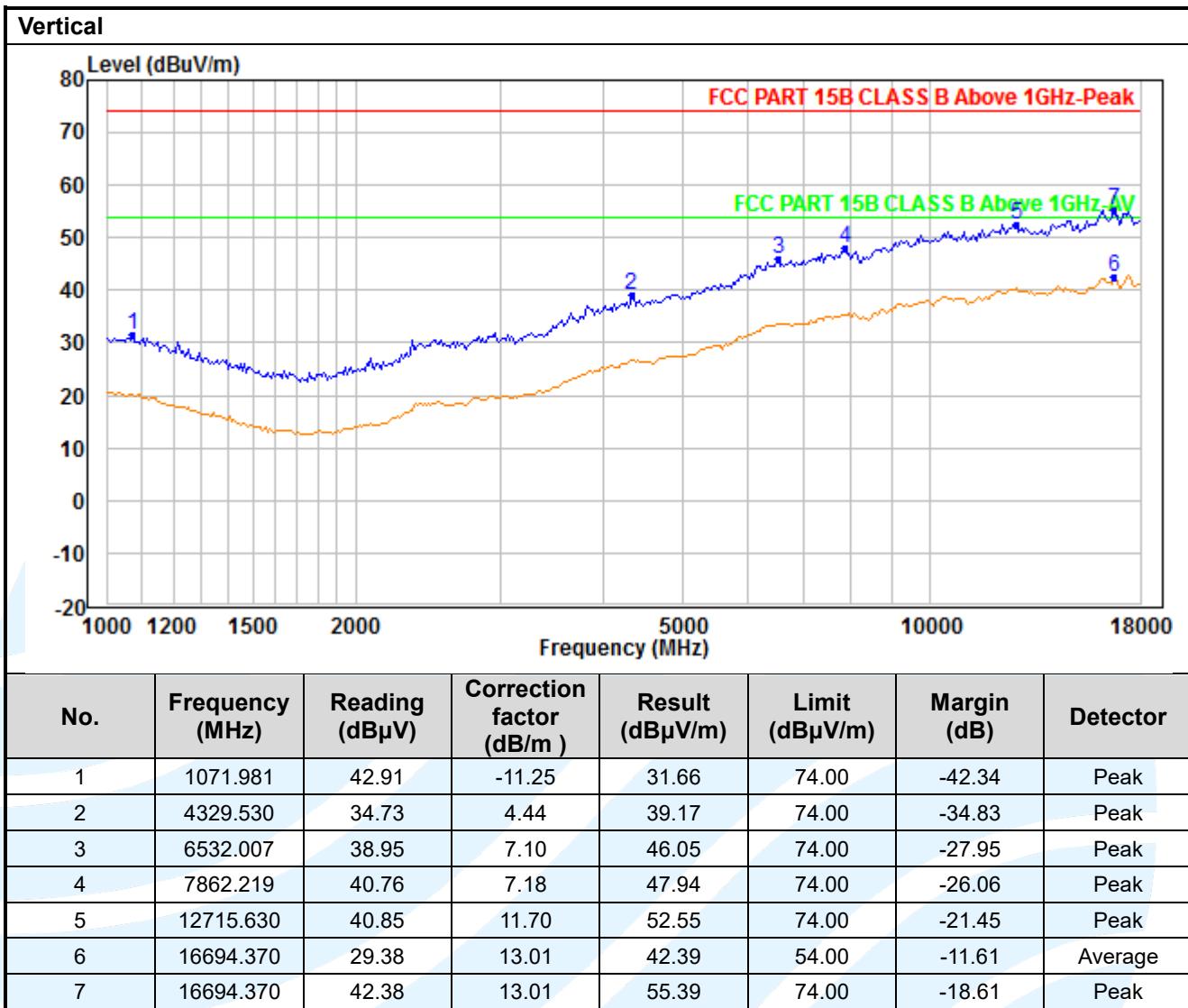
<http://www.uttlab.com>

UTTR-EMC-ICES003-V1.0


maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.


3) For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.


Equipment Used: Refer to section 3 for details.


Test Result: Pass

The measurement data as follows:

Remark:

1. Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
2. Result = Reading + Correct Factor.
3. Margin = Result – Limit
4. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6.2 CONDUCTED EMISSION

Test Requirement: FCC 47 CFR Part 15.107
ICES-003 Issue 6 Section 6.1

Test Method: ANSI C63.4-2014

Limits:

Limits for Class B devices

Frequency range (MHz)	Limits (dB(μV))	
	Quasi-peak	Average
0,15 to 0,50	66 to 56	56 to 46
0,50 to 5	56	46
5 to 30	60	50

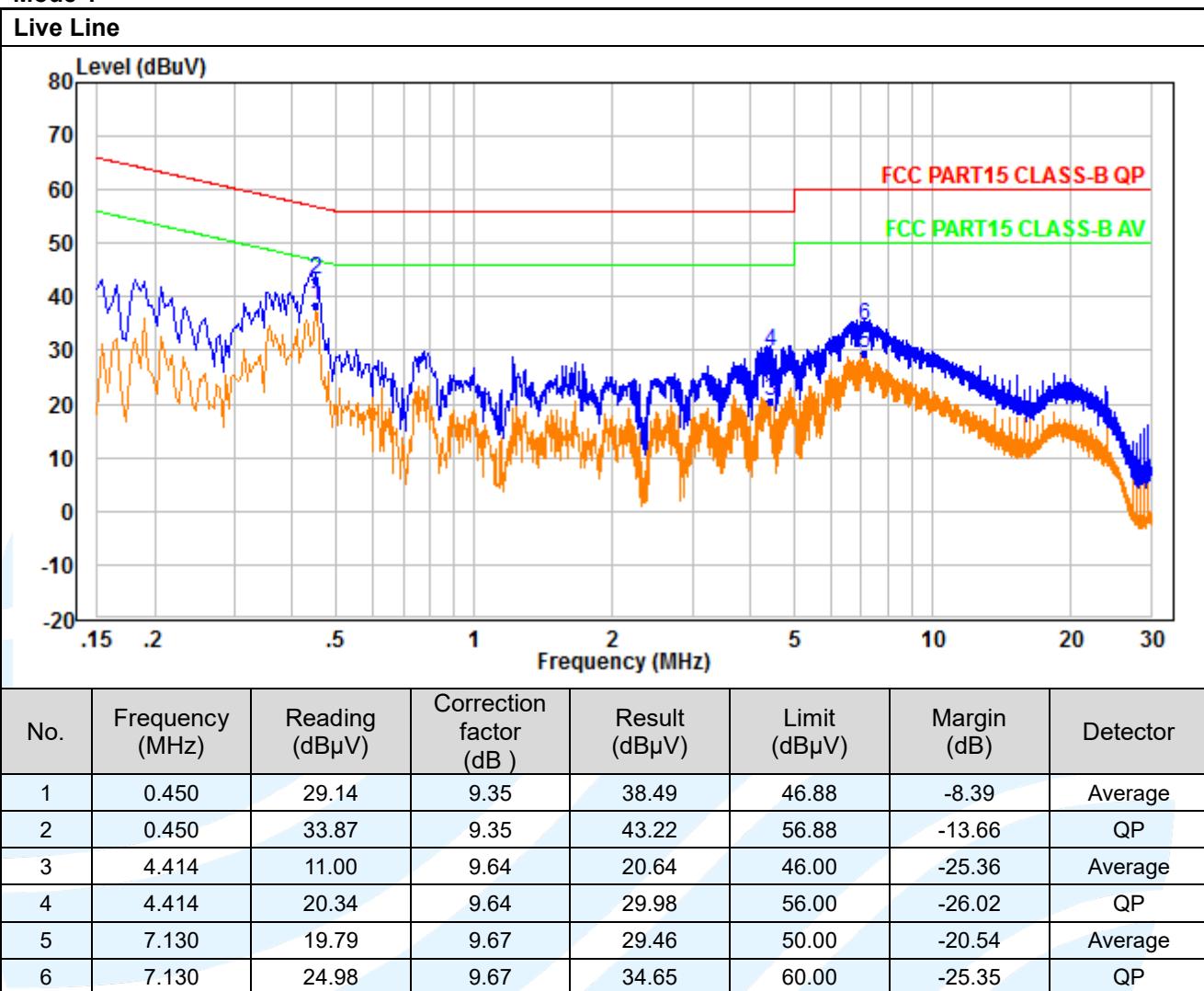
Remark:

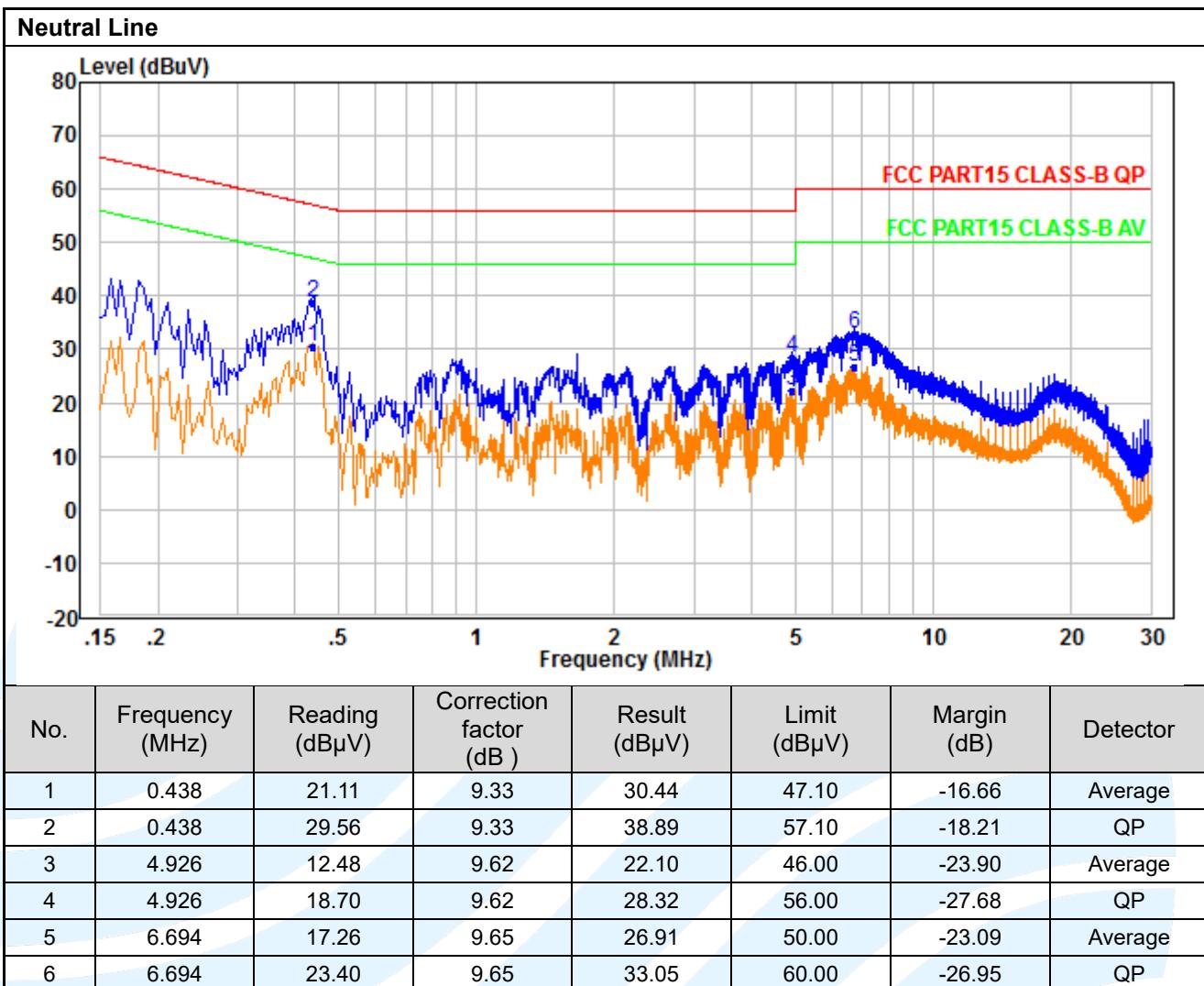
1. The lower limit shall apply at the transition frequencies.
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

Test Setup: Refer to section 4.3.2 for details.

Test Procedures:

- 1) The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N.).
- 2) The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- 3) For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


Equipment Used: Refer to section 3 for details.


Test Result: Pass

The measurement data as follows:

Quasi Peak and Average:

Mode 1

Remark:

1. Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically.
2. Result = Reading + Correct Factor.
3. Margin = Result - Limit
4. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

***** End of Report *****

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.
