

KES Co., Ltd.
C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450
www.kes.co.kr

Test report No.:
KES-RF-14T0030
Page (1) of (25)

TEST REPORT

Part 15E & RSS-210(Issue 8)

Equipment under test Medical Image Processing Unit

Model name 1417WGC

Derivative model 1417WCC

Trademark

FCC ID // IC QIIRY1417W // 10742A-1417W

Applicant Rayence Co., Ltd

Manufacturer Rayence Co., Ltd

Date of test(s) 2014.04.21 ~ 2014.05.05

Date of issue 2014.05.27

Issued to

Rayence Co., Ltd
14, Samsung 1-ro 1-gil,
Hwaseong-si, Gyeonggi-do, Korea
Tel: +82-31-8015-6459 / Fax: +82-31-8015-6394

Issued by

KES Co., Ltd.
C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si,
Gyeonggi-do, 431-716, Korea
473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
Byeong-Geol Chu / Test engineer	Jeff Do / Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.
The test results in the report only apply to the tested sample.

Revision history

Revision	Date of issue	Test report No.	Description
-	2014.05.27	KES-RF-14T0030	Initial

TABLE OF CONTENTS

1.	General information	4
1.1.	EUT description	4
1.2.	Test frequency	4
1.3.	Information about derivative model	4
1.4.	Device modifications	4
1.5.	Device information	4
1.6.	Test facility	5
1.7.	Laboratory accreditations and listings	5
1.8.	Directional antenna gain for MIMO (correlated)	5
2.1	Summary of tests	6
2.2	Worst-Case and Mode	6
3.	Test results	7
3.1	Radiated spurious emissions	7
3.2.	AC conducted emissions	17
Appendix A.	Measurement equipment	20
Appendix B.	Duty Cycle	21

1. General information

1.1. EUT description

Equipment under test	Medical Image Processing Unit
Model name	1417WCC
Serial number	N/A
Frequency range	2 412 MHz ~ 2 462 MHz(802.11b/g/n_HT20), 2 422 MHz ~ 2 452 MHz(802.11n_HT40) 5 745 MHz ~ 5 825 MHz(802.11a/n_HT20), 5 755 MHz ~ 5 795 MHz(802.11n_HT40) 5 180 MHz ~ 5 240 MHz(802.11a/n_HT20), 5 190 MHz ~ 5 230 MHz(802.11n_HT40)
Modulation technique	CCK(DBPSK, DQPSK), OFDM (BPSK, QPSK, 16QAM, 64QAM)
Number of channels	2 412 MHz ~ 2 462 MHz(802.11b/g/n_HT20) : 11 ch 2 422 MHz ~ 2 452 MHz(802.11n_HT40) : 7 ch 5 745 MHz ~ 5 825 MHz(802.11a/n_HT20) : 5 ch 5 755 MHz ~ 5 795 MHz(802.11n_HT40) : 2 ch 5 180 MHz ~ 5 240 MHz(802.11a/n_HT20) : 4 ch 5 190 MHz ~ 5 230 MHz(802.11n_HT40) : 2 ch
Antenna type	PCB antenna(I-PEX)
Power source	Battery (DC 11.1 V // 3500 mAh)
Note	- Contains transmitter Module. (FCC ID : PPD-AR5BHB116, IC : 4104A-AR5BHB116) - Contains transmitter Module does not use DFS band.

1.2. Test frequency

	Low channel	Middle channel	High channel	Mode
Frequency (MHz)	5 180	5 220	5 240	802.11a/n_HT20
	5 190	-	5 230	802.11n_HT40

1.3. Information about derivative model

This is to notify that 1417WGC / 1417WCC are same Hardware, Software and components. But *scintillator layer are different. Scintillator is a phosphor that produces scintillations.

Model	Scintillator layer
1417WCC	CsI (Cesium Iodide)
1417WGC	Gd ₂ O ₂ S:Tb (Gadolinium Oxysulfide)

1.4. Device modifications

N/A

1.5 Device information

1.6. Test facility

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

The open area test site is constructed in conformance with the requirements ANSI C63.4-2003/2009.

1.7. Laboratory accreditations and listings

Country	Agency	Scope of accreditation	Certificate No.
USA	FCC	3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.	343818
KOREA	KC	EMI (10 meter Open Area Test Site and two conducted sites) Radio (3 & 10 meter Open Area Test Sites and one conducted site)	KR0100
CANADA	IC	3 & 10 meter Open Area Test Sites and one conducted site	4769B-1

1.8. Directional antenna gain for MIMO (correlated)

Model : RY-PCB-iDual-14v01 [Rayence]

ANT1 Gain (dBi)	ANT2 Gain (dBi)	Total Gain (dBi)	Note
0.67	0.67	3.68	For 5.2 GHz

-Ant Gain = $G_{ANT} + 10 \log(N)$

2.1 Summary of tests

FCC Part Sections	RSS Sections	Parameter	Test results
15.205 15.209	RSS-Gen [7.2.5]	Radiated spurious emission	Pass
15.407(b)	RSS-210 [A9.2]	Undesirable emission	Pass
15.207	RSS-Gen [7.2.4]	AC conducted emissions	Pass

Test procedures;

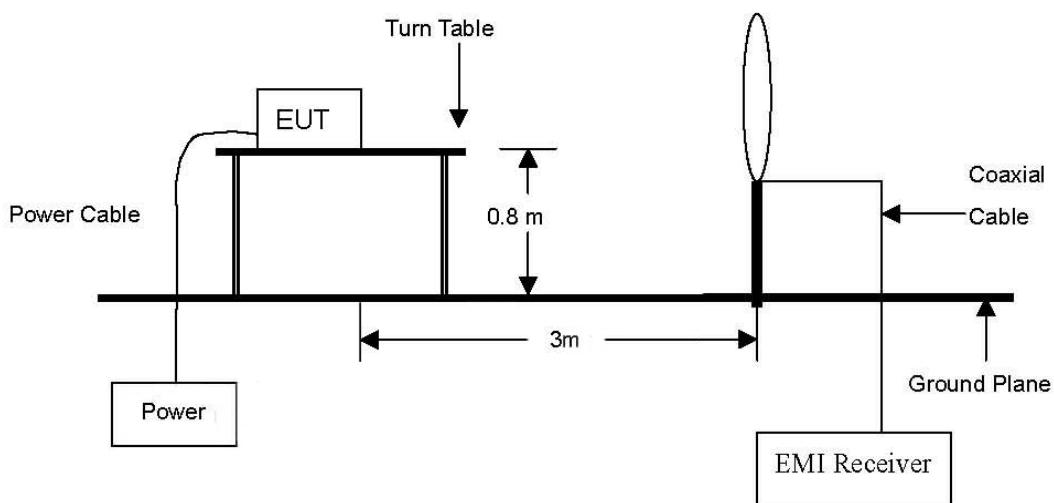
The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2003/2009), the guidance provided in KDB 558074_v03r01, KDB 662911 D01 v02r01, RSS-Gen (Issue 3) and RSS-210 (Issue 8) were used in the measurement of the EUT.

2.2 Worst-Case and Mode

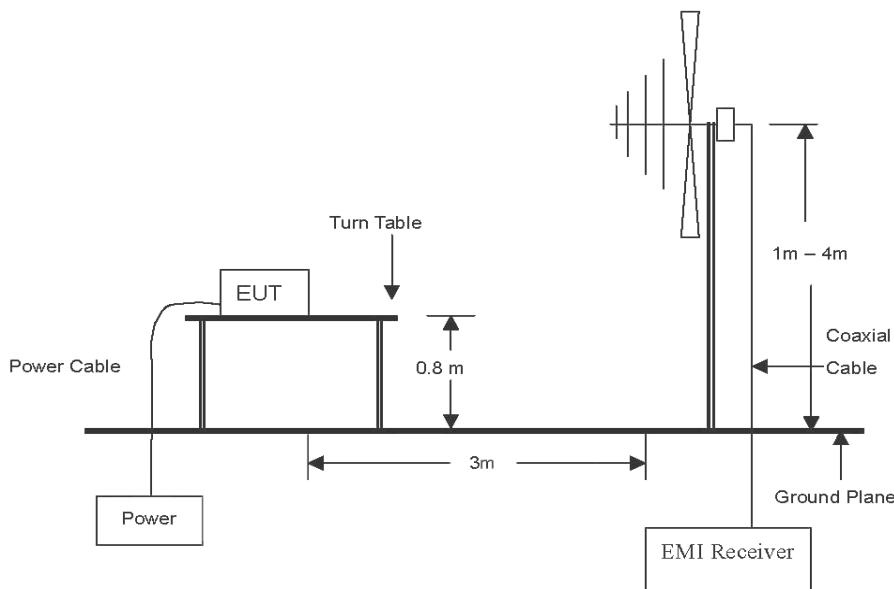
The worst-case data rates are determined to be as follows for each mode, based on the investigations by measuring the average power, peak power across all the data rates.
all tests were made with following data rates:

802.11a mode : 9 Mbps.
802.11n HT20 mode : MCS0.
802.11n HT40 mode : MCS0.

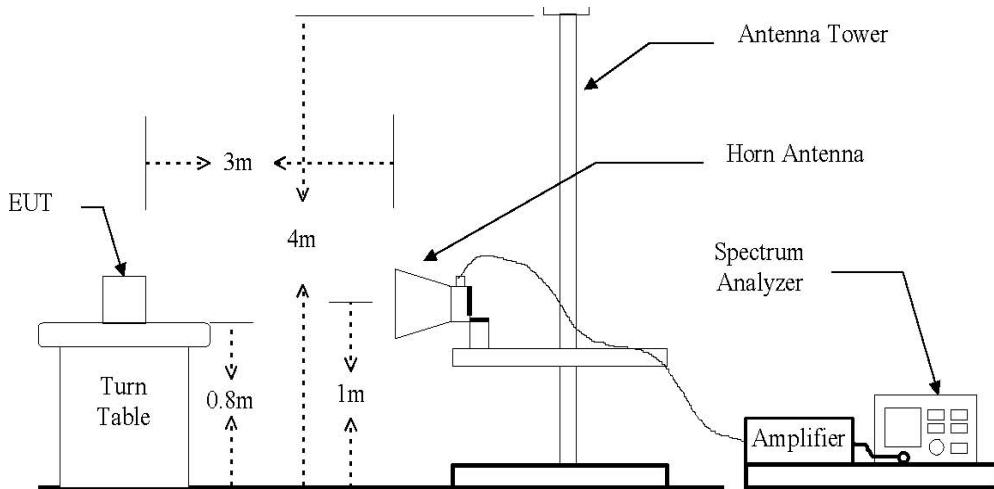
The EUT antenna has been tested in X, Y and Z axis.


The worst case position is Y-axis(below 1GHz), X-axis(above 1GHz). Each axis were recorded in this report.

3. Test results


3.1 Radiated spurious emissions

Test setup


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 24 GHz emissions.

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 12.0 of KDB 558074_v03r01 and ANSI C63.4-2003/2009

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site or open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
2. During performing radiated emission below 1GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference receiving antenna.
3. The antenna is a broadband antenna, and its height is varied from 1 meter to 4 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. The test receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Note.

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

The spectrum analyzer is set to:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 200 Hz for Quasi-peak detection (QP) at frequency below 9 kHz~ 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 9 kHz for Quasi-peak detection (QP) at frequency below 150 kHz~ 30 MHz.
3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
4. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1 GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1 GHz. (Detect mode: RMS(power), Averaging 100)

To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (MHz)	Distance (Meters)	Radiated ($\mu\text{V/m}$)
0.009 ~ 0.490	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to 15.205(a), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

According to 15.205(b), Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

According to 15.407(b),

(b) Undesirable emission limits: Except as shown in paragraph (b)(6) of this section, the peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.
- (2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz. Devices operating in the 5.25–5.35 GHz band that generate emissions in the 5.15–5.25 GHz band must meet all applicable technical requirements for operation in the 5.15–5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of –27 dBm/MHz in the 5.15–5.25 GHz band.
- (3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of –27 dBm/MHz.
- (4) For transmitters operating in the 5.725–5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of –17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of –27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

*EIRP[dBm] = E[dB μ V/m] - 95.2

EIRP of –27 dBm/MHz = 68.3 dB μ N/m (3m)

Test results (Below 30 MHz)

The frequency spectrum from 9 kHz to 30 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

Radiated emissions		Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Pol.	Ant. factor (dB/m)	Cable loss (dB)	F _d (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
Not detected for above 30 MHz								

Note.

1. All spurious emission at channels are almost the same below 30 MHz, so that 802.11a 5180 MHz were chosen at representative in final test.
2. Actual = Reading + Ant. factor + Cable loss + F_d
3. F_d = 40log(D_m / D_s)

Where:

F_d = Distance factor in dB
D_m = Measurement distance in meters
D_s = Specification distance in meters

Test results (Below 1 000 MHz)

The frequency spectrum from 30 MHz to 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

802.11a / 5180 MHz

Radiated emissions		Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Pol.	Ant. factor (dB/m)	Cable loss (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
136.8	12.01	H	12.51	2.37	26.89	43.5	16.61
352.4	9.34	V	14.54	4.43	28.31	46.0	17.69
406.2	19.58	H	15.71	4.93	40.22	46.0	5.78

Note.

1. All spurious emission at channels are almost the same below 30 MHz, so that 802.11a 5180 MHz were chosen at representative in final test.
2. Actual = Reading + Ant. factor + Cable loss
3. Detector mode: Quasi peak
4. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

Test results (Above 1 000 MHz)

The frequency spectrum from 1 GHz to 25 GHz was investigated. No Emissions were found above 20 dB below the limit.

802.11a / 5180 MHz

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Distance (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
5 149.63	55.92	PK	H	7.06	-	-	62.98	74.00	11.02
5 149.63	35.41	AVG	H	7.06	0.18	-	42.65	54.00	11.35
5 149.71	46.87	PK	V	7.06	-	-	53.93	74.00	20.07
15 539.20	39.31	PK	H	20.47	-	-9.54	50.24	74.00	23.76

802.11a / 5220 MHz

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Distance (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
15 656.14	55.03	PK	H	20.07	-	-9.54	65.56	74.00	8.44
15 656.25	37.42	AVG	H	20.07	0.18	-9.54	48.13	54.00	5.87
15 656.29	47.23	PK	V	20.07	-	-9.54	57.76	74.00	16.24
15 656.27	29.15	AVG	V	20.07	0.18	-9.54	39.86	54.00	14.14

802.11a / 5240 MHz

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Distance (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
15 732.58	55.79	PK	H	19.81	-	-9.54	66.06	74.00	7.94
15 731.78	38.42	AVG	H	19.81	0.18	-9.54	48.87	54.00	5.13
15 720.43	46.42	PK	V	19.85	-	-9.54	56.73	74.00	17.27
15 718.25	29.32	AVG	V	19.86	0.18	-9.54	39.82	54.00	14.18

Note.

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Actual = Reading + AFCL(Ant. factor – Amp. gain + Cable loss) + DCF(Duty cycle Correction Factor)+Distance
5. DCF(Duty cycle Correction Factor) = $10\log(1/\text{Duty cycle})$
6. For measuring above 10 GHz, measurement distance is 1 m.
7. Distance Factor = $20\log(1\text{m}/3\text{m}) = -9.54$

802.11n HT20 / 5180 MHz

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Distance (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
5 149.56	55.82	PK	H	7.06	-	-	62.88	74.00	11.12
5 149.71	37.45	AVG	H	7.06	0.15	-	44.66	54.00	9.34
5 149.78	46.85	PK	V	7.06	-	-	53.91	74.00	20.09
15 541.00	38.14	PK	H	20.46	-	-9.54	49.06	74.00	24.94

802.11n HT20 / 5220 MHz

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Distance (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
15 656.78	53.89	PK	H	20.07	-	-9.54	64.42	74.00	9.58
15 657.65	36.54	AVG	H	20.06	0.15	-9.54	47.21	54.00	6.79
15 658.04	45.95	PK	V	20.06	-	-9.54	56.47	74.00	17.53
15 656.85	28.34	AVG	V	20.07	0.15	-9.54	39.02	54.00	14.98

802.11n HT20 / 5240 MHz

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Distance (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
15 730.18	53.45	PK	H	19.82	-	-9.54	63.73	74.00	10.27
15 731.89	37.11	AVG	H	19.81	0.15	-9.54	47.53	54.00	6.47
15 722.24	43.67	PK	V	19.84	-	-9.54	53.97	74.00	20.03
15 718.85	28.11	AVG	V	19.85	0.15	-9.54	38.57	54.00	15.43

Note.

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Actual = Reading + AFCL(Ant. factor – Amp. gain + Cable loss) + DCF(Duty cycle Correction Factor)+Distance
5. DCF(Duty cycle Correction Factor) = $10\log(1/\text{Duty cycle})$
6. For measuring above 10 GHz, measurement distance is 1 m.
7. Distance Factor = $20\log(1\text{m}/3\text{m}) = -9.54$

802.11n_HT40 / 5190 MHz

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Distance (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
5 147.78	61.92	PK	H	7.05	-	-	68.97	74.00	5.03
5 149.52	41.89	AVG	H	7.06	0.20	-	49.15	54.00	4.85
5 148.21	55.99	PK	V	7.05	-	-	63.04	74.00	10.96
5 149.08	41.52	AVG	V	7.06	0.20	-	48.78	54.00	5.22
15 589.31	46.49	PK	H	20.30	-	-9.54	57.25	74.00	16.75
15 586.27	25.32	AVG	H	20.31	0.20	-9.54	36.29	54.00	17.71
15 587.65	29.42	PK	V	20.30	-	-9.54	40.18	74.00	33.82

802.11n_HT40 / 5230 MHz

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ N)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Distance (dB)	Actual (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
15 725.70	50.85	PK	H	19.83	-	-9.54	61.14	74.00	12.86
15 694.45	34.32	AVG	H	19.94	0.20	-9.54	44.92	54.00	9.08
15 718.55	33.50	PK	V	19.86	-	-9.54	43.82	74.00	30.18

Note.

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Actual = Reading + AFCL(Ant. factor – Amp. gain + Cable loss) + DCF(Duty cycle Correction Factor)+Distance
5. DCF(Duty cycle Correction Factor) = $10\log(1/\text{Duty cycle})$
6. For measuring above 10 GHz, measurement distance is 1 m.
7. Distance Factor = $20\log(1\text{m}/3\text{m}) = -9.54$

3.2. AC conducted emissions

Frequency range of measurement

150 kHz to 30 MHz

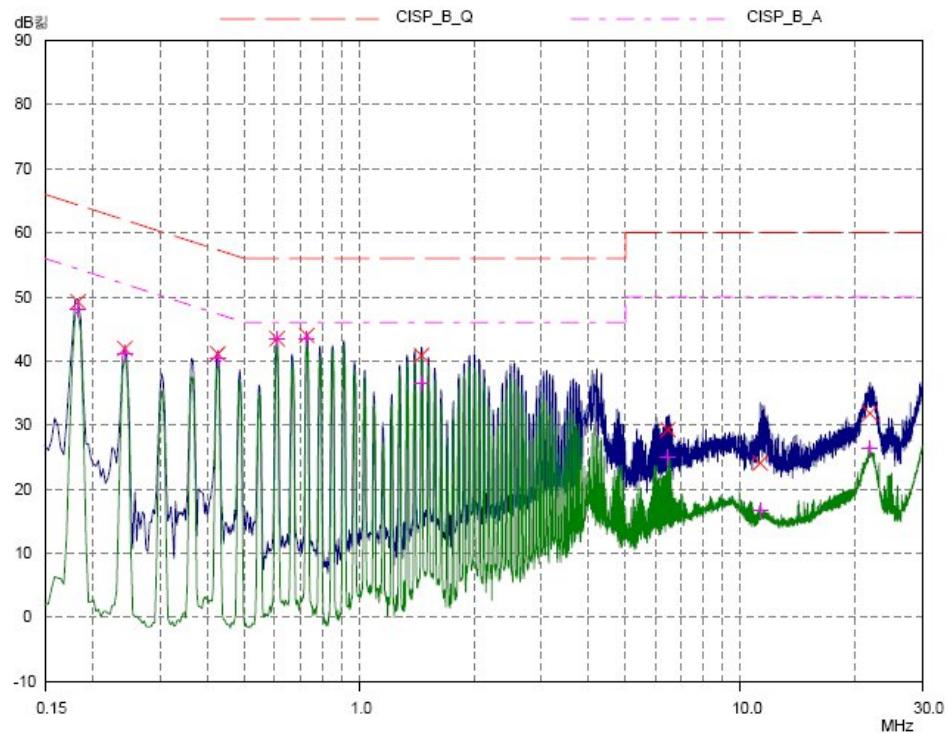
Instrument settings

IF Band Width: 9 kHz

Test procedures

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m. Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

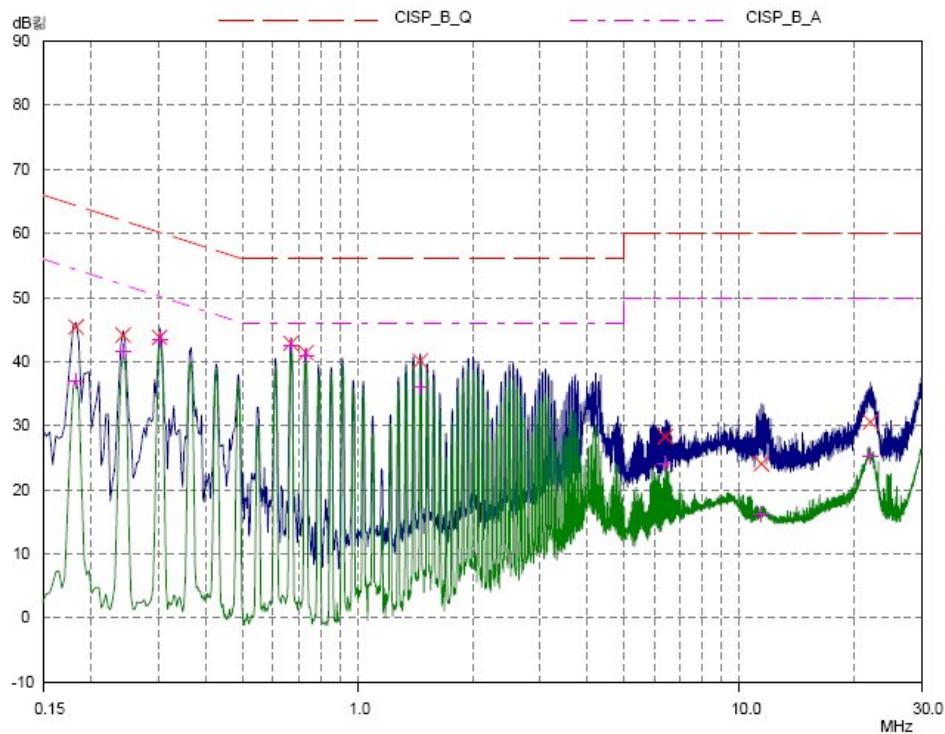

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted limit (dB μ V/m)	
	Quasi-peak	Average
0.15 – 0.50	66 - 56*	56 - 46*
0.50 – 5.00	56	46
5.00 – 30.0	60	50

Note.

- Decreases with the logarithm of the frequency.
- All spurious emission at channels are almost the same below 30 MHz, so that 802.11b 2432 MHz and 802.11a 5785 MHz were chosen at representative in final test.

Test results



Frequency MHz	QP Level dB _{AV}	QP Limit dB _{AV}	QP Delta dB
0.183	49.24	64.35	15.11
0.243	41.94	61.99	20.05
0.426	41.11	57.33	16.22
0.609	43.48	56.00	12.52
0.729	43.96	56.00	12.04
1.458	40.85	56.00	15.15
6.465	29.27	60.00	30.73
11.28	24.07	60.00	35.93
21.909	31.81	60.00	28.19

Frequency MHz	AV Level dB _{AV}	AV Limit dB _{AV}	AV Delta dB
0.183	48.03	54.35	6.32
0.243	41.06	51.99	10.93
0.426	40.32	47.33	7.01
0.609	43.48	46.00	2.52
0.729	43.39	46.00	2.61
1.458	36.49	46.00	9.51
6.465	24.91	50.00	25.09
11.28	16.57	50.00	33.43
21.909	26.46	50.00	23.54

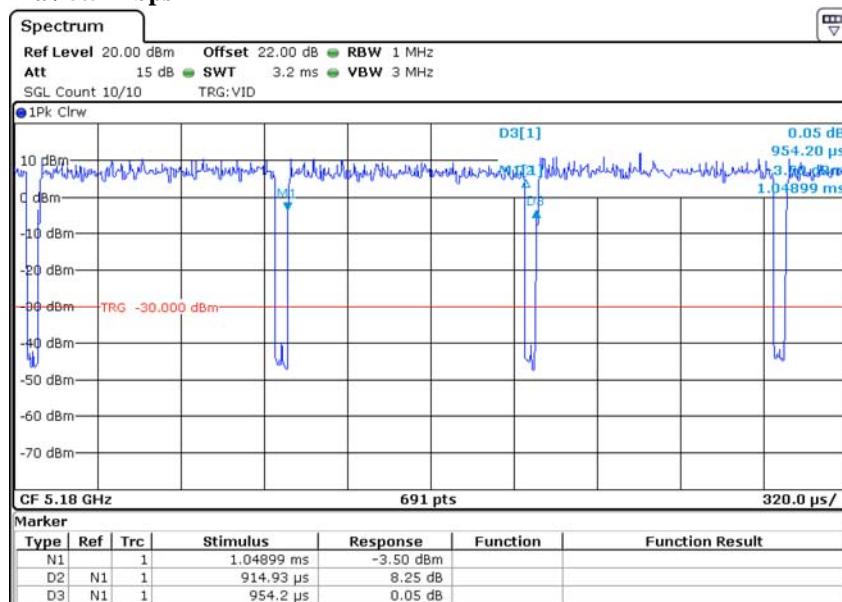
Note: Hot Line

Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).

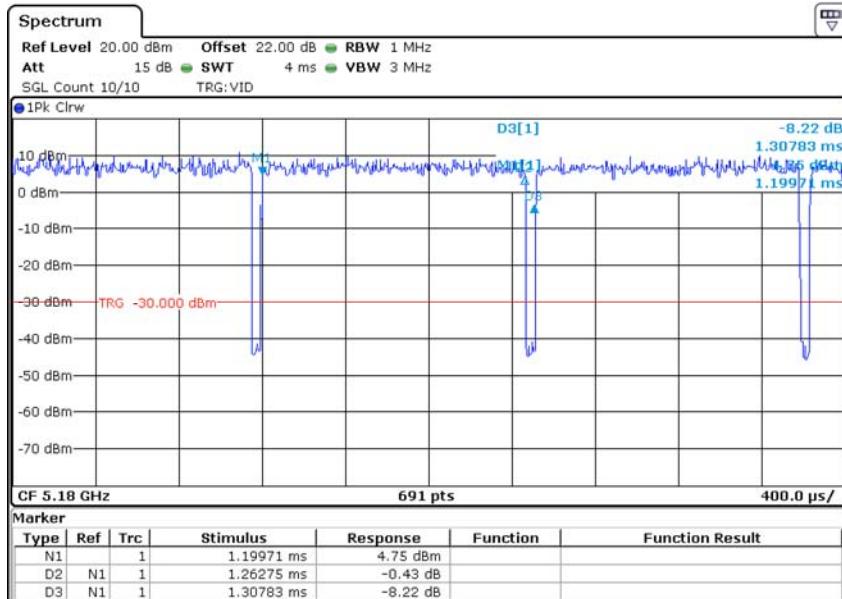
Frequency MHz	QP Level dB	QP Limit dB	QP Delta dB
0.183	45.39	64.35	18.96
0.243	44.14	61.99	17.85
0.303	43.77	60.16	16.39
0.669	42.84	56.00	13.16
0.732	41.36	56.00	14.64
1.458	40.07	56.00	15.93
6.402	28.31	60.00	31.69
11.424	24.04	60.00	35.96
22.062	30.54	60.00	29.46

Appendix A. Measurement equipment

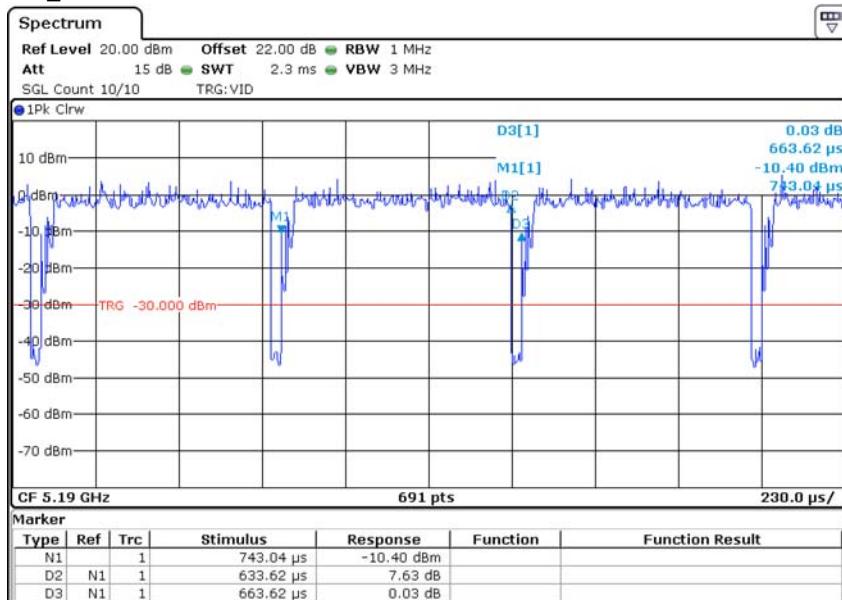
Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum analyzer	R&S	FSV30	101389	1 year	2015.04.30
Spectrum analyzer	R&S	FSW43	100637	1 year	2014.07.26
Wideband Power Sensor	R&S	NRP-Z81	1137.9009.02-101886-ds	1 year	2015.01.07
Vector signal generator	R&S	SMBV2100A	1407.6004K02	1 year	2015.01.06
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2015.04.30
Loop antenna	R&S	HFH2-Z2.335.4711.52	826532	2 years	2015.04.25
Trilog-broadband antenna	Schwarzbeck	VULB 9168	9168-385	2 years	2015.05.09
Horn antenna	A.H.	SAS-571	414	2 years	2015.02.28
Horn antenna	Schwarzbeck	BBHA 9170	BBHA9170551	2 years	2015.09.04
Preamplifier	HP	8447F	2805A02570	1 year	2015.04.30
Brodband coaxial preamplifier	Schwarzbeck Mess-Elektronik	BB9718	9168-385	2 years	2014.09.23
Preamplifier	Schwarzbeck	BBV 9721	9721-003	2 years	2015.09.04
Attenuator	HP	8494B	2630A12857	1 year	2015.04.30
EMI Test Receiver	LIG NEX1	ISA-80	L0912K014	1 year	2014.11.15
EMI Test Receiver	R & S	ESHS10	862970/018	1 year	2014.05.06
LISN	SCHWARZBECK	2823-568-1	8126157	1 year	2015.01.29
HIGH PASS FILTER	WAINWRIGHT INSTRUMENT	WHNX6.0/26.5G-6SS	1	1 year	2015.02.11
HIGH PASS FILTER	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2014.11.11
LOW PASS FILTER	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2014.08.05


Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook Computer	LG Electronics	LG15U53	310NZGK019135


Appendix B. Duty Cycle

Frequency (MHz)	Mode / Data rate	Duty cycle(X) = $\frac{\text{Tx}_{\text{on}} \text{ time}}{(\text{Tx}_{\text{on}} \text{ time} + \text{Tx}_{\text{off}} \text{ time})}$		
		Tx _{on} time (ms)	Tx _{on} + Tx _{off} time (ms)	X
5 180	11a / 9 Mbps	0.914 93	0.954 20	0.959
5 180	11n_HT20 / MCS0	1.262 75	1.307 83	0.966
5 190	11n_HT40 / MCS0	0.633 62	0.663 62	0.955


11a / 5.5 Mbps

11n_HT20 / MCS0

11n_HT40 / MCS0

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.
 The test results in the report only apply to the tested sample.