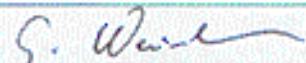


ECL-EMC Test Report No.: 02-041


Equipment under test: CS0170 rfCUE 99

FCC ID QHXCS0170-9

Type of test: FCC 47 CFR Part 15 Subpart C

Measurement Procedures: ANSI C63.4 (1992)

Test result: Passed

Date of issue:	20.11.02			Signature:
Issue-No.:	01	Author:	Günter Weinfurtner Test engineer	
Date of delivery:	10.10.02	Checked:	Zapf Operational manager	
Testdates:	10.10.02			
Pages:	28			

Manufacturer: **CUE**
spol. s r.o.

Na Dolinách
147 00 Praha 4
Czech Republic

Test Location: **Lucent Technologies Network Systems GmbH**
European Compliance Laboratory (ECL)

Thurn-und-Taxis-Strasse 10
D-90411 Nürnberg
Germany
Tel.: +49 911 526 1422
Fax: +49 911 526 2391

General:

The purpose of this report is to show compliance to the FCC regulations for unlicensed devices operating under section 15.249 of the Code of Federal Regulations title 47.

This report informs about the results of the EMC tests, it only refers to the equipment under test. No part of this report may be reproduced in any form, without written permission.

Table of contents

1	TEST RESULTS SUMMERY	4
2	CS0170 RFCUE 99	5
3	DESCRIPTION OF EMC TEST CENTRE	7
3.1	REGISTRATIONS	7
3.2	SEMI ANECHOIC CHAMBER (SAC) WITH MAXIMUM 10M MEASUREMENT DISTANCE	8
3.3	FULLY ANECHOIC CHAMBER (FAC) WITH MAXIMUM 5M MEASUREMENT DISTANCE	8
3.4	SHIELDED TEST CABINS	9
3.5	INSTRUMENT ROOM	10
3.6	MEASUREMENT UNCERTAINTY	11
3.7	GROUND PLAN	12
4	ANTENNA REQUIREMENT	13
4.1	REGULATION	13
4.2	RESULT	13
5	RADIATED EMISSIONS TEST	14
5.1	REGULATION	14
5.2	RADIATED EMISSIONS TEST, 9 KHZ TO 10 GHZ	15
5.2.1	TEST EQUIPMENT USED:	15
5.2.2	TEST PROCEDURES	15
5.2.3	CALCULATION OF FIELD STRENGTH LIMITS	16
5.2.4	CALCULATION OF AVERAGE CORRECTION FACTOR	16
5.2.5	FIELD STRENGTH CALCULATION	16
5.2.6	TEST RESULTS	18
6	CALIBRATION LIST	23
7	ACCREDITATION CERTIFICATE	27
8	LIST OF ANNEXES	28

1 Test Results Summary

Summary of Test Results

CS0170 rfCUE 99

Requirement	CFR Section	Report Section	Test Result
Antenna requirement	15.203	4	Pass
Conducted emissions	15.207	6	*
Field Strength Limits (Fundamental and Harmonics)	15.249	5	Pass
Radiated Spurious Emissions	15.209, 15.249	5	Pass

* Not required, the EUT is battery powered and there is no provision for connection to the mains.

The client has made the determination that EUT Condition, Characterization, and Mode of Operation are representative of production units, and meet the requirements of the specifications referenced herein.

Consistent with industry practice, measurement and test equipment not directly involved in obtaining measurement results but having an impact on measurements (such as cable loss, antenna factors, etc.) are factored into the "Correction Factor" documented in certain test results. Instrumentation employed for testing meets tolerances consistent with known Industry Standards and Regulations.

The measurements contained in this report were made in accordance with the procedure ANSI C63.4-1992 and all applicable Public Notices received prior to the date of testing. All emissions from the device were found to be within the limits outlined in this report.

The test results in this report apply only to the particular Equipment Under Test (EUT) as declared in this report.

2 CS0170 rfCUE 99

RX/TX mode description

The rf part of Cue Control System contains 3 units:

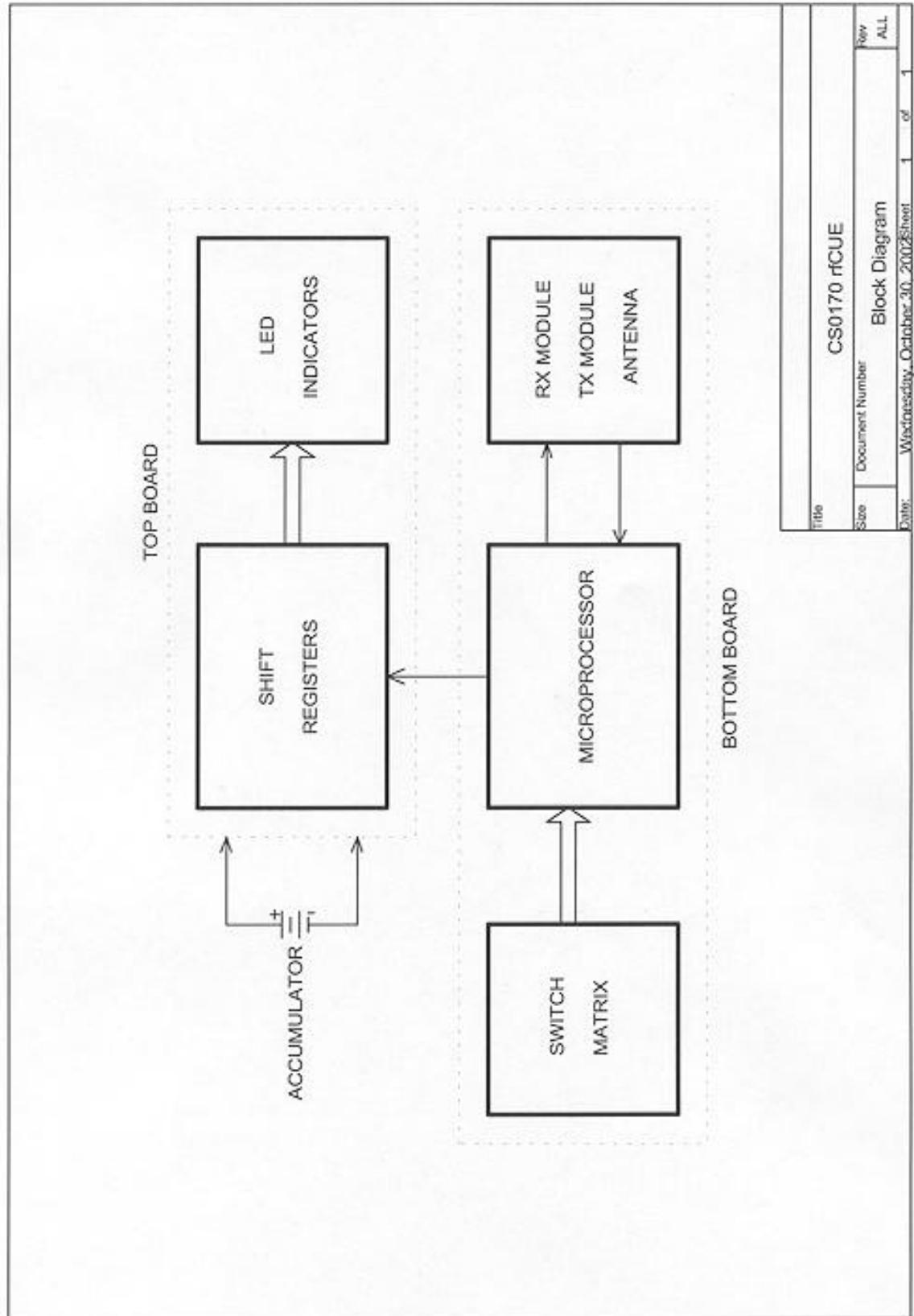
- 1) the stationary station **rfbaseCUE**, connected to the central unit (Assistant) via RS485 bus
- 2) the handheld battery powered remote control keyboard **rfCUE**
- 3) the handheld battery powered 6 inch LCD terminal with touchpanel – **touchCUE-srf**

Each of these 3 units contains 1 pair of transmitter and receiver.

The data transmission and reception is provided in a half-duplex mode by rf modules TX3A-914-64 and RX3-914-64 or TX2-433-40-3V and RX2-433-40-3V produced by Radiometrix Ltd., England. The transmission and reception frequencies are the same. 914.5 MHz for using in USA and 433.92 MHz for using in Europe. Data sheet of both modules is available in appendix.

RX input and TX output are connected to the common antenna via 1/4 wave 50 Ohm coaxial line. Permanently attached (non-removable) helical antenna is made from wire spring according to data sheet recommendation. Antenna is located inside the wooden case in front part of instrument.

After switching on the control system all receivers are activated, while all transmitters are disconnect from power voltage Vcc (+3.6V). After pushing on any push button on rfCUE, the RX module is disconnect from power voltage and the TX module is connected to the Vcc. The proper command is transmitted. The TX module is switched off and the RX module is switched on. When a acknowledge is not received from stationary transmitter (rfbaseCUE), transmission of the command from rfCUE is repeated up to 5 times. The delay between command repetitions is approximately 50 milliseconds.


When a command from stationary transmitter (rfbaseCUE) is received, the RX module is switched off again, the TX is switched on and acknowledge is transmitted.

Transmitter is always connected to Vcc during the transmission only.

The duration time of command or acknowledge transmission is 11 to 20 milliseconds. The exact time depends on length of command and transmitter is frequency modulated by serial data from microprocessor. Bit rate does not exceed 30 kbit/sec.

Used frequencies:

14.7456 MHz	Microprocessor clock
14.289 MHz	Reference oscillator in PLL for TX3A
14.456 MHz	Reference oscillator in PLL for RX3

Block diagram

3 Description of EMC test centre

3.1 Registrations

Registration No.: TTI-P-G 004/92-03

Registration No.: 96997

Registration No. for conducted emission: C-1361

Registration No. for radiated emission: R-1293

Registered Manufacturer Test Facility (MTF) within
Verizons ITL program.

3.2 Semi anechoic chamber (SAC) with maximum 10m measurement distance

Dimensions (LxWxH):	22.28 m x 15.98 m x 9.00 m with ground plane
Shielding:	Chrome steel frame with steel panels in modular design, screwed, insulated design
Shielding attenuation:	<input type="checkbox"/> 85 dB at 10 kHz <input type="checkbox"/> 100 dB at 156 kHz <input type="checkbox"/> 120 dB at 1 MHz <input type="checkbox"/> 100 dB at 100 MHz up to 1 GHz <input type="checkbox"/> 80 dB at 10 GHz > 80 dB at 18 GHz
Absorber:	Franko _{Sorb} P2400; length 2.4m; on sidewalls, endwalls and ceiling
Turntable:	5 m diameter; 3 t load-bearing capacity
EMC test system:	Rohde & Schwarz; ESH3; ESVS30; ESAI; ESI40
Antennas:	Loop antenna; biconical antennas, log. Periodic antennas, horn antennas
	Emission frequency range: 10 kHz – 40 GHz
	Immunity frequency range: 10 kHz – 18 GHz
Chamber filters:	AC chamber filter max. 100A / 3 phase system DC chamber filter max. 100V / 100A 32 filters with 2 Mbit/s 20 filters with 64 kBit/s 20 filters with 3.4 kHz
Video:	Pontis
Power supplies:	DC: 100V / 100A (with chamber filter) or 70V / 500A (without chamber filter)

3.3 Fully anechoic chamber (FAC) with maximum 5m measurement distance

Dimensions (LxWxH):	12.01 m x 8.03 m x 6.00 m
Shielding:	Chrome steel frame with steel panels in modular design, screwed, insulated design
Shielding attenuation:	<input type="checkbox"/> 85 dB at 10 kHz <input type="checkbox"/> 100 dB at 156 kHz <input type="checkbox"/> 120 dB at 1 MHz <input type="checkbox"/> 100 dB at 100 MHz up to 1 GHz <input type="checkbox"/> 80 dB at 10 GHz > 80 dB at 18 GHz
Absorber:	Franko _{Sorb} H600; length 0.6 m; on sidewalls, endwalls, ceiling and bottom

Turntable:	3 m diameter; 1 t load-bearing capacity
EMC test system:	Rohde & Schwarz; ESH3; ESVS30; ESAI; ESI40
Antennas:	Loop antenna; biconical antennas, log. Periodic antennas, horn antennas Emission frequency range: 10 kHz – 40 GHz Immunity frequency range: 10 kHz – 18 GHz
Chamber filters:	AC chamber filter max. 100A / 3 phase system DC chamber filter max. 100V / 100 A 32 filters with 2 Mbit/s 20 filters with 64 kBit/s 20 filters with 3.4 kHz
Video:	Pontis
Power supply:	DC: 100V / 100A

3.4 Shielded test cabins

Measurementroom for SAC (MRS):

Dimensions (LxWxH):	2.5 m x 2.4 m x 2.5 m
Use:	Isolation of auxiliary equipment from the equipment under test inside SAC

Measurementroom for FAC (MRF):

Dimensions (LxWxH):	3.5 m x 1.7 m x 2.5 m
Use:	Isolation of auxiliary equipment from the equipment under test inside FAC

Shielded cabin (EMI):

Dimensions (LxWxH):	4.31 m x 4.31 m x 2.8 m
Use:	ESD test cabin, RFI voltage measurement and conducted interference immunity tests.
Cabin filters:	AC chamber filter max. 25 A DC chamber filter max. 60 A 2 filters with cut-off frequency 3.4 kHz 5 filters (4-w) with cut-off frequency 500 kHz

Amplifier room (AR):

Dimensions (LxWxH): 3.5 m x 2.5 m x 2.5 m

Use: Location for RF amplifiers

3.5 Instrument room

Dimensions (LxWxH): 12 m x 5.33 m x 3.3 m

Use: Location for measurement equipment as like as spectrum analyzers, receivers and PCs with EMI software. There are also located: Control devices for antenna/turntable movement and audio/video.

3.6 Measurement Uncertainty

The table below shows the measurement uncertainties for each measurement method. The expanded uncertainty was calculated with worst case values over the complete frequency area.

Measurement method	Frequency area impulse duration time	Description	expanded Uncertainty (95% or k=2)
Radiated emission (EN 55022; ANSI C63.4 etc.)	30 MHz...1 GHz	Semi anechoic chamber	±4,7 dB
	1 GHz...18 GHz	Fully anechoic chamber	±3,9 dB
Conducted emission (EN 55022; ANSI C63.4 etc.)	9 kHz...150 kHz		±4,0 dB
	150 kHz...30 MHz		±3,6 dB
Harmonics (EN 61000-3-2)	2...40 x f _N ; f _N = 50 Hz	Voltage Current	±1% ±1%
Flicker (EN 61000-3-3)	f _N = 50 Hz	P _{st}	±1,5%
ESD (EN 61000-4-2)	5/30ns	Rise time/ half life Voltage amplitude	±30% ±10%
Radiated Immunity (EN 61000-4-3)	80 MHz...1 GHz		±42,7%
BURST (EN 61000-4-4)	5/50 ns	Rise time/ half life Voltage amplitude	±20% ±4,1%
SURGE (EN 61000-4-5)	1,2/50 µs 8/20 µs	Voltage rise time/ half life Current rise time/ half life Charged voltage	±30%/±20% ±20%/±20% ±4,1%
HF-Injection (EN 61000-4-6)	150 kHz...80 MHz		±9%
Voltage Dips, Interruptions (EN 61000-4-11)		Voltage level time	±1% ±0,1%
Power induction	ITU-K.20	Frequency Amplitude	±0,1Hz ±1%

3.7 Ground plan

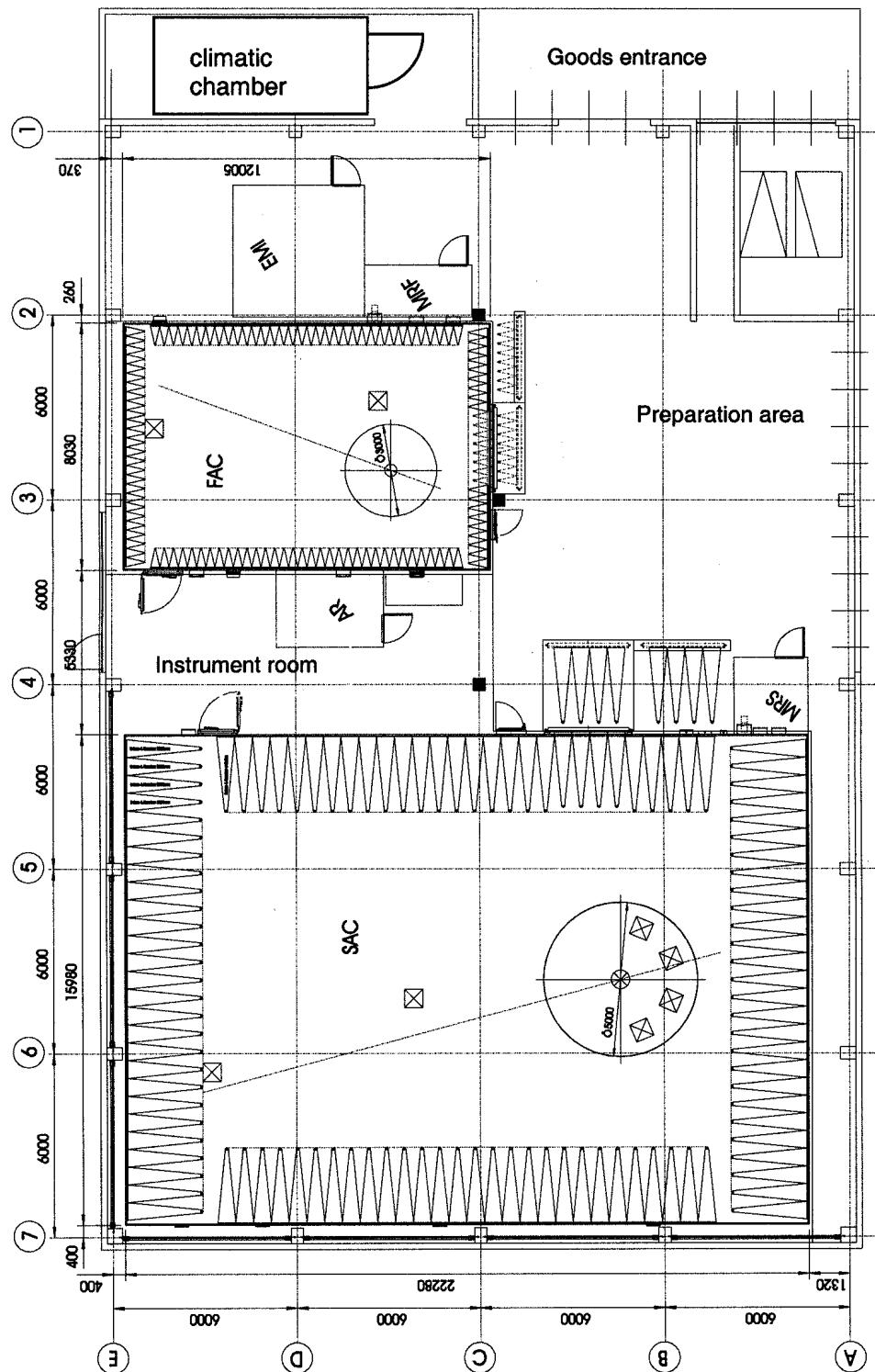


Fig. 3.7.1: Partition of the European Compliance Laboratory

4 Antenna Requirement

Test requirement: FCC CFR47, Part 15C

4.1 Regulation

15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

4.2 Result

EUT: CS0170 rfCUE 99

Antenna is directly soldered on the PCB.

The EUT meets the requirements of this section.

5 Radiated Emissions Test

Test requirement: FCC CFR47, Part 15C

Test procedure: ANSI C63.4: 1992

5.1 Regulation

15.249(a) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency (MHz)	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902 – 928 MHz	50	500
2400 – 2483.5 MHz	50	500
5725 – 5875 MHz	50	500
24.0 – 24.25 GHz	250	2500

(b) Field strength limits are specified at a distance of 3 meters.

© Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or the general radiated emission limits in §15.209, whichever is the lesser attenuation.

(d) As shown in §15.35(b), for frequencies above 1000 MHz, the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Section 15.33 Frequency range of radiated measurements:

- Unless otherwise noted in the specific rule section under which the equipment operates for an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:
- If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

5.2 Radiated Emissions Test, 9 kHz to 10 GHz

5.2.1 Test equipment used:

Designation	Equipment	Manufacturer	Frequency range	used
EMI test receiver	ESVS30	Rohde & Schwarz	20 MHz – 1 GHz	
EMI test receiver	ESAI	Rohde & Schwarz	20 Hz – 1,8 GHz	
EMI test receiver	ESI40	Rohde & Schwarz	20 Hz – 40 GHz	X
EMI test receiver	ESH3	Rohde & Schwarz	9 kHz – 30 MHz	X
Antenna	CBL 6111	Chase	30 MHz – 1 GHz	
Antenna	HFH2-Z2	Rohde & Schwarz	9 kHz – 30 MHz	X
Antenna	3141	EMCO	26 MHz – 2 GHz	X
Antenna	HL025	Rohde & Schwarz	1 GHz – 18 GHz	X

5.2.2 Test Procedures

For tabletop equipment, the EUT is placed on a 0.8 meter high nonconductive table that sits on a flush mounted metal turntable. Floor standing equipment is placed directly on the flush mounted metal turntable. The EUT is connected to its associated peripherals with any excess I/O cabling bundled to approximately 1 meter.

Preview tests are performed. Emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable. Manipulating the system cables also maximizes EUT emissions. All tests performed with the antenna placed in two polarizations: horizontal and vertical.

Radiated Emissions Test Characteristics	
Frequency range	30 MHz – 10 GHz
Test distance	3 m *
Test instrumentation resolution bandwidth	200 Hz (9 kHz – 150 kHz) 9 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1 GHz) 1 MHz (1 GHz – 10 GHz)
Receive antenna scan height	1 m – 4 m (above 30 MHz)
Receive antenna polarization	Vertical/Horizontal

23 According to Section 15.31 (f)(1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. (...) When performing measurements at a distance other than specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

5.2.3 Calculation of Field Strength Limits

Fundamental field strength limit for the band 902 to 928 MHz:
50 mV/m at 3 meters; 50 mV/m corresponds with 94.0 dB(μ V/m).

Harmonics field strength limit for the band 902 to 928 MHz:
500 μ V/m at 3 meters; 500 μ V/m corresponds with 54.0 dB(μ V/m).

The above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Emissions radiated outside the frequency band 902 to 928 MHz, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Calculation: microvolts/meter to dB(μ V/m)

Frequency	Field Strength Limits according to §15.209		Measurement distance
[MHz]	[μ V/m]	[dB(μ V/m)]	[m]
30 – 88	100	40.0	3
88 – 216	150	43.5	3
216 – 960	200	46.0	3
Above 960	500	54.0	3

The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for frequencies above 1000 MHz. Radiated emission limits above 1000 MHz are based on measurements employing an average detector.

5.2.4 Calculation of Average Correction Factor

The average correction factor is computed by analyzing the “worst case” on time in any 100 ms time period and using the formula:

Correction Factor (dB) = $20 \times \log_{10}(\text{worst case on time}/100 \text{ ms})$

Analysis of the transmitter worst case on time in any 100 ms time period is an on time of 40 ms. Therefore the correction factor is $20 \log_{10}(40/100) = -8 \text{ dB}$

5.2.5 Field Strength Calculation

The field Strength is calculated by adding the Antenna Factor and the Cable Factor. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF$$

where

- FS = Field Strength in dB(μ V/m)
- RA = Receiver Amplitude in dB(μ V)
- AF = Antenna Factor in dB(1/m)
- CF = Cable Attenuation Factor in dB

Assume a receiver reading of 23.5 dB(μ V) is obtained. The Antenna Factor of 7.4 dB(1/m) and a Cable Factor of 1.1 dB are added, giving a field strength of 32 dB(μ V/m). The 32 dB(μ V/m) value can be mathematically converted to its corresponding level in μ V/m.

$$FS = 23.5 \text{ dB}(\mu\text{V}) + 7.4 \text{ dB (1/m)} + 1.1 \text{ dB} = 32 \text{ dB}(\mu\text{V/m})$$

$$FS = 10^{(32/20)} \mu\text{V/m} = 39.8 \mu\text{V/m}$$

For test distances other than what is specified, but fulfilling the requirements of Section 15.31 (f)(1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements). The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF + DF$$

where

FS = Field Strength in dB($\mu\text{V/m}$)

RA = Receiver Amplitude in dB(μV)

AF = Antenna Factor in dB(1/m)

CF = Cable Attenuation Factor in dB

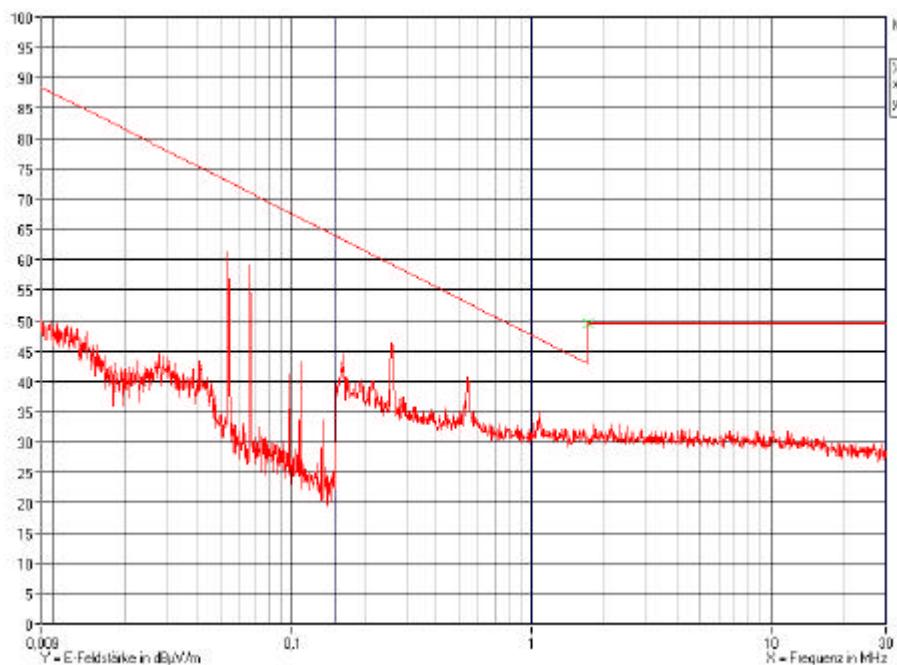
DF = Distance Extrapolation Factor in dB

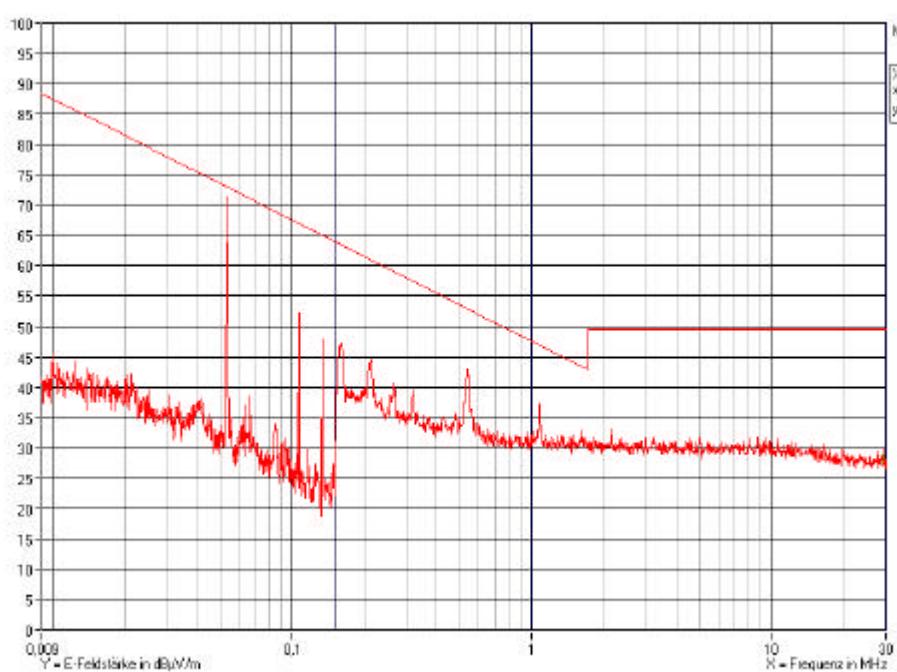
where $DF = 20\log(D_{\text{test}}/D_{\text{spec}})$ where D_{test} = test distance and D_{spec} = specified distance

Assume the test performed at a reduced test distance of 1.5 m instead of the specified distance of 3 m giving a Distance Extrapolation of $DF = 20\log(1.5\text{m}/3\text{m}) = -6 \text{ dB}$.

Assuming a receiver reading of 23.5 dB(μV) is obtained. The Antenna Factor of 7.4 dB(1/m), the Cable Factor of 1.1 dB and the Distance Factor of -6 dB are added, giving a field strength of 26 dB($\mu\text{V/m}$). The 26 dB($\mu\text{V/m}$) value can be mathematically converted to its corresponding level in $\mu\text{V/m}$.

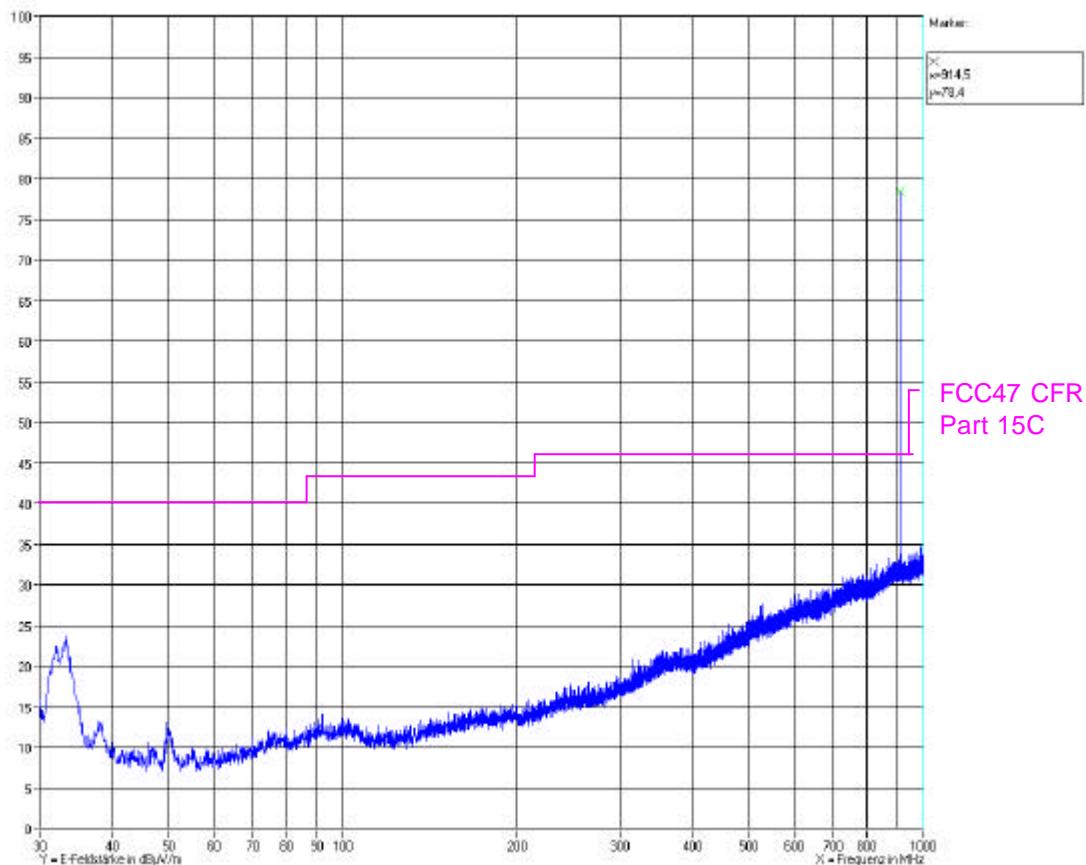
$$FS = 23.5 \text{ dB}(\mu\text{V}) + 7.4 \text{ dB(1/m)} + 1.1 \text{ dB} - 6 \text{ dB} = 26 \text{ dB}(\mu\text{V/m})$$


$$FS = 10^{(26/20)} \mu\text{V/m} = 20.0 \mu\text{V/m}$$

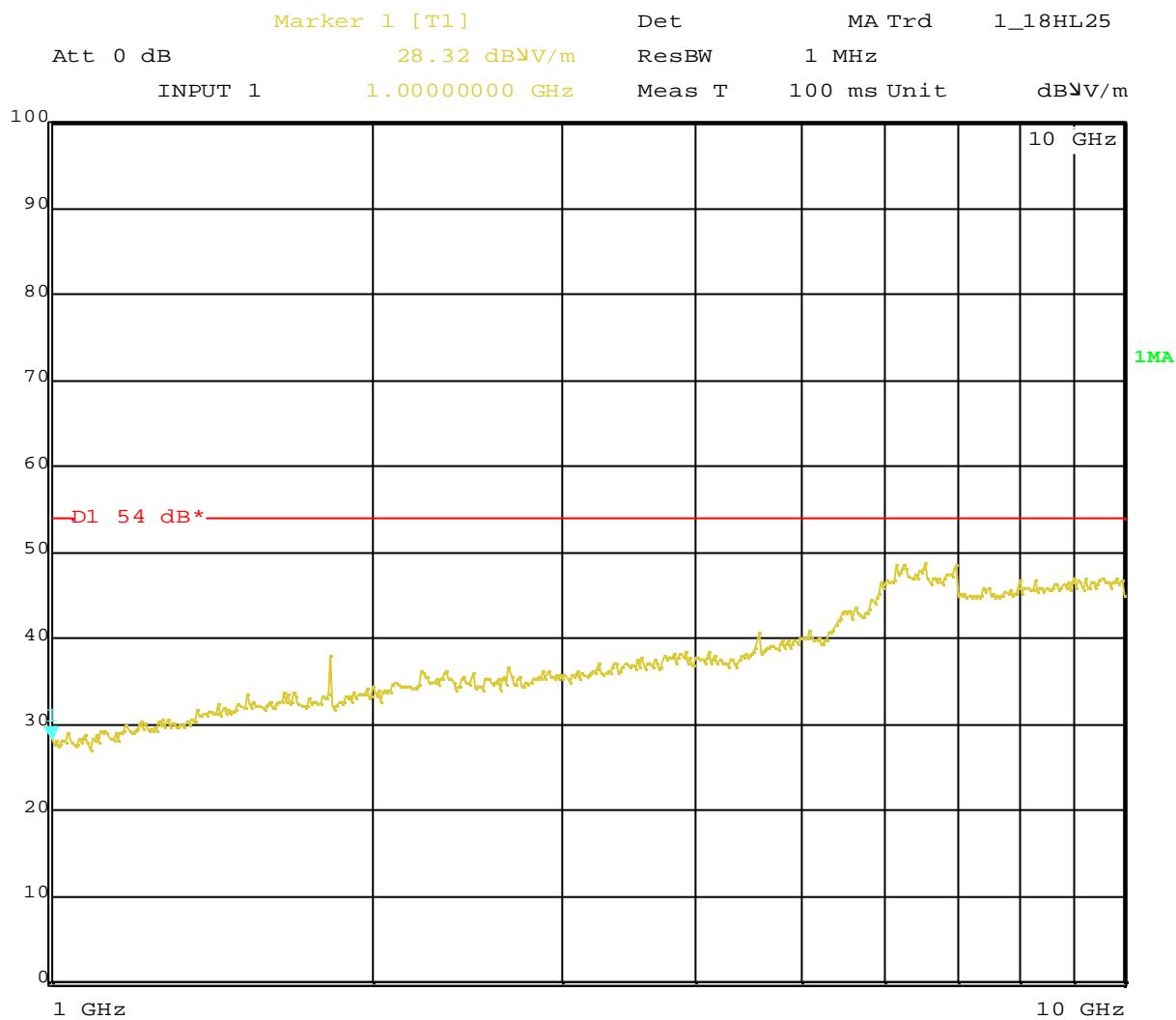

5.2.6 Test Results

Product Emissions Data, Fundamental and Harmonics											
No	Emission Frequency [MHz]	Receiver Bandwidth and Mode [kHz]	Test Distance [m]	Receiver Reading RA [dB(μV)]	Correction Factor AF + CF [dB(1/m)]	Distance Extrapol. Factor DF [dB]	Average Correction Factor [dB]	Result = Corrected Reading FS [dB(μV/m)]	Spec. Limit [dB(μV/m)]	Polarization Ant.	Margin [dB]
1	914,5	120, PK	3	50.4	28	0	-10.9	67.5	94	v	26.5
2	1829	1000, PK	3	10	28.4	0	-10.9	27.5	54	v	26.5
3	2743.5	1000, PK	3	4.4	32.6	0	-10.9	26.1	54	v	27.9
4	4572.5	1000, PK	3	3.3	37.7	0	-10.9	30.1	54	v	23.9
5											

Product Emissions Data above 30 MHz (except fundamental and harmonics)											
No	Emission Frequency [MHz]	Receiver Bandwidth and Mode [kHz]	Test Distance [m]	Receiver Reading RA [dB(μV)]	Correction Factor AF + CF [dB(1/m)]	Distance Extrapol. Factor DF [dB]	Average Correction Factor [dB]	Result = Corrected Reading FS [dB(μV/m)]	Spec. Limit [dB(μV/m)]	Polarization Ant.	Margin [dB]
1	0.0533	0.2, PK	3	68	0.2	-20		48.2	53.07	Rect.	4.87
2	0.1066	0.2, PK	3	49.5	0.3	-20		29.8	47.5	Rect.	17.25
3	0.1333	0.2,PK	3	48.6	0.4	-20		29	45.1	Rect.	16.1
4	0.1581	9, PK	3	45.4	0.5	-20		25.9	43.6	Rect.	17.7
5	0.2134	9, PK	3	41.9	0.5	-20		22.4	41	Rect.	18.6
6	0.5396	9, PK	3	40.1	0.6	-20		20.7	33	Rect.	12.3
7	32.3	120, PK	3	11.8	10.7	0	-10.9	11.6	40	v	28.4
8	33,2	120, PK	3	13.3	10.7	0	-10.9	13.1	40	v	26.9
9											



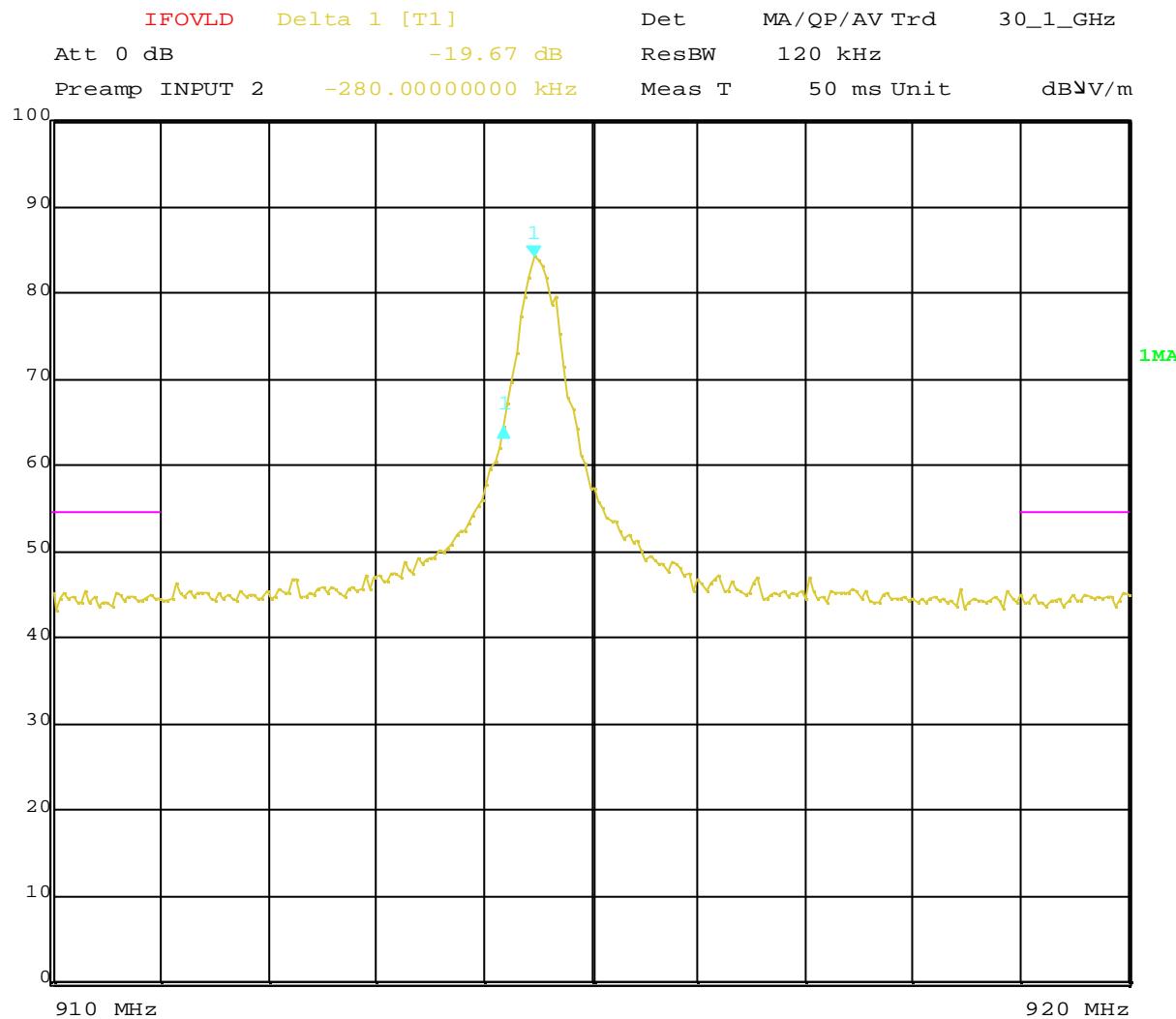
Measurement report 1: parallel; h=1m, 0 degree
9 kHz – 30 MHz


Measurement report 2: rectangular; h=1m, -25 degree
9 kHz – 30 MHz

Measurement report 1 and 2 were carried out with the whole system. The CS0170 rfCUE was one part of the system.

Measurement report 3: vertical; $h=1,11$ m, -30 degree
30 MHz – 1 GHz

Remark: The peak at 914.5 MHz is the intended frequency and therefore not relevant for the limits.



Date: 10.OCT.2002 13:42:52

Measurement report 4: vertical; h=1m, -30 degree, peak > 1 GHz

Spurious emissions

Date: 10.OCT.2002 13:46:40

The spurious emissions within the band 902 to 928 MHz were less than 54 dBµV/m

All plots show the results with the peak detectors. It is the worst case condition.

EUT: CS0170 rfCUE 99

The EUT meets the requirements of this section.

6 Calibration list

Asset no.	Serial no.	Model	Manufacturer	Designation	Cal. date
B415	LO-123364	PM 6303	Philips	RCL Bridge	07/11/2002
D2157	611462	CTR 2	EM Test	Calibration shunt	01/07/2002
D382	300 161 10	RBD	Rohde&Schwarz	Attenuator	08/03/2003
D523	300618/61	RBU	Rohde&Schwarz	Resistor	07/03/2003
D665	GF557	40-20-34	Weinschel	Attenuator	07/03/2003
D669	2200	769-3	Narda	Attenuator	14/05/2002
D670	D 32240	53 16 21	Spinner	Attenuator	14/05/2002
D672	D39951	74 53 93	Spinner	Attenuator	13/11/2002
D683	D41796	53 16 21	Spinner	Attenuator	14/05/2002
D707	IX 077	Modell 49	Kontron	Attenuator	16/08/2002
D710	---	765-3	Transtech	Attenuator	14/05/2002
D789	300160/10	RBU	Rohde&Schwarz	Resistor	01/03/2002
D790	K 6226311	50 Ohm	Kathrein	Termination 50 Ohm	07/03/2003
D898	---	2N150W-6DB	Tactron	Attenuator	20/09/2001
D899	---	2N150W-6DB	Tactron	Attenuator	07/12/2000
E1057	81510070	R 4131	Advantest	Spectrum-Analyzer	12/03/2003
E1194	3033A01486	85650 A	Agilent Technologies	Peak-Adapter	14/03/2003
E1229	894702/027	ESA1	Rohde&Schwarz	Receiver	05/02/2003
E1416	60908	HI-4400-01	Pötschke	Field strength meter	10/12/2001
E1455	353701902	ESV-Z1	Rohde&Schwarz	HF Current converter	15/11/2002
E1482	C-0009	EFA-2	WUG	Field strength meter	26/11/2003
E1607	829909/005	ESI-40	Rohde&Schwarz	Receiver	06/11/2002
E1626	830516/009	ESVS30	Rohde&Schwarz	Receiver	19/03/2003
E1687	837808/003	ESI-40	Rohde&Schwarz	Receiver	13/02/2003
E1742	US39440167	E7405A	Agilent Technologies	Spectrum-Analyzer	18/12/2002
E426	514633 E	SPM-11	WUG	Voltmeter	29/10/2002
E678	872317/025	ESH 3	Rohde&Schwarz	Receiver	13/11/2002
E716	1750A02940	3585 A	Agilent Technologies	Spectrum-Analyzer	06/12/2002
E816	880111/34	ESH2-Z1	Rohde&Schwarz	HF Current converter	08/08/2002
E871	2627A03145	8566 B	Agilent Technologies	Spectrum-Analyzer	14/03/2003
E881	881363/13	ESH2-Z1	Rohde&Schwarz	HF Current converter	15/11/2002
E924	881388/24	ESV-Z1	Rohde&Schwarz	HF Current converter	15/11/2002
F1574	3531A00126	6843 A	Agilent Technologies	Harmonic/Flicker Test System	08/11/2002
F1781	US38432025	8753 E	Agilent Technologies	Network-Analyzer	28/08/2003
G1021	2520G04678	8116 A	Agilent Technologies	Signalgenerator	15/11/2002
G1029	879856/038	SMPC	Rohde&Schwarz	Signalgenerator	05/06/2003
G1060	080723-08-85	P 6 T	Haefely	Transient generator	29/05/2003
G1068	881209/002	SMPC	Rohde&Schwarz	Signalgenerator	08/10/2002
G1106	080865-23-86	PC6-288	Haefely	Transient generator	29/05/2003
G1228	0390-01	ESD 30	EM-Test	ESD-Generator	31/10/2002
G1234	0390-02	ESD 30	EM-Test	ESD-Generator	31/10/2002
G1267	1290-05	EFT 5	EM-Test	Transient generator	19/02/2002
G1325	3145A0455	83623 A	Agilent Technologies	Signalgenerator	26/11/2002
G1552	835537/014	SMR-40	Rohde&Schwarz	Signalgenerator	06/09/2002
G1632	0201-02	EFT 800-16 A	EM Test	Burst-Generator	15/01/2003
G1633	0301-04	VCS 500 M/8	EM Test	Surge-Generator	16/01/2003
G1634	1201-14	DITO	EM Test	ESD-Generator	01/12/2002
G1637	0102-01	TSS 500 M10	EM Test	Surge-Generator	01/01/2003
G1641	1201-01	TSS 500 M6B	EM Test	Surge-Generator	02/05/2003
K1013	22538	200T8G18	EMV GmbH	Amplifier	27/05/2003
K1014	21287	200T4G8	EMV GmbH	Amplifier	27/05/2003
K1017	24901	DC 7350	EMV GmbH	Directional coupler	20/11/2003
K1019	9911001C	CDN-M5/100A	EM Test	LISN/CDN/ISN	05/11/2002
K1020	699-01	CNI 503-8/100	EM-Test	LISN/CDN/ISN	29/05/2003

Asset no.	Serial no.	Model	Manufacturer	Designation	Cal. date
K1025	620180	EM-6871	Electro Metrics	Antenna	04/06/2003
K1026	2624	CBL 6111 C	Chase	Antenna	17/06/2003
K1029	99-40004	LISN 4-100/200	Bajog	LISN/CDN/ISN	22/05/2003
K1030	99-40006	LISN 2-100/200	Bajog	LISN/CDN/ISN	22/05/2003
K1031	99-40005	LISN 4-25/32	Bajog	LISN/CDN/ISN	22/05/2003
K1033	0002-50935	95236-1	EMCO	Current Clamp	23/05/2003
K1034	0003-50963	95241-1	EMCO	Calibration Jig	23/05/2003
K1042	1041	MWH-1826/B	ARA Inc.	Antenna	29/05/2003
K1043	1021	MWH-2640/B	ARA Inc.	Antenna	29/05/2003
K1045	---	RTK 106-km-km-4m	NeWe-Tec	HF cable	22/05/2003
K1049	---	S1	Lucent	LISN/CDN/ISN	20/09/2003
K1050	---	S1	Lucent	LISN/CDN/ISN	20/09/2003
K1068	996	VHAP	Schwarzbeck	Antenna	01/01/2004
K1069	997	VHAP	Schwarzbeck	Antenna	01/01/2002
K1099	16910	CDNT 400	MEB	LISN/CDN/ISN	01/05/2002
K1100	15994	CDNT 246	MEB	LISN/CDN/ISN	01/05/2002
K1102	100040	ENY-22	Rohde&Schwarz	LISN/CDN/ISN	01/07/2002
K1103	100042	ENY-41	Rohde&Schwarz	LISN/CDN/ISN	01/07/2002
K1105	99-4-0005	LISN 4-100/200	Bajog	LISN/CDN/ISN	25/10/2002
K1108	---	FAP1	Frankonia	Filterboard	05/12/2004
K1109	---	FAP2	Frankonia	Filterboard	05/12/2004
K1110	---	FAP3	Frankonia	Filterboard	05/12/2004
K1111	---	SAP1	Frankonia	Filterboard	05/12/2004
K1112	---	SAP2	Frankonia	Filterboard	05/12/2004
K1113	---	SAP3	Frankonia	Filterboard	05/12/2004
K1114	100109	HL 025	Rohde&Schwarz	Antenna	10/01/2003
K1118	2023	CDN-M2/75A	EM Test	LISN/CDN/ISN	01/03/2003
K1120	16097	CDN ST08S	Schaffner	LISN/CDN/ISN	20/09/2003
K1121	---	SAC-Antenne	Frankonia	HF cable	06/06/2003
K1122	---	SAC	Frankonia	HF cable	06/06/2003
K1123	---	SAC	Frankonia	HF cable	06/06/2003
K1125	---	SAC Kabel	Frankonia	HF cable	06/06/2003
K1126	---	SAC Kabel	Frankonia	HF cable	06/06/2003
K1127	---	SAC Kabel	Frankonia	HF cable	06/06/2003
K1128	---	SAC Kabel	Frankonia	HF cable	06/06/2003
K1129	---	---	Lucent	Helmholtz Coil	06/06/2003
K1130	1740	91550-1B	Ailtech	Current probe	18/06/2003
K1155	---	---	---	HF cable	18/06/2003
K1156	---	---	---	HF cable	18/06/2003
K1157	---	---	---	HF cable	18/06/2003
K1158	---	---	---	HF cable	18/06/2003
K1161	---	---	---	HF cable	19/06/2003
K1162	356592/001	HB 525	Rohde & Schwarz	Antenna	01/01/2003
k1163	---	3 und 99 Wdg.	Lucent	Helmholtz Coil	06/06/2003
K298	B 032576	AM 503	Tektronix	Amplifier for current	25/04/2002
K548	880563/17	HFH2-Z1	Rohde&Schwarz	Antenna	18/04/2003
K549	880458/47	HFH2-Z2	Rohde&Schwarz	Antenna	18/04/2003
K569	2602A00226	85685 A	Agilent Technologies	Preselektor	14/03/2003
K593	32551	3020 A	Narda	Directional coupler	14/11/2002
K617	986	C 1460	Werlatone	Directional coupler	14/11/2002
K628	---	NTFM 8132	SCHWARZBEC	LISN/CDN/ISN	10/03/2000
K629	---	NTFM 8132	SCHWARZBEC	LISN/CDN/ISN	10/03/2000
K630	---	NTFM 8132	SCHWARZBEC	LISN/CDN/ISN	10/03/2000
K639	1088	C 1460	Werlatone	Directional coupler	12/11/2002
K661	44279	110	Pearson	Current clamp	15/11/2002
K675	983	9411-1	Ailtech	Current clamp	23/04/2002
K678	890604/019	ESH3-Z5	Rohde&Schwarz	LISN/CDN/ISN	05/12/2002

Asset no.	Serial no.	Model	Manufacturer	Designation	Cal. date
K689	08057-19-86	FP 20/3-3	Haefely	Coupling device	29/05/2003
K757	0189-3535	M 404 E	Pötschke	HF-Amplifier	27/05/2003
K759	8812-3085	3115	Kontron	Antenna	27/05/2003
K776	2936A00886	85047 A	Agilent Technologies	S-Parameter	28/08/2003
K809	320891/013	HL 025	Rohde&Schwarz	Antenna	15/06/2002
K817	217554	Miteq	Parzich	Amplifier	11/02/2003
K827	825333/010	ESH3-Z6	Rohde&Schwarz	LISN/CDN/ISN	26/04/2002
K831	73721	3022	Transtech	Directional coupler	20/09/2001
K835	825867-022	ESH3-Z4	Rohde&Schwarz	LISN/CDN/ISN	08/08/2001
K838	656297	Miteq	Parzich	Amplifier	25/10/2002
K841	---	8 G/2 M	Telemeter	HF cable	18/06/2003
K845	827904003	EZ-10	Rohde&Schwarz	LISN/CDN/ISN	08/08/2001
K856	12349	AT 5000	EMV	Antenna	27/05/2003
K859	---	LN-40/50	Heine	LISN/CDN/ISN	10/10/1999
K874	---	T 1 V/P 4D	PKI/EMV	LISN/CDN/ISN	10/03/2000
K876	---	T 2 V/P 4D	PKI/EMV	LISN/CDN/ISN	10/03/2000
K877	357.8810.52	ESH3-Z2	Rohde&Schwarz	Limiter	23/10/2002
K879	---	RG-214-U	F+G	HF cable	18/06/2003
K880	---	AF-2	MEB	LISN/CDN/ISN	20/09/2003
K881	---	AF-4	MEB	LISN/CDN/ISN	27/04/2001
K882	---	S4	MEB	LISN/CDN/ISN	20/09/2003
K896	---	M1	MEB	LISN/CDN/ISN	20/09/2003
K899	-----	Transmission	PKI/EMV	HF cable	28/07/2000
K900	-----	1000-4-6	PKI/EMV	HF cable	31/08/2000
K901	---	S1	MEB	LISN/CDN/ISN	20/09/2003
K910	9124-0211	BBA 9106	Schwarzbeck	Antenna	02/05/2003
K911	9124-0214	BBA 9106	Schwarzbeck	Antenna	02/05/2003
K912	312/93	UBA 9116	Schwarzbeck	Antenna	02/05/2003
K913	311/93	UBA 9116	Schwarzbeck	Antenna	02/05/2003
K920	816121502	EZ-10	Rohde&Schwarz	LISN/CDN/ISN	08/08/2001
K933	11158	M2	MEB	LISN/CDN/ISN	16/07/2002
K934	11503	IKEN SO	MEB	LISN/CDN/ISN	11/03/2002
K935	12200	KEN M3-1-801	MEB	LISN/CDN/ISN	20/09/2003
K936	11298	S15	MEB	LISN/CDN/ISN	20/09/2003
K937	11328	S25	MEB	LISN/CDN/ISN	20/09/2003
K938	13001	AT 1080	EMV GmbH	Antenna	27/05/2003
K939	12446	KEN T2-801	MEB	LISN/CDN/ISN	20/09/2003
K940	11422	KEN T4-801	MEB	LISN/CDN/ISN	20/09/2003
K972	9803-1089	3141	EMCO	Antenna	01/04/2003
K976	23623	50 S1G 4	EMV	Amplifier	27/05/2003
K978	----	Transmission	Frankonia	HF cable	18/06/2003
K979	9856	FCC-801-S9	FCC	LISN/CDN/ISN	26/09/2003
K980	9844	FCC-801-T8	FCC	LISN/CDN/ISN	26/09/2003
M1765	304267	7150	Solartron	Multimeter	10/10/2002
M1923	881375/102	URV 5	Rohde&Schwarz	Power meter	18/04/2003
M1925	881096/062	URV5-Z2	Rohde&Schwarz	HF probe	12/11/2002
M1926	880572/46	URV5-Z4	Rohde&Schwarz	HF probe	25/03/2003
M2145	DY0104017	PM 2718 X	Philips	Multimeter	22/10/2002
M2191	DY0102352	PM 2534	Philips	Multimeter	22/10/2002
M2214	DY0103745	PM 2718 X	Philips	Multimeter	08/10/2002
M2292	44930413	77	Fluke	Multimeter	08/10/2002
M2407	892948/44	URV5-Z4	Rohde&Schwarz	HF probe	25/03/2003
M2541	49750325	87	Philips	Multimeter	18/10/2002
M2573	860617/029	URV 5	Rohde&Schwarz	Power meter	05/02/2003
M2659	862.806/010	URV5-Z2	Rohde&Schwarz	HF probe	29/08/2003
M2660	894823/34	URV5-Z4	Rohde&Schwarz	HF probe	25/03/2003
M2758	DM529010	PM 2525	Philips	Multimeter	18/07/2003

Asset no.	Serial no.	Model	Manufacturer	Designation	Cal. date
M2816	53120431	87	Philips	Multimeter	22/09/2000
M2892	3125U05034	437 B	Agilent Technologies	HF power meter	10/10/2002
M2893	2702A07178	8481 B	Agilent Technologies	HF probe	10/10/2002
N2112	1543	33K7EU5	Gossen	Multi power supply	04/09/2002
N2329	396-01	PFS 500	EM-Test	Simulator for voltage dips	28/11/2002
N2423	A251507/00500	EMV D 15000/PAS	Spitzenberger+Spieß	Test system	26/11/2002
O2152	B010166	TDS 694 C	Tektronix	Oscilloscope	01/02/2003
O2177	B 011016	P 5210	Tektronix	High Voltage Probe	01/01/2001
O2197	B016080	TDS 3012	Tektronix	Oscilloscope	05/02/2003
O2303	B040166	TDS 714 L	Tektronix	Oscilloscope	20/11/2002
V255	RX/169163	U 2233	Siemens	Noise meter	27/08/2003
V288	883792/007	UPA	Rohde&Schwarz	Audio-Analyzer	12/03/2003
V303	860339/011	UPA	Rohde&Schwarz	Audio-Analyzer	08/10/2002
X257	20	---	Conrad	Thermometer	23/07/2002
X314	---	SAC	Frankonia	Shielded door	15/03/2003
X315	---	SAC/FAC	Frankonia	Preparation for new registration	15/08/2003
X316	---	SAC/FAC	Frankonia	Shielded door	15/03/2005
X317	---	FAC	Frankonia	Shielded door	15/03/2002
X318	---	SAC	Frankonia	Shielded door	10/12/2001
X319	---	FAC	Frankonia	Shielded door	10/12/2001
X415	---	---	Conrad	Thermometer	13/12/2002
Y1329	US38461347	86120 B	Agilent Technologies	Wavelength meter	09/04/2003
Y514	73916701	AQ 1338 P	ANDO	optical Transmitter	30/03/2000
Y580	2843G01745	8158 B	Agilent Technologies	Optical attenuator	21/02/2003

7 Accreditation certificate

Translation

Deutsche Akkreditierungsstelle Technik (DATech) e.V.

represented in the

Deutschen AkkreditierungsRat

Akkreditierung

The German Accreditation Body Technology (DATech) e.V. certifies that the Testing Laboratories of the

Lucent Technologies Network Systems GmbH
European Compliance Laboratory (ECL)
Thurn-und-Taxis-Straße 10
90411 Nürnberg

is competent under the terms of DIN EN ISO/IEC 17025 to carry out testing in the fields


Safety of electrical equipment,
Electromagnetic Compatibility (EMC) and
Mobil Communications; Air Interface; Telecommunications Interface

The accreditation is valid until: February 7th, 2007

The annex is deemed part of this certificate and comprises: 12 pages

DAR-Registration No.: TTI-P-G 004/92-03

Frankfurt/Main, April 19th, 2002

I.V. Dipl.-Ing. (FH) Ralf Egner
Head of Accreditation Body

Accreditation Body in the TGA - Trägergemeinschaft für Akkreditierung GmbH

8 List of Annexes

Following annexes are separated parts to this test report.

Description	Pages
Annex 1: Photographs of test set-ups	4

***** End of test report *****