

TABLE OF CONTENTS

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSETRY00000

TEST REPORT CONTAINING:

PAGE 1-3.....TEST EQUIPMENT LIST
PAGE 4.....TEST PROCEDURE
PAGE 5-6.....RADIATION INTERFERENCE TEST DATA
PAGE 7.....CALCULATION OF DUTY CYCLE
PAGE 8.....DUTY CYCLE PLOT - PULSE TRAIN in 100 ms
PAGE 9.....DUTY CYCLE PLOT - COMPLETE PULSE TRAIN
PAGE 10.....OCCUPIED BANDWIDTH
PAGE 11.....OCCUPIED BANDWIDTH PLOT
PAGE 12-14.....POWER LINE CONDUCTED INTERFERENCE

EXHIBIT ATTACHMENTS:

EXHIBIT 1.....BLOCK DIAGRAM
EXHIBIT 2.....SCHEMATIC
EXHIBIT 3.....INSTRUCTION MANUAL
EXHIBIT 4.....FCC ID LABEL SAMPLE
EXHIBIT 5.....SKETCH OF FCC ID LABEL LOCATION
EXHIBIT 6.....EXTERNAL PHOTOS
EXHIBIT 7.....INTERNAL PHOTOS
EXHIBIT 8.....TEST SET UP PHOTO
EXHIBIT 9.....CIRCUIT DESCRIPTION

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSETRY00000

REPORT #: N/Novation\76UT3\76UT3TestReport.doc

TABLE OF CONTENTS LIST

EMC Equipment List

DEVICE		MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer (Tan)	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter (Tan)	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
X	Receiver, Blue Tower Spectrum Analyzer (Blue)	HP	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/03
X	RF Preselector (Blue)	HP	85685A	2926A00983	CHAR 10/22/01	10/22/03
X	Quasi-Peak Adapter (Blue)	HP	85650A	2811A01279	CHAR 10/22/01	10/22/03
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/02
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/03
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/03
	Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 12/19/01	12/19/03
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/03
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
	Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSENTRY00000

REPORT #: N/Novation/76UT3/76UT3TestReport.doc

Page 1 of 14

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/03
Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/03
Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/03
Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
X Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/04
Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/03
Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/03
Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSENTRY00000

REPORT #: N/Novation\76UT3\76UT3TestReport.doc

Page 2 of 14

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
BandReject Filter	Lorch Microwave	5BR4-2400/60-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	6BR6-2442/300-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	5BR4-10525/900-S	Z1	CHAR 3/2/01	3/2/03
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/03
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSENTRY00000

REPORT #: N/Novation\76UT3\76UT3TestReport.doc

Page 3 of 14

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz. The ambient temperature of the UUT was 80°F with a humidity of 40%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS
33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings were converted to average readings based on the duration of "ON" time.

Measurements were made by TIMCO ENGINEERING INC. at the registered open field test site located at 849 N.W. State Road 45, Newberry, Fl 32669.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSENTRY00000

REPORT #: N/Novation\76UT3\76UT3TestReport.doc

Page 4 of 14

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSENTRY00000

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NO.: 15.231

REQUIREMENTS:

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE FUNDAMENTAL FREQUENCY= 72.836 dBuV/m. NO FUNDAMENTAL IS ALLOWED IN THE RESTRICTED BANDS.

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE HARMONICS AND SPURIOUS FREQUENCIES = 52.836 dBuV/m. SPURIOUS IN THE RESTRICTED BANDS MUST BE LESS THAN 54dBuV/m OR 15.209.

TEST DATA:

Emission Frequency MHz	Meter Reading dBuV	Ant. Polarity	Coax Loss dB	Correction Factor dB	Duty Cycle Factor dB	Field Strength dBuV/m	Margin dB
434.00	63.8	V	2.90	17.14	20.00	63.84	8.99
434.00	60.4	H	2.90	17.14	20.00	60.44	12.40
868.00	36.3	H	4.14	22.62	20.00	43.06	9.78
868.00	35.6	V	4.14	22.62	20.00	42.36	10.48
1,302.00	** 41.8	H	2.27	26.52	20.00	50.59	3.41
1,302.00	** 43.4	V	2.27	26.52	20.00	52.19	1.81
1,736.00	13.5	H	2.72	28.37	20.00	24.59	28.25
1,736.00	18.1	V	2.72	28.37	20.00	29.19	23.65
2,170.00	15.6	V	3.14	28.70	20.00	27.44	25.40
2,170.00	13.5	H	3.14	28.70	20.00	25.34	27.50
2,604.00	14.7	V	3.48	29.35	20.00	27.53	25.31
2,604.00	8.5	H	3.48	29.35	20.00	21.33	31.51
3,038.00	5.8	H	3.84	30.80	20.00	20.44	32.40
3,038.00	2.2	V	3.84	30.80	20.00	16.84	36.00
3,472.00	9.5	H	4.27	31.00	20.00	24.77	28.10
3,472.00	14.8	V	4.27	31.00	20.00	30.07	22.77
3,906.00	** 3.7	H	4.71	32.82	20.00	21.23	32.77
3,906.00	** 6.2	V	4.71	32.82	20.00	23.73	30.27

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSENTRY00000

REPORT #: N/Novation\76UT3\76UT3TestReport.doc

Page 5 of 14

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSEENTRY00000

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NO.: 15.231

REQUIREMENTS:

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE FUNDAMENTAL FREQUENCY= 70.565 dBuV/m. NO FUNDAMENTAL IS ALLOWED IN THE RESTRICTED BANDS.

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE HARMONICS AND SPURIOUS FREQUENCIES = 50.565 dBuV/m. SPURIOUS IN THE RESTRICTED BANDS MUST BE LESS THAN 54dBuV/m OR 15.209.

TEST DATA CONTINUED:

Emission Frequency MHz	Meter Reading dBuv	Ant. Polarity	Coax Loss dB	Correction Factor dB	Duty Cycle Factor	Field Strength dBuv/m	Margin dB
372.50	66.8	H	2.64	15.05	20.00	64.49	6.08
372.50	69.9	V	2.64	15.05	20.00	67.59	2.98
744.60	35.3	V	3.83	21.43	20.00	40.56	10.01
744.60	36.8	H	3.83	21.43	20.00	42.06	8.51
1,117.00 **	31.8	V	2.07	24.98	20.00	38.85	15.15
1,117.00 **	32.1	H	2.07	24.98	20.00	39.15	14.85
1,489.00 **	16.8	V	2.46	28.11	20.00	27.37	26.63
1,489.00 **	22.0	H	2.46	28.11	20.00	32.57	21.43

SAMPLE CALCULATION OF LIMIT @ 303 MHz:

$$(470 - 260) \text{MHz} = 210 \text{MHz}$$

$$(12500 - 3750) \mu\text{V/m} = 8750 \mu\text{V/m}$$

$$8750 \mu\text{V/m} / 210 \text{MHz} = 41.67 \mu\text{V/m/MHz}$$

$$(303-260) \text{MHz} = 43 \text{MHz}$$

$$43 \text{MHz} * 41.67 \mu\text{V/m/MHz} = 1791.81 \mu\text{V/m}$$

$$(1791.81 + 3750) \mu\text{V/m} = 5541.81 \mu\text{V/m limit @ 303 MHz}$$

The transmitter ceases transmitting when the button is released.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: JOSEPH SCOGLIO

DATE TESTED: JANUARY 16, 2003

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSEENTRY00000

REPORT #: N/Novation\76UT3\76UT3TestReport.doc

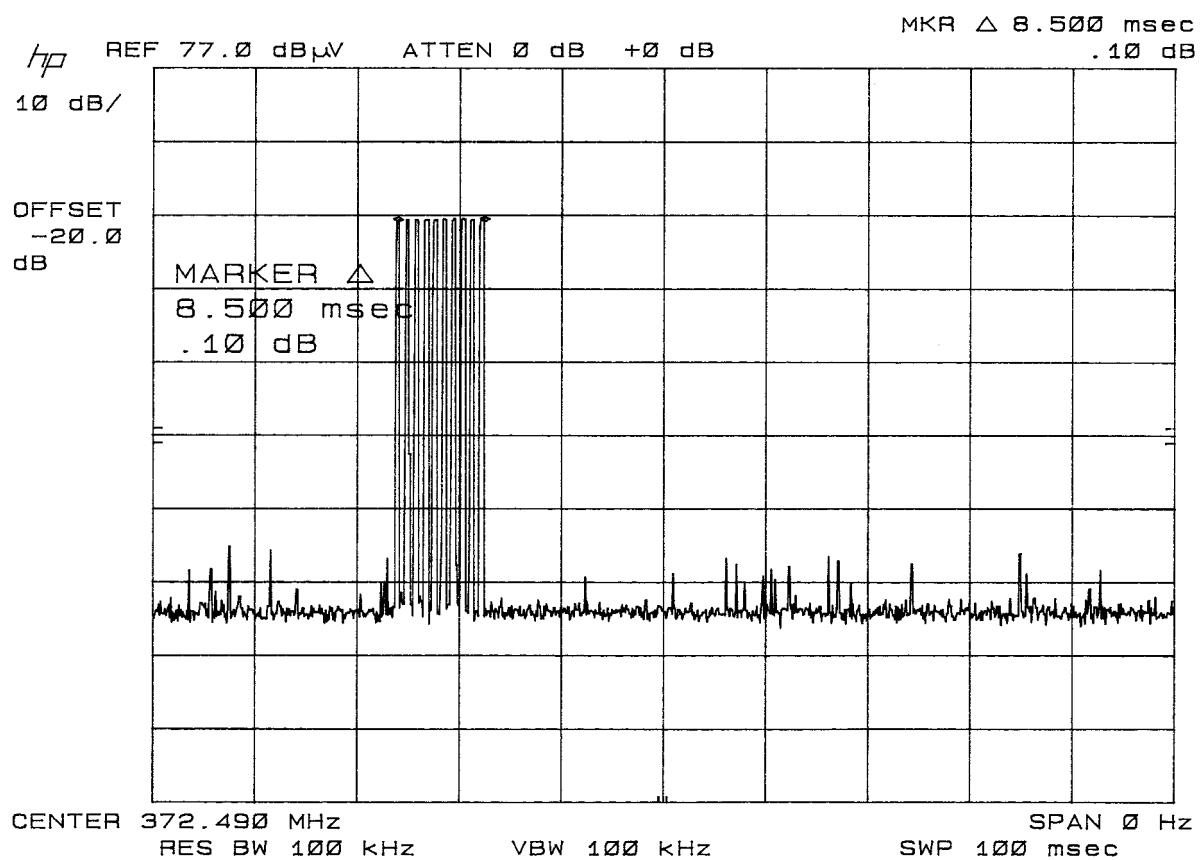
Page 6 of 14

APPLICANT: NOVATION PRODUCTS INC.

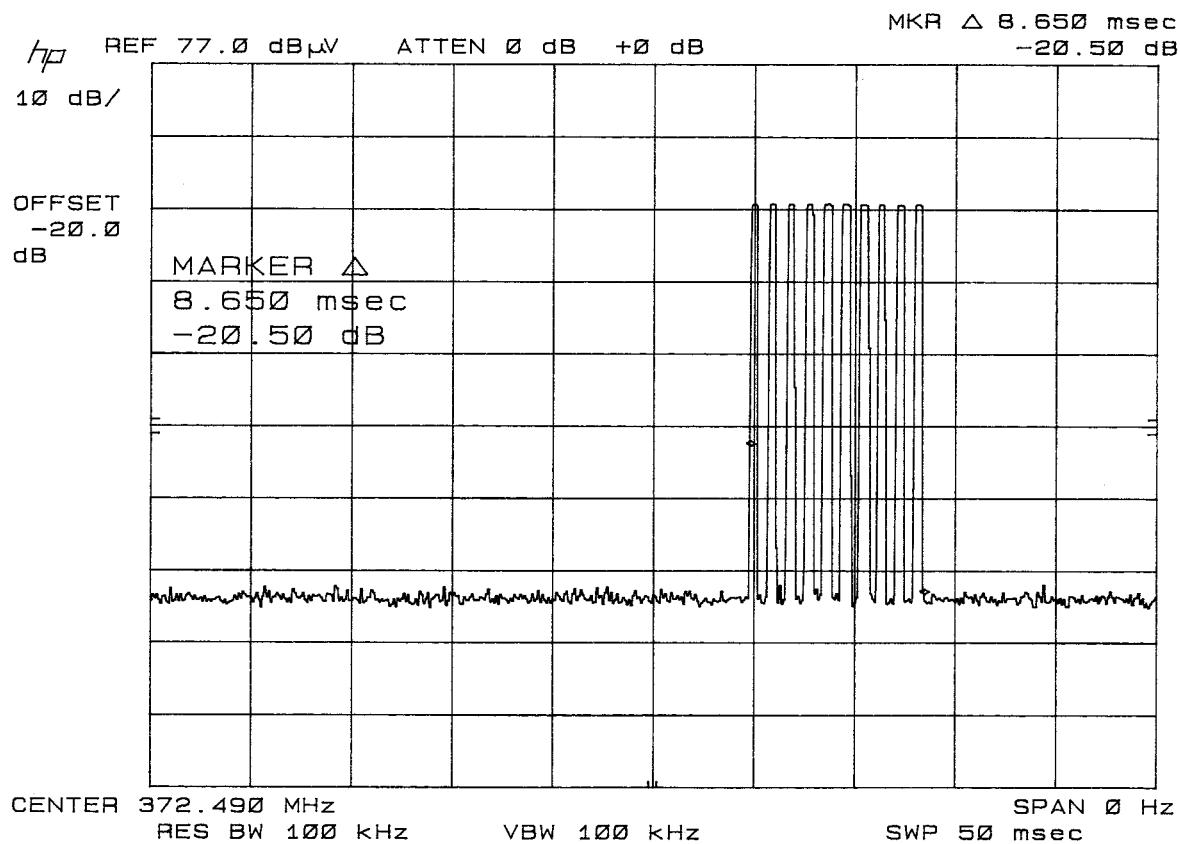
FCC ID: QHRSENTRY00000

CALCULATION OF DUTY CYCLE:

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero(0) frequency span. A plot is then made of the pulse train with a sweep time of 100milliseconds. This sweep determines the duration of the pulse train, which in this case is 8.5 msec. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100 msec. plot the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the UUT is on within 100 msec. If the pulse train is longer than 100 milliseconds then this number is multiplied by 100 to determine the percentage ON TIME. If the pulse train is less than 100 msec. the total on-time is divided by the length of the pulse train and then multiplied by 100 to determine the percentage ON TIME. In this case the pulse train was 8.5 msec. long in 100msec. The average field strength is determined by multiplying the peak field strength by the percent on time. In this case the percentage ON TIME was 8.5%percent.


APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSENTRY00000


REPORT #: N/Novation\76UT3\76UT3TestReport.doc

Page 7 of 14

DUTY CYCLE PLOT - PULSE TRAIN in 100 ms

DUTY CYCLE PLOT - COMPLETE PULSE TRAIN

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSEENTRY00000

NAME OF TEST: Occupied Bandwidth

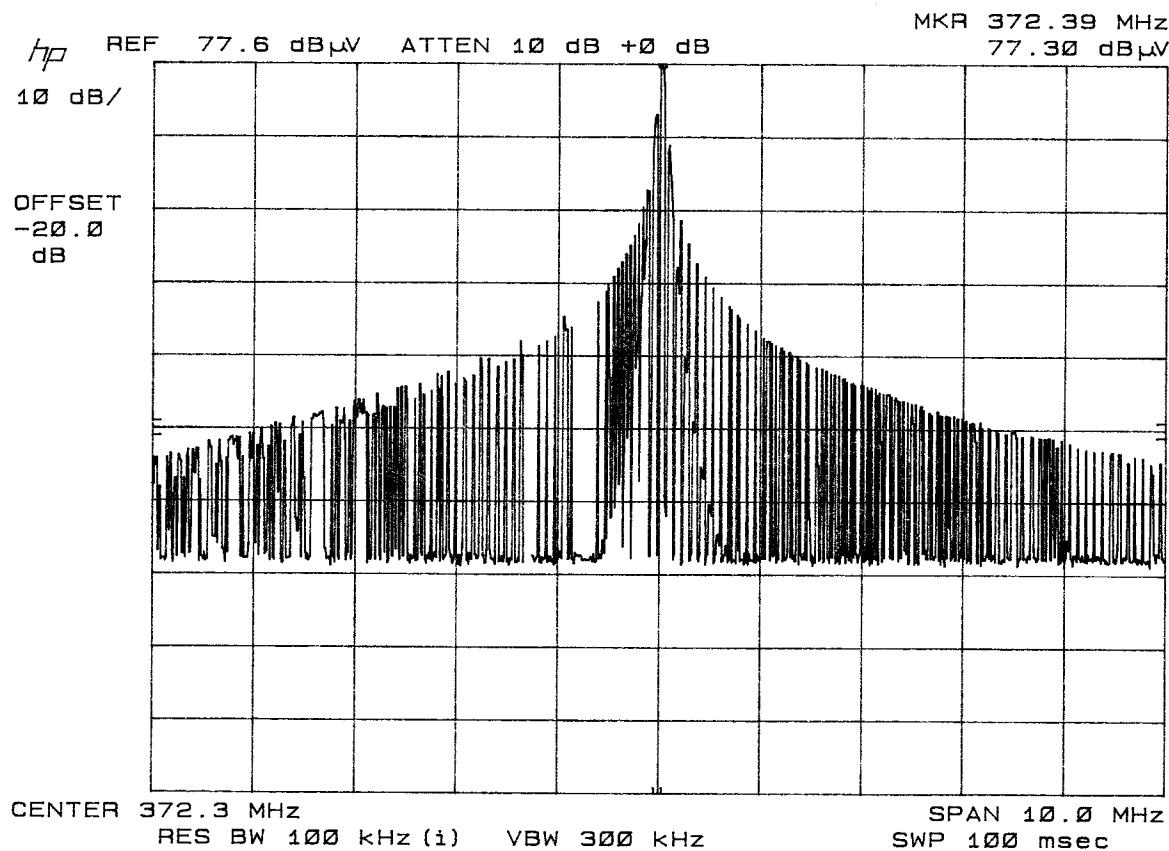
RULES PART NO.: 15.231(C)

REQUIREMENTS: The bandwidth of the emission shall be no wider than .25% of the center frequency for devices operating between 70 and 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

$$\begin{aligned} 372.50 \text{ MHz} * .0025 &= .93125 \text{ MHz} \\ .93125 \text{ MHz}/2 &= +/- 465.625 \end{aligned}$$

THE GRAPH ON THE FOLLOWING PAGE REPRESENTS THE EMISSIONS TAKEN FOR THE DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the plot in exhibit 9 was generated. The vertical scale is set to 10 dB per division: the horizontal scale is set to 1 MHz per division.


TEST RESULTS: The unit meets the FCC requirements.

PERFORMED BY: JOSEPH SCOGLIO

DATE: JANUARY 16, 2003

APPLICANT: NOVATION PRODUCTS INC.
FCC ID: QHRSEENTRY00000
REPORT #: N/Novation\76UT3\76UT3TestReport.doc
Page 10 of 14

OCCUPIED BANDWIDTH PLOT

APPLICANT: NOVATION PRODUCTS INC.

FCC ID: QHRSENTRY00000

NAME OF TEST: POWER LINE CONDUCTED INTERFERENCE

RULES PART NUMBER: 15.107(a)

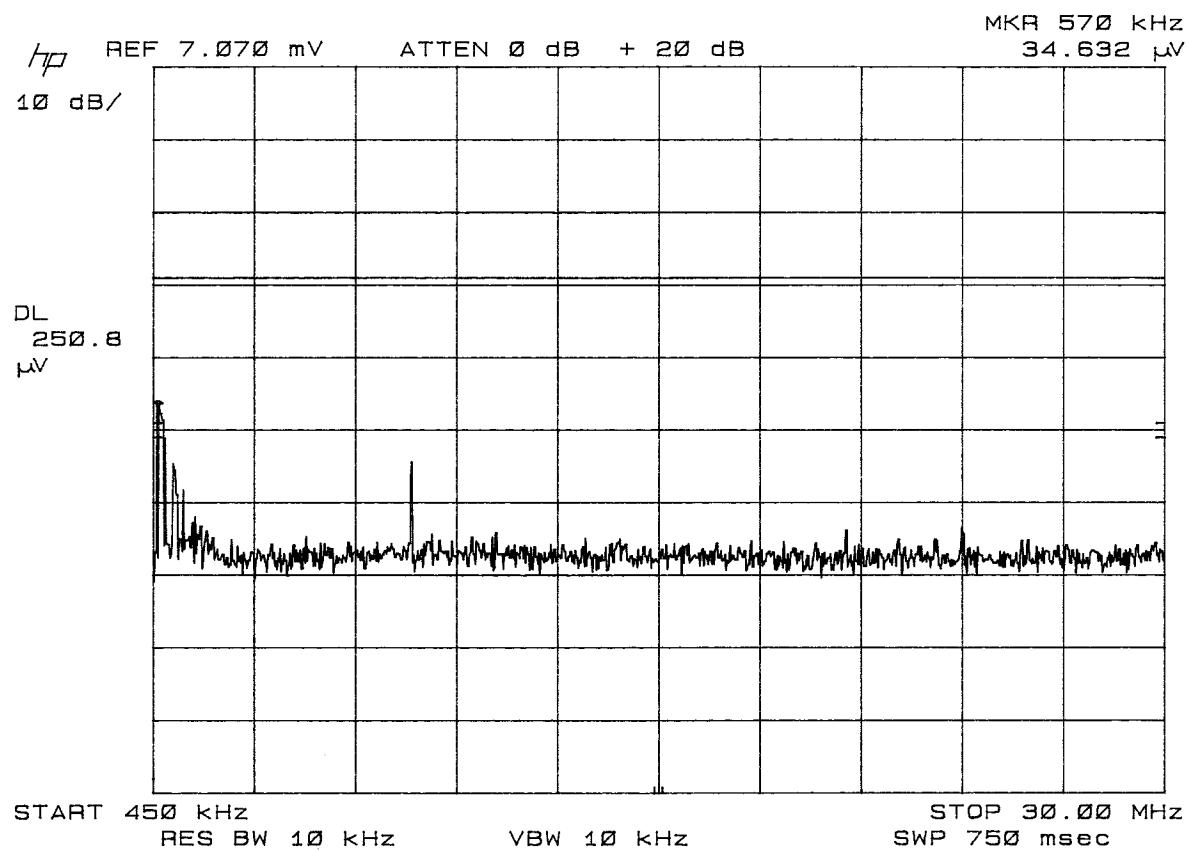
REQUIREMENTS: .45 - 30 MHz 48 dBuV or 250uV

TEST PROCEDURE: ANSI STANDARD C63.4-1992. The spectrum was scanned from .45 to 30 MHz.

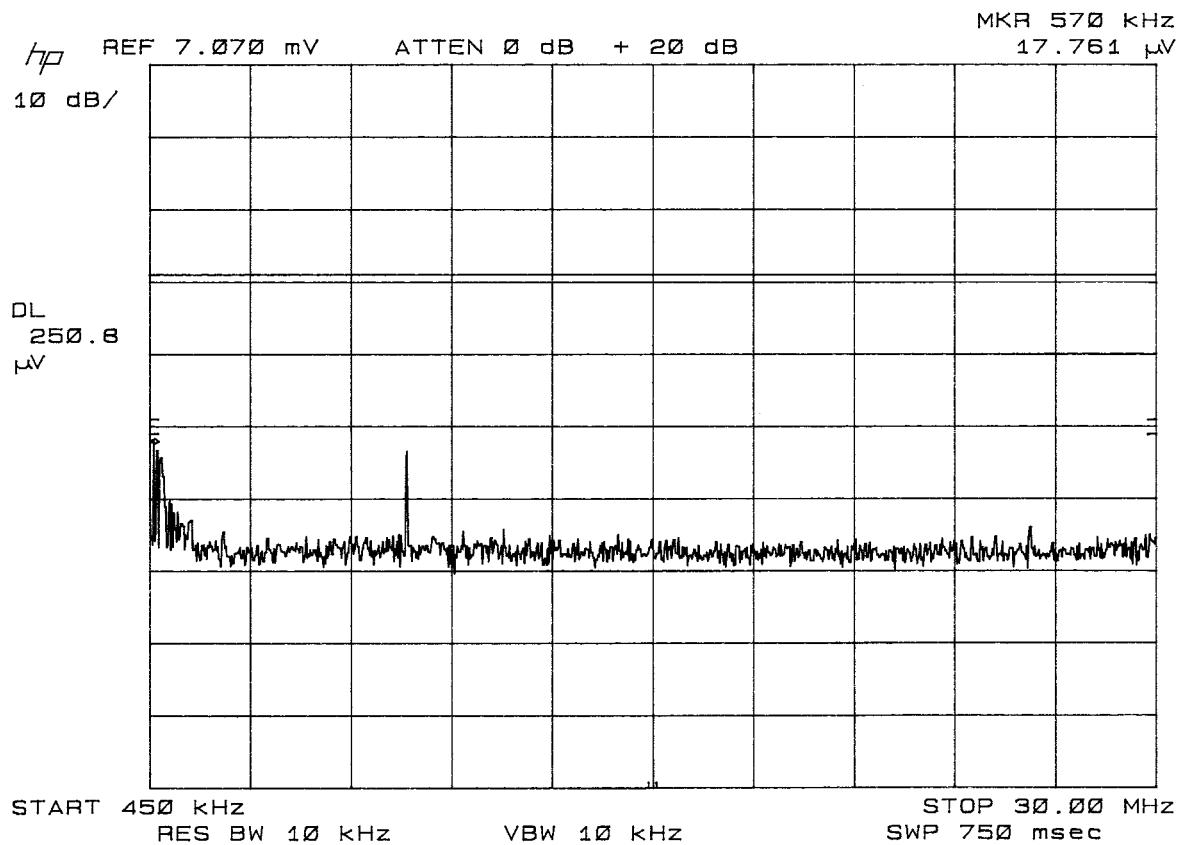
TEST DATA:

THE HIGHEST EMISSION READ FOR LINE 1 WAS 34.632 uV @ 570 kHz.

THE HIGHEST EMISSION READ FOR LINE 2 WAS 17.761 uV @ 570 kHz.


THE GRAPHS ON THE FOLLOWING PAGES REPRESENT THE EMISSIONS TAKEN FOR THIS DEVICE.

TEST RESULTS: Both lines were observed. The measurements indicate that the unit DOES appear to meet the FCC requirements for this class of equipment.


PERFORMED BY: JOSEPH SCOGLIO

DATE: JANUARY 16, 2003

POWER LINE CONDUCTED PLOT - LINE 1

POWER LINE CONDUCTED PLOT - LINE 2

