

Test Report No:
2380785R-RFUSV03S-A

TEST REPORT

FCC Rules&Regulations

Product Name	Communication Module
Brand Name	muRata
Model No.	LBEE5XV1YM
FCC ID	QHQ-LB1YM
Applicant's Name / Address	Laerdal Medical AS Tanke Svilandsgate 30 P.O. Box 377, Stavanger, 4002 Norway
Manufacturer's Name / Address	Murata Manufacturing Co., Ltd. 1-10-1, Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan
Test Method Requested, Standard	FCC CFR Title 47 Part 15 Subpart E Section 15.407 ANSI C63.10-2013
Verdict Summary	IN COMPLIANCE
Documented By	<i>Amelia Wu</i> Amelia Wu
Approved By	<i>Rueyyan Lin</i> Rueyyan Lin
Date of Receipt	Aug. 25, 2023
Date of Issue	Nov. 13, 2023
Report Version	V1.0

INDEX

	page
Competences and Guarantees.....	3
General Conditions.....	3
Revision History.....	4
Permissive Change.....	5
Summary of Test Result.....	6
Comments and Remarks.....	6
1. General Information	7
1.1. EUT Description.....	7
1.2. EUT Information.....	7
1.3. Applicable Standards.....	8
1.4. Testing Location Information.....	8
1.5. Measurement Uncertainty.....	8
1.6. List of Test Equipment	9
2. Test Configuration of EUT.....	10
2.1. Test Condition	10
2.2. Test Frequency Mode	10
2.3. The Worst Case Measurement Configuration	10
2.4. Tested System Details	11
2.5. Configuration of tested System	11
3. AC Power Line Conducted Emission.....	12
3.1. Test Setup	12
3.2. Test Limit.....	12
3.3. Test Procedure.....	12
3.4. Test Result of AC Power Line Conducted Emission.....	12
4. Transmitter Radiated Spurious Emission.....	13
4.1. Test Setup	13
4.2. Test Limit.....	14
4.3. Test Procedure.....	15
4.4. Test Result of Transmitter Radiated Spurious Emission	15
Appendix A. Test Result of AC Power Line Conducted Emission	
Appendix B. Test Result of Transmitter Radiated Spurious Emission	
Appendix C. Test Setup Photograph	

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General Conditions

1. The test results relate only to the samples tested.
2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
3. This report must not be used to claim product endorsement by TAF or any agency of the government.
4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Revision History

Version	Description	Issued Date
V1.0	Initial issue of report	Nov. 13, 2023

Permissive Change

Permissive Change	Modifications
Class II Permissive Change (C2PC)	<p>1. Additional platform added (Product: SimPad PLUS 2, Brand: Laerdal Medical AS, Model: 204-00150).</p> <p>2. Add two dipole antennas which are same type with original application but with lower gain.</p> <p>Therefore, the worst result of original report is selected to verify AC power line conducted emission and radiated emission tests and record in the report.</p>

Summary of Test Result

Report Clause	Test Items	Result (PASS/FAIL)	Remark
3	AC Power Line Conducted Emission	PASS	-
4	Transmitter Radiated Spurious Emission	PASS	-

Note:

The EUT was installed to the host (brand name: SimPad PLUS 2, model: 204-00150) to perform all the tests.

Comments and Explanations

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Comments and Remarks

The product specification and testing instructions for the EUT declared in the report are provided by the manufacturer who will take all responsibilities for the accuracy.

1. General Information

1.1. EUT Description

Frequency Range	5150 ~ 5250 MHz 5250 ~ 5350 MHz 5470 ~ 5725 MHz 5725 ~ 5850 MHz		
Operating Frequency / Channel Number	IEEE 802.11a IEEE 802.11n/ac (20 MHz)		5180 ~ 5240 MHz / 4 Channels 5260 ~ 5320 MHz / 4 Channels 5500 ~ 5720 MHz / 12 Channels 5745 ~ 5825 MHz / 5 Channels
	IEEE 802.11n/ac (40 MHz)		5190 ~ 5230 MHz / 2 Channels 5270 ~ 5310 MHz / 2 Channels 5510 ~ 5710 MHz / 6 Channels 5755 ~ 5795 MHz / 2 Channels
	IEEE 802.11ac (80 MHz)		5210 MHz / 1 Channel 5290 MHz / 1 Channel 5530 ~ 5690 MHz / 3 Channels 5775 MHz / 1 Channel
Type of Modulation	IEEE 802.11a/n		OFDM-BPSK, QPSK, 16QAM, 64QAM
	IEEE 802.11ac		OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM

Accessories Information					
No.	Equipment Name	Brand Name	Model No.	Rating	Remark
1	Adapter	FSP	FSP040-RHAN3	INPUT: 100-240V, 1.5A, 50-60Hz OUTPUT: 12.0V, 3.33A, 40.0W	With power cable : Non-Shielded, 1.2m (with a ferrite core)

Antenna Information							
Ant.	Brand Name	Model No.	Type	Antenna Gain (dBi)			
				U-NII 1	U-NII 2A	U-NII 2C	U-NII 3
0	SANAV	GEPH-062-1	Dipole	-1.33	-1.33	-5.36	-3.36
1	SANAV	GEPH-056	Dipole	-2.62	-2.62	-2.21	-1.93

For IEEE 802.11a/n/ac Mode: (2TX, 2RX)

Both Ant. 0 and Ant. 1 can be used as transmitting/receiving antennas, and them can transmit/receive signal simultaneously.

1.2. EUT Information

EUT Power Type	From Adapter / Battery			
EUT Function	<input checked="" type="checkbox"/>	Point-to-multipoint	<input type="checkbox"/>	Point-to-point
TPC Function	<input type="checkbox"/>	With TPC Function	<input checked="" type="checkbox"/>	Without TPC Function
Weather Band (5600 ~ 5650 MHz)	<input checked="" type="checkbox"/>	With 5600 ~ 5650 MHz	<input type="checkbox"/>	Without 5600 ~ 5650 MHz
Beamforming Function	<input type="checkbox"/>	With beamforming	<input checked="" type="checkbox"/>	Without beamforming
Product Type	<input type="checkbox"/>	Outdoor AP	<input type="checkbox"/>	Indoor AP
	<input type="checkbox"/>	Fixed P2P AP	<input checked="" type="checkbox"/>	Client

1.3. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ◆ 47 CFR FCC Part 15
- ◆ ANSI C63.10-2013
- ◆ KDB 789033 D02 v02r01

The following reference test guidance is not within the scope of accreditation of TAF.

- ◆ KDB 662911 D01 v02r01
- ◆ KDB 412172 D01 v01r01
- ◆ KDB 414788 D01 v01r01

1.4. Testing Location Information

Testing Location Information		
Test Laboratory : DEKRA Testing and Certification Co., Ltd.		
1 (TAF: 3024)	ADD: No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County 31061, Taiwan, R.O.C.	TEL: +886-3-582-8001 FAX: +886-3-582-8958
2 (TAF: 3024)	ADD: No.372, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County 31061, Taiwan, R.O.C.	TEL: +886-3-582-8001 FAX: +886-3-582-8958
Test site number for address 1 includes HC-SR02. Test site number for address 2 includes HC-CB02, HC-CB03, HC-CB04, HC-SR10 and HC-SR12.		

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
AC Conduction Emission	HC-SR02	Igor Tseng	23.6 / 63	2023/09/22
Radiated Emission	HC-CB02	Gary Liao	24.8~25.5 / 62~65	2023/09/11~2023/09/12

1.5. Measurement Uncertainty

Uncertainties have been calculated according to the DEKRA internal document with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Test Item	Uncertainty
AC Power Line Conducted Emission	± 2.34 dB
Transmitter Radiated Spurious Emission	± 3.52 dB below 1 GHz ± 3.56 dB above 1 GHz

1.6. List of Test Equipment

HC-SR02

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal. Date	Next Cal. Date
Artificial Mains Network	R&S	ENV4200	848411/010	9kHz-30MHz, 4line/100A	2022/12/19	2023/12/18
EMI Test Receiver	R&S	ESR3	102608	9 kHz - 3.6 GHz	2022/09/28	2023/09/27
Two-Line V-Network	R&S	ENV216	100096	9kHz-30MHz	2023/06/02	2024/06/01
Coaxial Cable(9 m)	Harbour	RG-400	HC-SR02	9 kHz-2500 MHz	2023/08/04	2024/08/03
EMI Testing System	AUDIX	e3 210616 dekra V9	HC-SR02	N/A	N/A	N/A

HC-CB02

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal. Date	Next Cal. Date
Signal and Spectrum Analyzer	R&S	FSVA40	101435	10 Hz-40 GHz	2023/05/29	2024/05/28
EXA Signal Analyzer	Keysight	N9010A	MY51440132	10 Hz-44 GHz	2022/12/13	2023/12/12
Trilog Broadband Antenna	Schwarzbeck	VULB 9168	1272	30 MHz-2 GHz	2023/04/13	2024/04/12
Double Ridged Horn Antenna	RF SPIN	DRH18-E	211211A18EN	1G-18GHz	2022/11/15	2023/11/14
Pre-Amplifier	EMCI	EMC01820I	980365	30M-8 GHz,20 dB	2023/04/07	2024/04/06
Pre-Amplifier	EMEC	EM01G18GA	060741	1G-18 GHz,50 dB	2023/05/05	2024/05/04
Pre-Amplifier	DEKRA	AP-400C	201801231	18G-40 GHz,48 dB	2023/10/03	2024/10/02
EMI Test Receiver	R&S	ESR7	102260	10 Hz-7 GHz	2022/12/01	2023/11/30
Magnetic Loop Antenna	Teseq	HLA 6121	44287	0.01-30 MHz	2022/10/21	2023/10/20
Coaxial Cable(13m)	Suhner	SF104	HC-CB02	30M-18 GHz	2023/08/14	2024/08/13
Coaxial Cable(3m)	Suhner,Rosnol	SF102_UP0264	HC-CB02-1	18G-40 GHz 3 m	2023/08/14	2024/08/13
Radiated Software	AUDIX	e3 V9	HC-CB02_1	N/A	N/A	N/A

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

2. Test Configuration of EUT

2.1. Test Condition

EUT Operational Condition	
Testing Voltage	AC 120V/60Hz

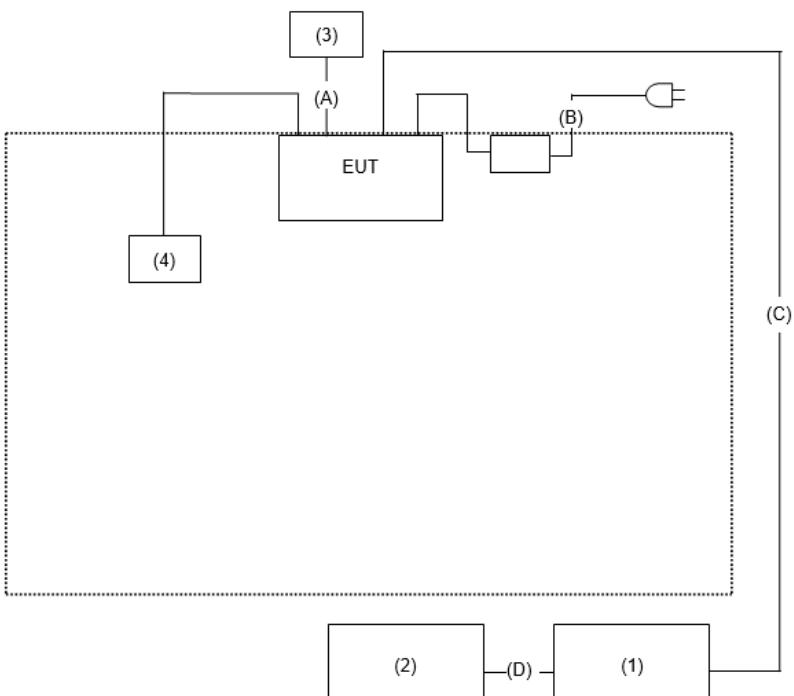
2.2. Test Frequency Mode

Test Software Version	PUTTY v0.78
-----------------------	-------------

2.3. The Worst Case Measurement Configuration

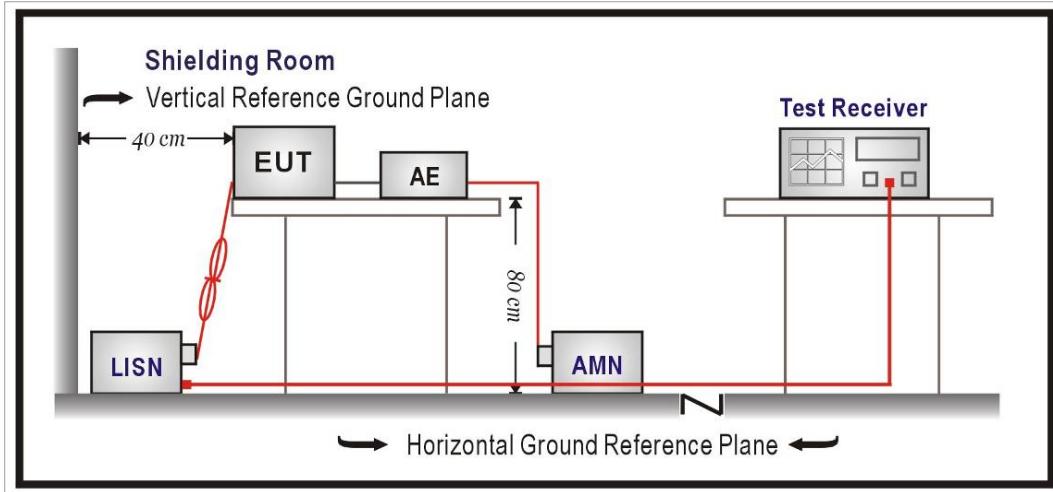
Tests Item	AC Power Line Conducted Emission
Test Condition	AC power line conducted measurement for line and neutral
Operating Mode	Transmit

Tests Item	Transmitter Radiated Spurious Emission
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.
Operating Mode < 1GHz	Transmit
Operating Mode > 1GHz	Transmit


The EUT was performed at X axis, Y axis and Z axis position for transmitter radiated spurious emission test. The worst case was found at Z axis, so the measurement will follow this same test configuration.

Note: Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.4. Tested System Details


No.	Equipment	Brand Name	Model No.	Serial No.
1	AP Router	ASUS	RT-AX88U	JBIMHP000020
2	NB	Lenovo	80SJ	MP16Z7TB
3	Flash drive	N/A	N/A	N/A
4	Earphone	KINYO	IPEM-853	N/A

2.5. Configuration of tested System

Connection Diagram	
Signal Cable Type	Signal cable Description
A	Type C to USB cable
B	Power cable
C	Ethernet cable
D	Ethernet cable

3. AC Power Line Conducted Emission

3.1. Test Setup

3.2. Test Limit

Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Remark: In the above table, the tighter limit applies at the band edges.

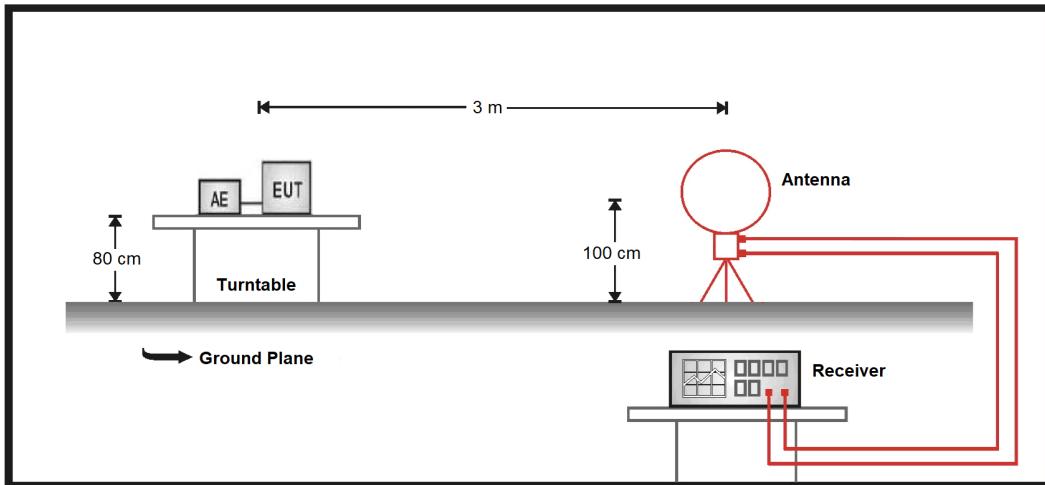
3.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs.)

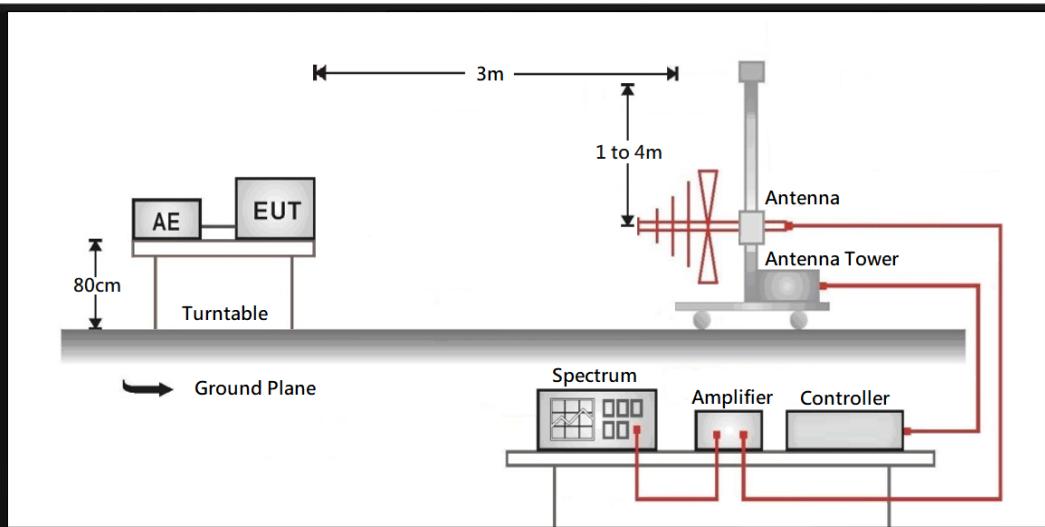
Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

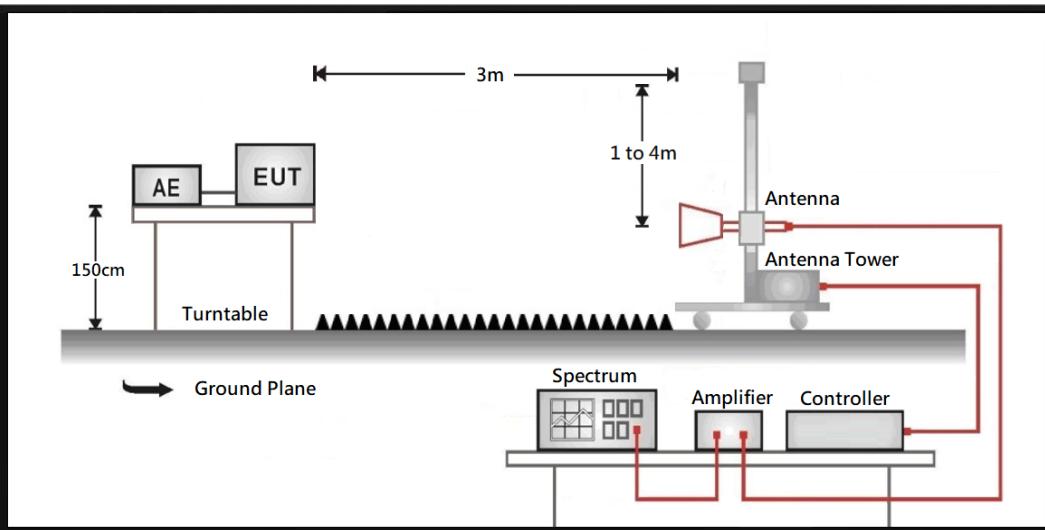
Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.


3.4. Test Result of AC Power Line Conducted Emission

Refer as Appendix A


4. Transmitter Radiated Spurious Emission

4.1. Test Setup


9 kHz ~ 30 MHz

30 MHz ~ 1 GHz

Above 1 GHz

4.2. Test Limit

Frequency (MHz)	Field strength (uV/m)	Field strength (dBuV/m)	Measurement distance (m)
0.009 – 0.490	2400/F(kHz)	20 log (2400/F(kHz))	300
0.490 – 1.705	24000/F(kHz)	20 log (24000/F(kHz))	30
1.705 - 30	30	29.5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

Remarks:

1. Field strength (dBuV/m) = 20 log Field strength (uV/m)
2. In the Above Table, the tighter limit applies at the band edges.
2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Unwanted Emission out of the restricted bands Test Limit

Frequency (MHz)	EIRP Limit (dBm/MHz)	Equivalent Field Strength (dBuV/m@3m)
5150 – 5250	-27	68.2
5250 – 5350	-27	68.2
5470 – 5725	-27	68.2
5725 – 5850	-27 * ¹	68.2 * ¹
	10 * ²	105.2 * ²
	15.6 * ³	110.8 * ³
	27 * ⁴	122.2 * ⁴
5850 – 5895	(i) For an indoor access point or subordinate device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of 15 dBm/MHz and shall decrease linearly to an e.i.r.p. of -7 dBm/MHz at or above 5.925 GHz. (ii) For a client device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of -5 dBm/MHz and shall decrease linearly to an e.i.r.p. of -27 dBm/MHz at or above 5.925 GHz. (iii) For a client device or indoor access point or subordinate device, all emissions below 5.725 GHz shall not exceed an e.i.r.p. of -27 dBm/MHz at 5.65 GHz increasing linearly to 10 dBm/MHz at 5.7 GHz, and from 5.7 GHz increasing linearly to a level of 15.6 dBm/MHz at 5.72 GHz, and from 5.72 GHz increasing linearly to a level of 27 dBm/MHz at 5.725 GHz.	

*¹ beyond 75 MHz or more above of the band edge.
 *² below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.
 *³ below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.
 *⁴ from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Remark:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts).}$$

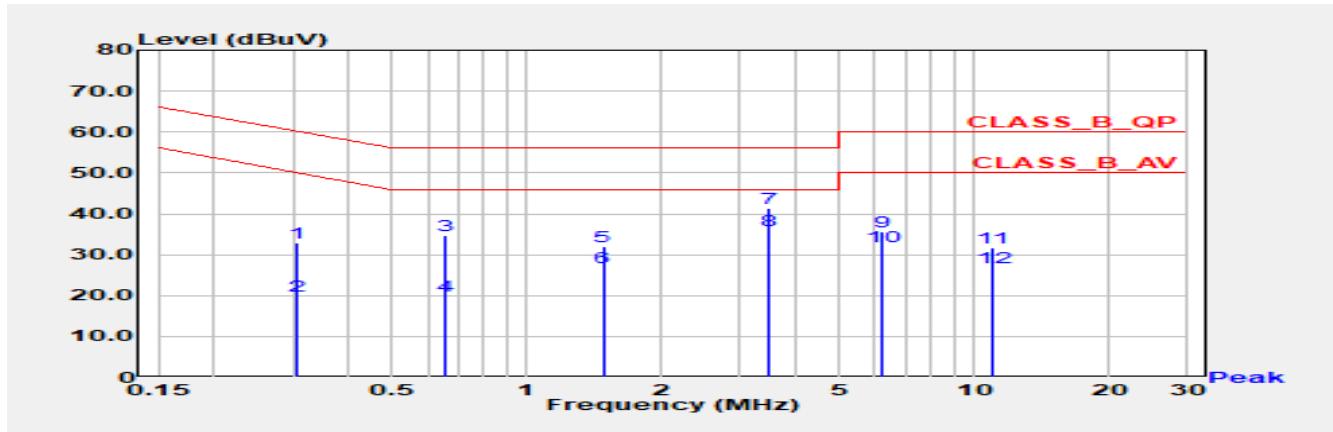
4.3. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 or 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The additional latch filter below 1 GHz was used to measure the level of harmonics radiated emission during field strength of harmonics measurement.

The bandwidth below 1 GHz setting on the field strength meter is 120 kHz, above 1 GHz are 1 MHz.

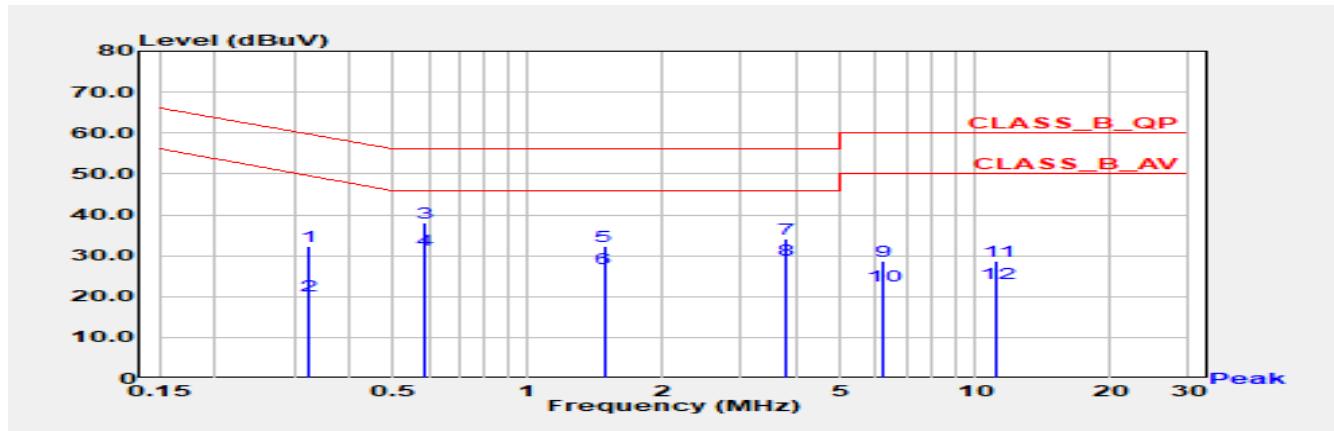

The frequency range from 9 kHz to 10th harmonics and included The frequency range from the lowest oscillator frequency generated within the device up to the 10th harmonic was checked is checked.

4.4. Test Result of Transmitter Radiated Spurious Emission

Refer as Appendix B

Appendix A. Test Result of AC Power Line Conducted Emission

Test Mode	Mode 1: Transmit	Phase	Line
Test Condition	802.11n (40 MHz) / Ant. 0 + Ant. 1 / 5190 MHz		



No	Frequency (MHz)	Emission Level (dBuV)	Limit (dBuV)	Margin (dB)	Reading Level (dBuV)	Correct Factor (dB)	Detector Type
1	0.305	32.89	60.10	-27.21	23.01	9.88	QP
2	0.305	19.86	50.10	-30.25	9.98	9.88	AV
3	0.654	34.63	56.00	-21.37	24.73	9.90	QP
4	0.654	20.04	46.00	-25.96	10.14	9.90	AV
5	1.480	32.10	56.00	-23.90	22.14	9.95	QP
6	1.480	26.76	46.00	-19.24	16.81	9.95	AV
*7	3.491	41.39	56.00	-14.61	31.34	10.05	QP
*8	3.491	36.02	46.00	-9.98	25.97	10.05	AV
9	6.186	35.62	60.00	-24.38	25.47	10.15	QP
10	6.186	32.03	50.00	-17.97	21.88	10.15	AV
11	10.963	31.76	60.00	-28.24	21.48	10.28	QP
12	10.963	26.77	50.00	-23.23	16.49	10.28	AV

Remark:

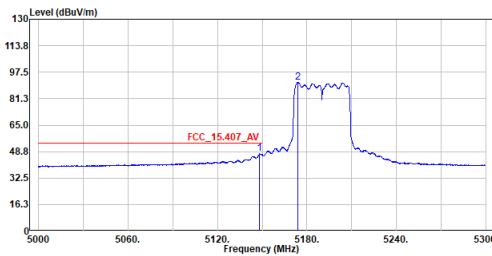
1. "*" means this data is the worst emission level.
2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
3. Margin = Emission Level - Limit.

Test Mode	Mode 1: Transmit	Phase	Neutral
Test Condition	802.11n (40 MHz) / Ant. 0 + Ant. 1 / 5190 MHz		

No	Frequency (MHz)	Emission Level (dBuV)	Limit (dBuV)	Margin (dB)	Reading Level (dBuV)	Correct Factor (dB)	Detector Type
1	0.322	32.44	59.66	-27.23	22.56	9.88	QP
2	0.322	20.08	49.66	-29.58	10.20	9.88	AV
*3	0.589	37.99	56.00	-18.01	28.10	9.90	QP
*4	0.589	31.53	46.00	-14.47	21.64	9.90	AV
5	1.480	32.33	56.00	-23.67	22.37	9.95	QP
6	1.480	26.94	46.00	-19.06	16.98	9.95	AV
7	3.759	34.01	56.00	-21.99	23.95	10.06	QP
8	3.759	28.93	46.00	-17.07	18.87	10.06	AV
9	6.252	28.67	60.00	-31.33	18.52	10.15	QP
10	6.252	22.61	50.00	-27.39	12.46	10.15	AV
11	11.198	28.68	60.00	-31.32	18.40	10.28	QP
12	11.198	23.29	50.00	-26.71	13.01	10.28	AV

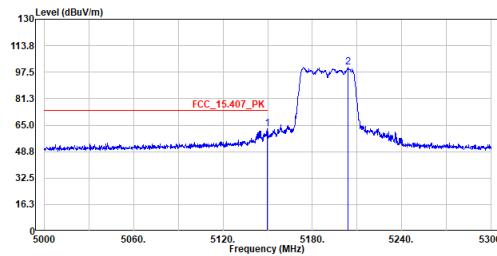
Remark:

1. ** means this data is the worst emission level.
2. Emission Level = Reading Level + Correct Factor (Correct Factor = LISN Insertion Loss + Cable Loss).
3. Margin = Emission Level - Limit.


Appendix B. Test Result of Transmitter Radiated Spurious Emission

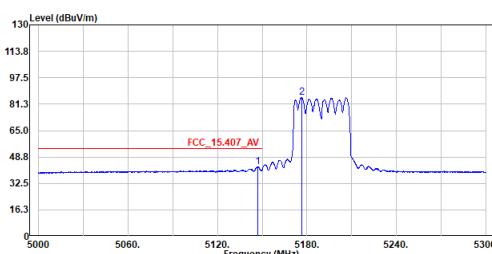
30 MHz ~ 1 GHz

Above 1 GHz


Site :HC-CB04
 Condition :3m ,Horizontal
 Mode :n40_TX_5190MHz
 Test by :Gary Liao

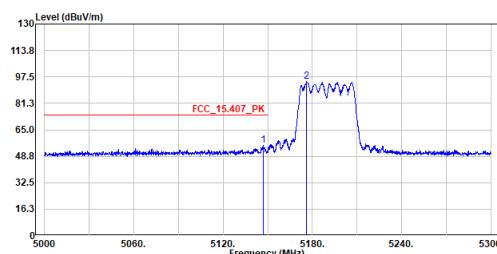
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
1	5148.350	47.35	54.00	-6.65	25.97	21.38	Average
2	5174.150	91.48	-----	-----	78.10	21.38	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.


Site :HC-CB04
 Condition :3m ,Horizontal
 Mode :n40_TX_5190MHz
 Test by :Gary Liao

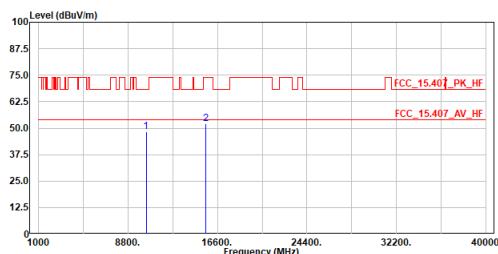
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
1	5149.850	62.76	74.00	-11.24	41.38	21.38	Peak
2	5204.150	100.71	-----	-----	79.32	21.39	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.


Site :HC-CB04
 Condition :3m ,Vertical
 Mode :n40_TX_5190MHz
 Test by :Gary Liao

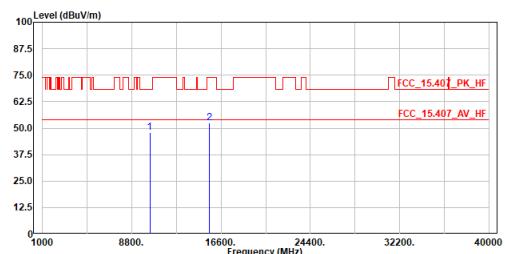
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
1	5147.000	42.64	54.00	-11.36	21.26	21.38	Average
2	5176.480	85.39	-----	-----	64.00	21.39	Average

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.


Site :HC-CB04
 Condition :3m ,Vertical
 Mode :n40_TX_5190MHz
 Test by :Gary Liao

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
1	5146.850	55.56	74.00	-18.44	34.18	21.38	Peak
2	5176.100	94.57	-----	-----	73.18	21.39	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.


Site :HC-CB04
 Condition :3m ,Horizontal
 Mode :n40_TX_5190MHz
 Test by :Gary Liao

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
1	10380.000	48.45	68.20	-19.75	56.37	-7.92	Peak
2	15570.000	52.05	74.00	-21.95	55.26	-3.21	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

Site :HC-CB04
 Condition :3m ,Vertical
 Mode :n40_TX_5190MHz
 Test by :Gary Liao

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
1	10380.000	47.88	68.20	-20.40	55.72	-7.92	Peak
2	15570.000	52.58	74.00	-21.42	55.79	-3.21	Peak

Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss - Preamp Factor
 3. Over Limit = Level - Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.