Report on Radio Testing of the Laerdal Medical AS

Model: AED Trainer 2D Antenna Diagram

Prepared for: Laerdal Medical AS

Tanke Svilandsgate 4002 Stavanger; Norway

COMMERCIAL-IN-CONFIDENCE

Date: 2023-02-13

Document Number: TR-713293096-00 | Revision 0

Add value. Inspire trust.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Martin Steindl	2023-02-13	Skinell Martin SIGN-ID 758359
Authorised Signatory Alex Fink 2023-02-13		SIGN-ID 758419	

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2023 TÜV SÜD Product Service.

Content

1 Rep	ort Summary	2
1.1	Modification Report	2
1.2	Introduction	2
1.3	Brief Summary of Results	
1.4	Product Information	3
1.5	Test Configuration	3
1.6	Modes of Operation	3
1.7	EUT Modifications Record	4
1.8	Test Location	
2 Test	t Details	5
2.1	Antenna diagram	<u>5</u>
3 Mea	asurement Uncertainty	16
Annex A	Detailed Test Data	18 nages

Report Summary

Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Revision	Description of changes	Date of Issue
0	First Issue	2023-02-13

Table 1: Report of Modifications

1.2 Introduction

Applicant Laerdal Medical AS

Tanke Svilands Gate 30

4002 Stavanger; Norway

Manufacturer Laerdal Medical; Suzhou

Model Number(s) **AED Trainer**

N/A Serial Number(s) Hardware Version(s) N/A Software Version(s) N/A Number of Samples Tested

Test Specification(s) / ETSI EN 300 328 V2.2.2 (2019-07)

Issue / Date

Test Plan/Issue/Date N/A

Order Number PG002359 Date 2023-02-01 Date of Receipt of EUT 2023-02-02 Start of Test 2023-02-10 Finish of Test 2023-02-10 Name of Engineer(s) M. Steindl

Related Document(s)

1.3 Brief Summary of Results

A brief summary of the tests carried out is shown below.

Section	Test Description	Result
2.1	Antenna Diagram	Result noted

Table 2: Results

1.4 Product Information

1.4.1 General Technical Description

AED trainer is used in combination with simulated AED pads. The AED pads can be used a limited number of times and are available for purchase seperately (consumable). There are several alternative simulated AED pads, ranging from dummy pads with no transfere signals or data to advance pads where there is a transfer of signals or data.

Frequency Band: 2400.0 MHz – 2483.5 MHz

Supply Voltage: 6 V

Supply Frequency: 0 Hz (DC)

Highest clock frequency

64 MHz

(non-radio part):

1.4.2 EUT Ports / Cables identification

Port	Max Cable Length speci- fied	Usage	Screened
DC supply	2 m	DC supply	No
RS-232	1 m	Signal/Control port	Yes

Table 3

1.5 Test Configuration

The EUT was provided as printed board. Radiated emissions were tested with the EUT in three orthogonal positions.

1.6 Modes of Operation

The EUT was configured to transmit on lowest and highest frequency channel.

COMMERCIAL-IN-CONFIDENCE

1.7 EUT Modifications Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	Not Applicable	Not Applicable

Table 4

1.8 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
Antenna diagram	Martin Steindl

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

2 Test Details

2.1 Antenna diagram

2.1.1 Equipment under Test and Modification State

AED Trainer; Modification State 0

2.1.2 Date of Test

2023-02-10

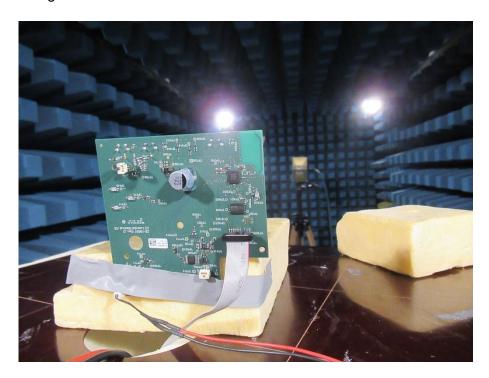
2.1.3 Environmental Conditions

Ambient Temperature 20 °C Relative Humidity 27 %

2.1.4 Test Method

First a conducted test was performed to obtain the reference levels. Then an e.i.r.p. radiated test was performed each 2° in azimuth. The antenna gain in dBi was calculated as difference of the radiated values to the conducted value.

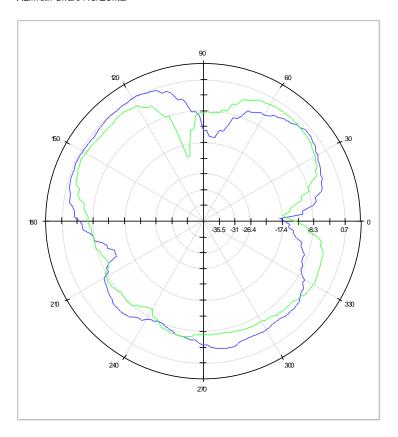
Test was performed on lowest and highest frequency channel in x-, y-, and z-plane of the EUT in horizontal and vertical polarization.


The conducted test was performed according to EN 300 328, clause 5.4.2.; the radiated test on basis of EN 300 328

Note: The average gain is the geometric mean of the single values.

2.1.5 Test Results

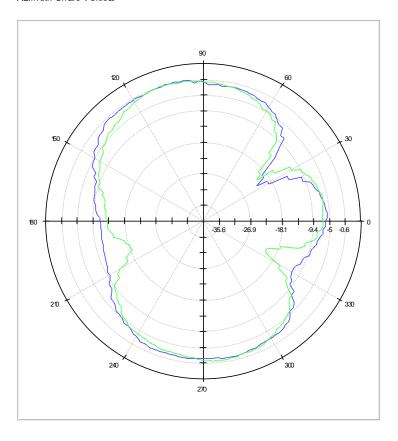
2.1.5.1 Rotating x-axis



Frequency MHz	Max. Value dBi	Azimuth max. deg	Pol max.	Min. Value dBi	Azimuth min. deg	Pol min.
2402.000000	0.72	120	Ι	-22.23	34	V
2480.000000	-0.74	106	V	-21.29	38	V

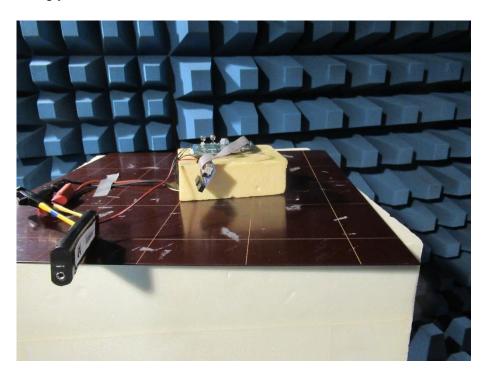
2.1.5.1.1 Horizontal polarization

Azimuth Chart Horizontal



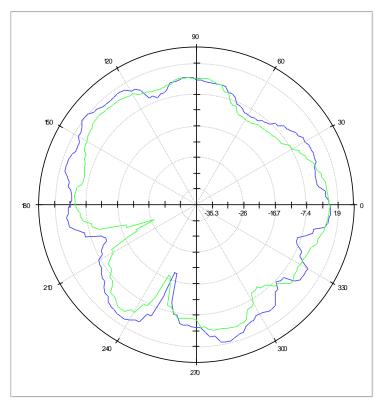
Frequency MHz	Max. value dBi	Azimuth deg	Min. value dBi	Azimuth deg	Average dBi
2402.000000	0.72	120	-18.19	0	-5.54
2480.000000	-0.85	150	-20.97	102	-6.33

2.1.5.1.2 Vertical polarization


Azimuth Chart Vertical

Frequency MHz	Max. value dBi	Azimuth deg	Min. value dBi	Azimuth deg	Average dBi
2402.000000	-0.63	98	-22.23	34	-5.86
2480.000000	-0.74	106	-21.29	38	-7.23

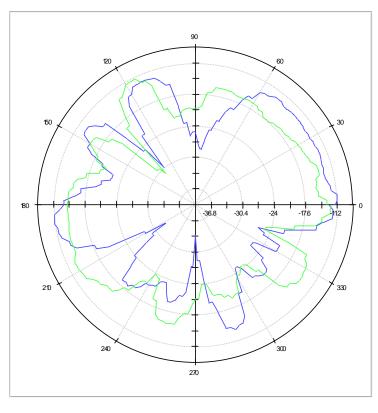
2.1.5.2 Rotating y-axis



Frequency MHz	Max. Value dBi	Azimuth max. deg	Pol max.	Min. Value dBi	Azimuth min. deg	Pol min.
2402.000000	1.90	142	Н	-33.88	270	V
2480.000000	-0.93	0	Н	-31.23	134	V

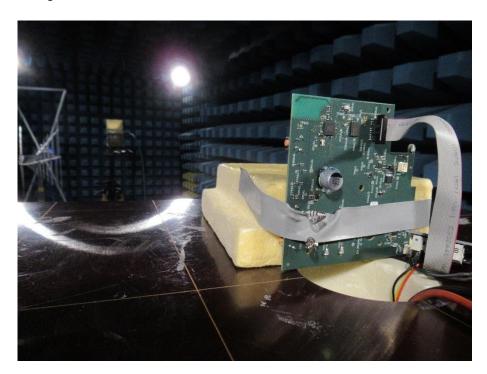
2.1.5.2.1 Horizontal polarization

Azimuth Chart Horizontal


 Frequency 2402.000 MHz [dB]	Frequency 2480.000 MHz [dB]

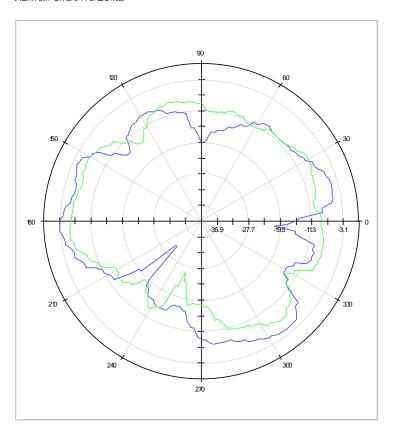
Frequency MHz	Max. value dBi	Azimuth deg	Min. value dBi	Azimuth deg	Average dBi
2402.000000	1.90	142	-19.02	252	-3.64
2480.000000	-0.93	0	-26.56	200	-5.66

2.1.5.2.2 Vertical polarization


Azimuth Chart Vertical

Frequency MHz	Max. value dBi	Azimuth deg	Min. value dBi	Azimuth deg	Average dBi
2402.000000	-11.15	4	-33.88	270	-18.55
2480.000000	-11.65	116	-31.23	134	-17.32

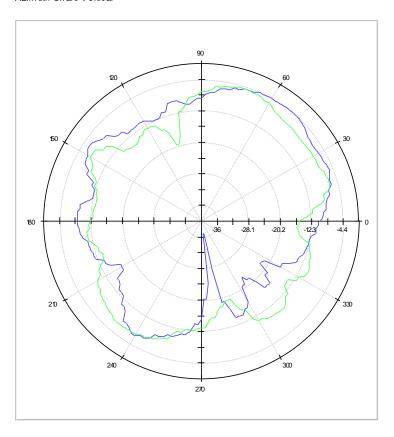
2.1.5.3 Rotating z-axis



Frequency MHz	Max. Value dBi	Azimuth max. deg	Pol max.	Min. Value dBi	Azimuth min. deg	Pol min.
2402.000000	-3.07	184	Н	-36.84	280	V
2480.000000	-5.16	74	V	-26.08	252	Н

2.1.5.3.1 Horizontal polarization

Azimuth Chart Horizontal


Frequency MHz	Max. value dBi	Azimuth deg	Min. value dBi	Azimuth deg	Average dBi
2402.000000	-3.07	184	-30.76	226	-10.69
2480.000000	-5.63	188	-26.08	252	-10.92

Product Service

2.1.5.3.2 Vertical polarization

Azimuth Chart Vertical

Frequency MHz	Max. value dBi	Azimuth deg	Min. value dBi	Azimuth deg	Average dBi
2402.000000	-4.45	52	-36.84	280	-11.30
2480.000000	-5.16	74	-19.92	108	-10.91

2.1.6 Test Location and Test Equipment

The test was carried out in semi anechoic room, cabin no. 2

Instrument	Manufacturer	Type No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
Double ridged waveguide horn antenna	EMCO	3115	19383	36	2023-03-31
Signal and spectrum analyser	Rohde & Schwarz	FSW43	53496	12	2023-04-30
EMC measurement software	Rohde & Schwarz	EMC32 V10.60.20	44375		
Fully anechoic room	Albatross	Cabin No. 2	19312		

Table 5

Product Service

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	kp	Expanded Uncertainty
Occupied Bandwidth	2	±5 %
Conducted Power		
9 kHz ≤ f < 30 MHz	2	±1.0 dB
30 MHz ≤ f < 1 GHz	2	±1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	±2.5 dB
1 MS/s power sensor (TS8997)	2	±1.5 dB
Power Spectral Density	2	±3.0 dB
Radiated Power		
25 MHz – 6 GHz	1.96	±4.4 dB
1 GHz – 18 GHz	1.96	±4.7 dB
18 GHz – 40 GHz	1.96	±4.9 dB
40 GHz – 325 GHz	1.96	±6.1 dB
Conducted Spurious Emissions	2	±3.0 dB
Radiated Field Strength 9 kHz – 40 GHz	2	±6.0 dB
Voltage		
DC	2	±1.0 %
AC	2	±2.0 %
Time (automatic)	2	±5 %
Frequency	2	±10 ⁻⁷

The expanded uncertainty reported according to to ETSI TR 100 028:2001 and ETSI TR 102 273:2001 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Table 6 Measurement uncertainty based on ETSI TR 100 028 and ETSI TS 102 273

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty as specified in the test report below. This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

Product Service

Test Name	Expanded Uncertainty
Occupied Bandwidth	±5 %
Conducted Power	
9 kHz ≤ f < 30 MHz	±1.0 dB
30 MHz ≤ f < 1 GHz	±1.5 dB
1 GHz ≤ f ≤ 40 GHz	±2.5 dB
1 MS/s power sensor (2.4 / 5 GHz band)	±1.5 dB
Power Spectral Density	±3.0 dB
Radiated Power	
25 MHz – 26.5 GHz	±6.0 dB
26.5 GHz – 66 GHz	±8.0 dB
40 GHz – 325 GHz	±10.0 dB
Conducted Spurious Emissions	±3.0 dB
Radiated Field Strength 9 kHz – 40 GHz	±6.0 dB
Voltage	
DC	± 1.0 %
AC	± 2.0 %
Time (automatic)	± 5 %
Frequency	± 10 ⁻⁷

Table 7 Decision Rule: Maximum allowed measurement uncertainty