

Hearing Aid Compatibility (HAC) RF EMISSIONS TEST REPORT

For

Hop-on Inc.

2222 Michelson Drive, Suite 182 Irvine, CA92616, USA

FCC ID: QHO-HOP1800

Lunguer

Report Type: Product Type:

Original Report GSM Dual Band Mobile Phone

Test Engineer: Jimmy Nguyen

Report Number: R0809233-HAC-M

Report Date: 2008-11-13

Boni Baniqued

Reviewed By: Sr. RF Engineer

Prepared By:

(84)

Bay Area Compliance Laboratories Corp.

1274 Anvilwood Ave

Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR THE EUT	
ЕUT Рното	
OBJECTIVE TEST FACILITIES AND ACCREDITATION	
STANDARDS AND GUIDELINES	
APPLICATION STANDARDS	
DESCRIPTION OF TEST SYSTEM	
MEASUREMENT SYSTEM DIAGRAM	
SYSTEM COMPONENTSDASY4 MEASUREMENT SERVER	
DATA ACQUISITION ELECTRONICS	
LIGHT BEAM UNIT	
ROBOT	12
E-FIELD AND H-FIELD PROBES	
PROBES TIP DESCRIPTION	
DEVICE HOLDER AND PHANTOMINSTALLATION OF THE TEST ARCH PHANTOM	
MOUNTING OF A CALIBRATION DIPOLE	
MOUNTING THE DUT	
SYSTEM VALIDATION KITS	16
TESTING EQUIPMENT LIST	17
HAC MEASUREMENT SYSTEM VERIFICATION	
PURPOSE OF SYSTEM PERFORMANCE CHECK	
System Performance Check Setup.	
SYSTEM VALIDATION RESULTS	19
HAC RF EMISSIONS TEST PROCEDURE	24
TEST INSTRUCTIONS	
TEST SETUP	
NEAR-FIELD TEST PROCEDURE	
MEASUREMENT UNCERTAINTY	
HAC MEASUREMENT SUMMARY	
HAC TEST DATA	
ENVIRONMENTAL CONDITIONS	28
APPENDIX A – HAC MEASUREMENT RESULTS	29
APPENDIX B – PROBE CALIBRATION CERTIFICATIONS	41
APPENDIX C – DIPOLE CALIBRATION CERTIFICATES	59
APPENDIX D – OUTPUT POWER EASUREMENT	71
PROVISION APPLICABLE	71
TEST PROCEDURE	
TEST EQUIPMENT	
TEST RESULTS	71

APPENDIX F – TEST SETUP PHOTOS	72
E-Field Setup View H-Field Setup View	
APPENDIX G- EUT PHOTO	73
EUT – Front View	
EUT – BATTERY COMPARTMENT VIEWEUT – BATTERY VIEW	
EUT – Accessory Charger	75
APPENDIX H - DEFEDENCES	76

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R0809233-HAC-M	Original Report	2008-11-13

GENERAL INFORMATION

Product Description for the EUT

This Bay Area Compliance Laboratories Corp. test report has been prepared on behalf of Hop-on Inc. and their product, GSM Mobile Phone (FCC ID: QHO-HOP1800) or the EUT (Equipment Under Test) as referred to in the rest of this report.

stThe data gathered are from a typical production sample provided by the manufacturer, serial number: Hop $1800 ext{-}2$

Item	Content
Modulation	GMSK
Frequency Band	Cellular Band: 824-849 MHz (Tx) 869-894 MHz (Rx) PCS Band: 1850-1910 MHz (Tx) 1930-1990 MHz (Rx)
Dimensions (L x W x H)	96.6 mm (L) x 41.6 mm (W) x 14 mm (H)
Weight	61 g
Power Source	3.7Vdc/550mAH Rechargeable Battery
Operation Mode	Head & Body-worn

EUT Photo

Additional EUT photos in Appendix G

Objective

The objective is to determine compliance with FCC rules for Heading Aid Compatibility (HAC) using ANSI/IEEE Std. C63.19-2007 (American National Standard Method of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids) and test in accordance with the specified measurement procedures.

Test Facilities and Accreditation

Report No.: R0809233-HAC-M

The test site used by Bay Area Compliance Laboratories Corp. (BACL) to collect data is located at 1274 Anvilwood Ave., Sunnyvale, California 94089, USA.

BACL is a National Institute of Standards and Technology (NIST) accredited laboratory under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0).

The current scope of accreditations can be found at: http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm

STANDARDS AND GUIDELINES

Application Standards

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to assess the electromagnetic characteristics and operational compatibility and accessibility of hearing aids used with wireless communications devices, including cordless, cellular, and personal communications service (PCS) phones.

ANSI C63.19-2007 Clause 7 provides the requirements for acceptable interoperability of hearing aids with wireless devices. When these requirements are met, as defined by the tests described in this standard, a hearing aid operates acceptably with a WD.

Compatibility Tests involved:

The standard calls for wireless communications device to be measured for:

- 1) RF Electric-field emissions
- 2) RF Magnetic-field emissions
- 3) T-coil mode, magnetic-signal strength in the audio band.
- 4) T-coil mode, magnetic-signal frequency response through the audio band.
- 5) T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- 1) RF immunity in microphone mode
- 2) RF immunity in T-coil mode

The categories begin with a minimal level of performance, which is described as "usable." From this minimum level, steps are provided for both the WD and hearing aid. Improvement in either device moves the performance first to the "regular use" and then to the "excellent performance" categories.

In addition to immunity and emission requirements, hearing aid response performance, as measured by gain, can be adversely affected by WD RF interference. The criterion established Clause 7 sets the requirement for achieving these levels and gain requirements.

The values in Table 1 are built on a set of premises, which are documented in items a) through d).

- a) First, 80 dB(SPL) is assumed as the level of the intended audio input signal.
- b) Secondly, the values given are for an equivalent CW signal. Thus, for hearing aid immunity testing, a CW signal is used to establish a field at the specified RF power level. Then the signal is modulated with 1 kHz, 80% AM modulation for the test. Thus, the peak field strength for the test is higher than the CW level by the increase created by the modulation. In a reciprocal fashion, the peak field emissions from the WD are measured. These are then adjusted by the computed AWF, which reflects the interference potential of the modulation method used.
- c) Finally, the hearing aid gain deviation is a measurement of the gain response change of the hearing aid when exposed to the E- and H-fields created by the dipole.
- d) The category levels represent available volume control adjustment availability. For instance, if the volume control requires 4 dB to 6 dB of adjustment to use the WD, it is considered within the residual reserve gain of the hearing aid but may become a problem during normal use and therefore is considered usable but not acceptable for regular use.

Where a value is contained in two categories, the stricter limit applies.

Table 1—Hearing aid and telephone near-field parameters

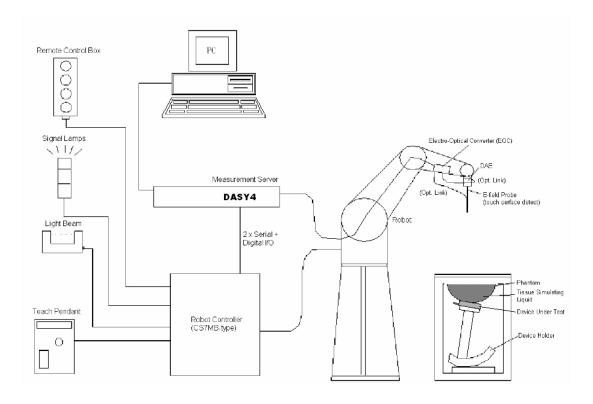
Category		Telephone RF parameters < 960 MHz			
Near field	AWF	E-field emis	sions	H-field emiss	sions
Category M1/T1	0	631.0 to 1122.0	V/m	1.91 to 3.39	A/m
Category WII/11	-5	473.2 to 841.4	V/m	1.43 to 2.54	A/m
Category M2/T2	0	354.8 to 631.0	V/m	1.07 to 1.91	A/m
Category W12/12	-5	266.1 to 473.2	V/m	0.80 to 1.43	A/m
Category M3/T3	0	199.5 to 354.8	V/m	0.60 to 1.07	A/m
Category W15/13	-5	149.6 to 266.1	V/m	0.45 to 0.80	A/m
Coto com MA/TA	0	< 199.5	V/m	< 0.60	A/m
Category M4/T4	-5	< 149.6	V/m	< 0.45	A/m

Category		Telephone RF parameters > 960 MHz				
Near field	AWF	E-field emiss	sions	H-field emis	H-field emissions	
Category M1/T1	0	199.5 to 354.8	V/m	0.60 to 1.07	A/m	
Category W1711	-5	149.6 to 266.1	V/m	0.45 to 0.80	A/m	
Category M2/T2	0	112.2 to 199.5	V/m	0.34 to 0.60	A/m	
Category M2/12	-5	84.1 to 149.6	V/m	0.25 to 0.45	A/m	
Category M3/T3	0	63.1 to 112.2	V/m	0.19 to 0.34	A/m	
Category 1013/13	-5	47.3 to 84.1	V/m	0.14 to 0.25	A/m	
Cotoo MA/TA	0	< 63.1	V/m	< 0.19	A/m	
Category M4/T4	-5	< 47.3	V/m	< 0.14	A/m	

Equipment, which is categorized according to these requirements, shall be coordinated according to Table 2. It should be noted that because the common interference response of hearing aid circuitry is proportional to the square of the RF field, a 5 dB change in the RF yields a 10 dB change in the interference level.

Table 2—System performance classification table

System classification	Articulation index (AI)	Category sum sum of hearing aid category + telephone category
Usable	0.3	Hearing aid category + telephone category = 4
Normal use	0.5	Hearing aid category + telephone category = 5
Excellent performance	0.7	Hearing aid category + telephone category = ≥6


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG) which is the fourth generation of the system shown in the figure hereinafter:

The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

Measurement System Diagram

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A Data Acquisition Electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-Optical Converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows XP.
- DASY4 software.

• Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.

- The SAM twin phantom.
- The device holder for handheld mobile phones.
- Dipole for evaluating the proper functioning of the system.
- Arch Phantom.
- Validation dipole kits allowing it to validate the proper functioning of the system.

System Components

- DASY4 Measurement Server
- Data Acquisition Electronics
- Probes
- •Light Beam Unit
- Medium
- SAM Twin Phantom
- •Device Holder for SAM Twin Phantom
- •System Validation Kits
- •Robot

DASY4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics DAE3 consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Robot

The DASY4 system uses the high precision industrial robots RX60L, RX90 and RX90L, as well as the RX60BL and RX90BL types out of the newer series from Stäubli SA (France). The RX robot series offers many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance-free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (the closed metallic construction shields against motor control fields)

For the newly delivered DASY4 systems as well as for the older DASY3 systems delivered since 1999, the CS7MB robot controller version from Stäubli is used. Previously delivered systems have either a CS7 or CS7M controller; the differences to the CS7MB are mainly in the hardware, but some procedures in the robot software from Stäubli are also not completely the same. The following descriptions about robot hard- and software correspond to CS7MB controller with software version 13.1 (edit S5). The actual commands, procedures and configurations, also including details in hardware, might differ if an older robot controller is in use. In this case please also refer to the Stäubli manuals for further information.

E-Field and H-Field Probes

Report No.: R0809233-HAC-M

The HAC measurement is conducted with the dosimetric probe ER3DV6 and H3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated. This probe has a built in optical surface detection system from collision with DUT.

ER3DV6 E-Field Probe Description

Construction	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material	
Calibration	In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2)	
Frequency	40 MHz to > 6 GHz (can be extended to < 20 MHz) Linearity: ± 0.2 dB (100 MHz to 3 GHz)	
Directivity	\pm 0.2 dB in air (rotation around probe axis) \pm 0.4 dB in air (rotation normal to probe axis)	
Dynamic Range	2 V/m to > 1000 V/m; Linearity: ± 0.2 dB	
Dimensions	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm	E-Filed Free-space
Application	General near-field measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms	Probe (ER3DV6)

H3DV6 H-Field Probe Description

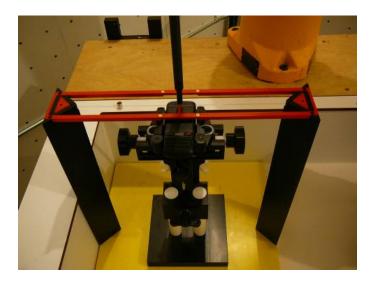
Construction	Three concentric loop sensors with 3.8 mm loop diameters Resistively loaded detector diodes for linear response Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether)	
Frequency	200 MHz to 3 GHz (absolute accuracy ± 6.0%, k=2); Output linearized	
Directivity	\pm 0.2 dB (spherical isotropy error)	////
Dynamic Range	10 mA/m to 2 A/m at 1 GHz	
E-Field Interference	< 10% at 3 GHz (for plane wave)	///
Dimensions	Overall length: 330 mm (Tip: 40 mm) Tip diameter: 6 mm (Body: 12 mm) Distance from probe tip to dipole centers: 3 mm	H-Filed Free-space
Application	General magnetic near-field measurements up to 3 GHz (in air or liquids) Field component measurements Surface current measurements Low interaction with the measured field	Probe (H3DV6)

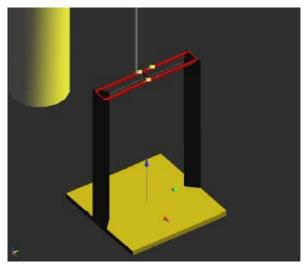
Probes Tip Description

HAC field measurements take place in the close near field gradients. Increasing the measuring distance from the surce3 will generally decrease the measured field values (in case of the validation dipole approx. 10% per mm)

Magnetic field sensors are measuring the integral of H-field across area surrounded by the loop. They are calibrated in a precise, homogeneous field. When measuring a gradient field, the result will be very close to the field in the center of the loop which is equivalent to the value of a homogeneous field equivalent to the center value. But it will be different from the field at the field at the board of the loop.

Consequently, two sensors with different loop diameters – both calibrated ideally- would give different results when measuring from the edge of probe of the probe sensor elements. The behavior for electronically small E-field sensors is equivalent.

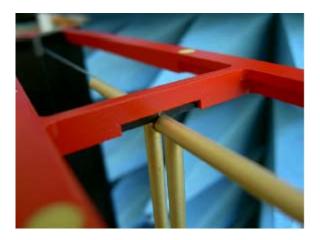

The magnetic field loops of the H3D probes are concentric, with the center 3 mm from the tip for H3DV6.


The electric field probes have a more irregular internal geometry because it is physically not possible to have the 3 orthogonal sensors situated with the same center. The different sensor center is accounted for in HAC uncertainty budget ("sensor displacement"). Their geometric center is at 2.5 mm from the tip, and the element ends are 1.1 mm closer to the tip.

Device Holder and Phantom

Report No.: R0809233-HAC-M

The test Arch phantom should be positioned horizontally on a stable surface. Reference marking on the phantom allows the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.


The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Installation of the Test Arch Phantom

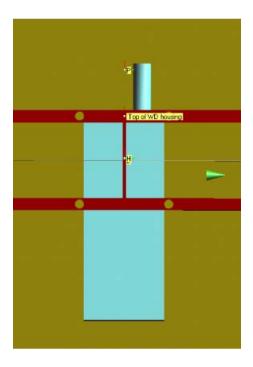
The Test Arch phantom should be positioned horizontally on a stable surface. If the cover of the Twin SAM phantom is used, side shifting after the teaching shall be avoided. In order to allow a vertical position of the probe (for both DASY4 Professional and Compact versions) the section Park position should be not higher than 15mm above the top of the upper Arch frame. For improved user friendliness a predefined configuration file of the Test Arch phantom is provided by SPEAG.

Mounting of a Calibration Dipole

A set of three calibration dipoles (CD835, CD1880 and CD2450) is included as a part of the HAC extension. These are used for the validation of the test setup after its installation and prior to the DUT measurements. The calibration dipole is placed in the position normally occupied by the DUT. All three calibration dipoles have the same high which allows an exact fitting below the center point of the Test Arch.

Insert the base of the calibration dipole fully into the dipole holder and fix it against rotation by tightening the white screw. Connect the RF cable to the dipole and secure it before placing it below the Test Arch phantom in order to avoid mechanical stress to it. Hold the dipole on its plate at the base and press it down against the internal spring to reduce the height.

While holding the dipole down, slide the dipole on its holder centered below the arch, with the arms aligned to the dielectric wire (see graphics above). Release the dipole slowly and guide the gap between the arms into the matching center spacer below the dielectric wire.


To remove the dipole from the setup press it in the downwards direction before sliding it carefully out from below the arch.

Mounting the DUT

Report No.: R0809233-HAC-M

A DUT is mounted in the device holder equivalent as for classic dosimetric measurements The acoustic output of the DUT shall coincide with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame (see picture below).

The DUT shall be moved vertically upwards until it touches the frame. The fine adjustment is possible by sliding the complete DUT holder on the yellow base plate of the Test Arch phantom.

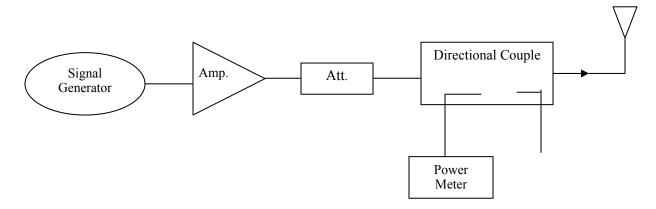
System Validation Kits

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. For that purpose a well defined SAR distribution in the flat section of the SAM twin phantom is produced.

System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Dipoles are available for the variety of frequencies between 300MHz and 6 GHz (dipoles for other frequencies or media and other calibration conditions are available upon request).

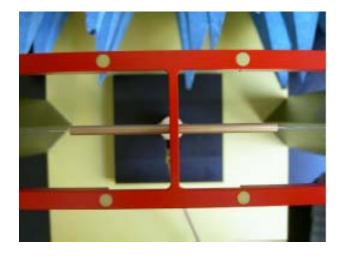
The dipoles are highly symmetric and matched at the center frequency for the specified liquid and distance to the flat phantom (or flat section of the SAM-twin phantom). The accurate distance between the liquid surface and the dipole center is achieved with a distance holder that snaps on the dipole.

TESTING EQUIPMENT LIST


Type / Model	Calibration Date	Serial Number
DASY4 Professional Dosimetric System	N/A	N/A
Robot RX60L	N/A	CS7MBSP / 467
Robot Controller	N/A	F01/5J72A1/A/01
Dell Computer Dimension 3000	N/A	N/A
SPEAG EDC3	N/A	N/A
SPEAG DAE3	2007-11-20	456
Probe, ER3DV6	2008-10-13	2338
Probe, H3DV6	2008-10-13	6158
SPEAG Arch Phantom	N/A	1010
SPEAG Light Alignment Sensor	N/A	278
DASY4 Measurement Server	N/A	1176
Antenna, Dipole, CD835V3	2008-09-17	1012
Antenna, Dipole, CD1880V3	2008-09-17	1009
Agilent, Spectrum Analyzer E4446A	2008-05-27	US44300386
Microwave Amp. 8349A	N/A	2644A02662
Power Meter Agilent E4419B	2008-10-23	MY4121511
Power Sensor Agilent E4412A	2008-10-12	MY41497252
Agilent E5515C	2008-08-08*	GB44051221
Dielectric Probe Kit HP85070A	N/A	US99360201
Agilent, Signal Generator, 8648C	2008-09-18	3347M00143
Amplifier, ST181-20	N/A	E012-0101
Antenna, Horn SAS-200/571	2009-04-20	A052704

HAC MEASUREMENT SYSTEM VERIFICATION

Purpose of System Performance Check


The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system. The system performance check use normal HAC measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Performance Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1880 MHz. The calibrated dipole must be placed beneath the flat phantom section of ARC with the correct distance holder.

The output power on dipole port must be calibrated to 20 dBm (100 mw) before dipole is connected.

System Validation Results

Table A: E-Field System Validation

Frequency (MHz)	Input Power (dBm)	E-Field Result (V/m)	Target E-Field (V/m)	Deviation (%)
835	20.0	158.5	169.7	-7.07%
1880	20.0	148.1	140.0	5.50%

Table B: H-Field System Validation

Frequency (MHz)	Input Power (dBm)	H-Field Result (A/m)	Target H-Field (A/m)	Deviation (%)
835	20.0	0.380	0.455	-7.50%
1880	20.0	0.436	0.467	-7.11%

Note: Deviation = ((E or H-Field Result)-(Target Field))/(Target Field) * 100%

Category	AWF (dB)	Limits for E-Field Emissions $(V/m) > 960MHz$	Limits for H-Field Emissions (A/m) > 960MHz
M1	0	631 - 1122	1.91 - 3.39
1711	-5	473.2 - 841.4	1.43 - 2.54
M2	0	354.8 - 631	1.07 - 1.91
1V12	-5	266.1 - 473.2	0.8 - 1.43
M3	0	199.5 - 354.8	0.6 - 1.07
IVIS	-5	149.6 - 266.1	0.45 - 0.8
M4	0	<199.5	<0.6
1 v1 4	-5	<149.6	< 0.45

HAC E- Field System Validation (835 MHz)

DUT: HAC Dipole 835 MHz; Type: CD835V3; Serial: 1012

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY4 Configuration:

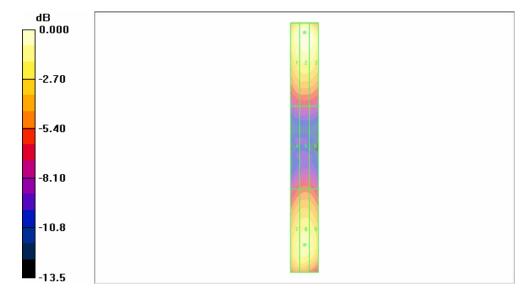
Probe: ER3DV6 - SN2338; ConvF(1, 1, 1); Calibrated: 09/22/2008

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 11/8/2007

• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Post processing SW: SEMCAD, V1.8 Build 184


E Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 158.5 V/m

Peak E-field in V/m

Grid 1 151.1 M2	 Grid 3 153.6 M2
	Grid 6 80.3 M3
	 Grid 9 134.8 M2

0 dB = 158.5 V/m

HAC E- Field System Validation (1880 MHz)

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1009

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

DASY4 Configuration:

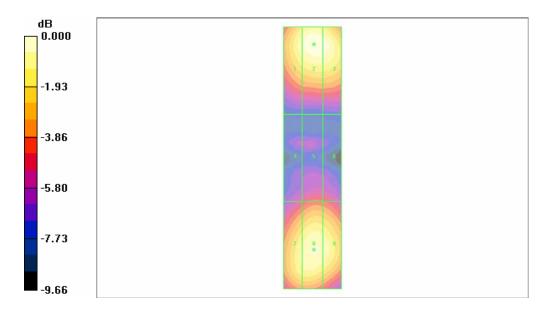
Probe: ER3DV6 - SN2338; ConvF(1, 1, 1); Calibrated: 9/22/2008

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 11/8/2007

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

• Measurement SW: DASY4, V4.7 Build 71; Post processing SW: SEMCAD, V1.8 Build 184


E Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 148.1 V/m

Peak E-field in V/m

	Grid 3 144.4 M2
	Grid 6 89.4 M3
	Grid 9 135.2 M2

0 dB = 148.1 V/m

HAC H-Field System Validation (835 MHz)

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1012

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section

DASY4 Configuration:

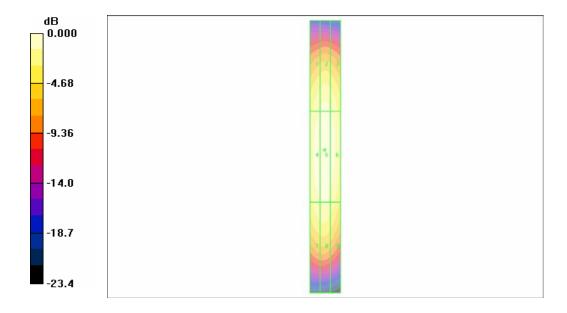
Probe: H3DV6 - SN6158; Calibrated: 9/22/2008

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 11/8/2007

• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Post processing SW: SEMCAD, V1.8 Build 184


H Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.380 A/m

Peak H-field in A/m

		Grid 3
0.320 M4	0.340 M4	0.320 M4
		Grid 6
0.362 M4	0.380 M4	0.354 M4
Grid 7		Grid 9

0 dB = 0.380 A/m

HAC H-Dipole System Validation (1880 MHz)

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1009

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section

DASY4 Configuration:

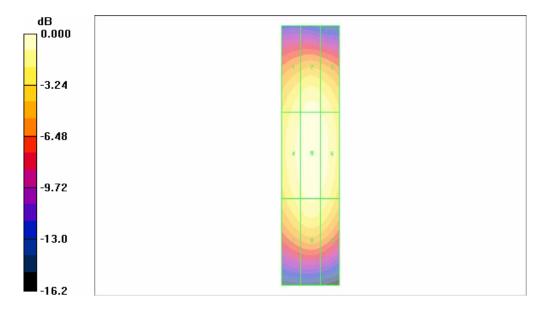
Probe: H3DV6 - SN6158; ; Calibrated: 9/22/2008

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 11/8/2007

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

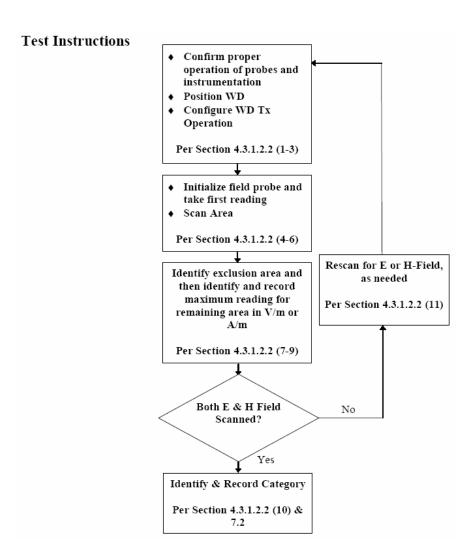
Measurement SW: DASY4, V4.7 Build 71; Post processing SW: SEMCAD, V1.8 Build 184


H Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.436 A/m

Peak H-field in A/m


	Grid 2 0.409 M2	Grid 3 0.393 M2
Grid 4		Grid 6
	Grid 8 0.395 M2	Grid 9 0.375 M2

0 dB = 0.436 A/m

HAC RF EMISSIONS TEST PROCEDURE

Test Instructions

Test Setup

Figure 1 through Figure 3 illustrates the references and reference plane that shall be used in the WD emissions measurement.

- 1) The grid is 5.0 cm by 5.0 cm area that is divided into nine evenly sized blocks or sub-grids.
- 2) The grid is centered on the audio frequency output transducer of the WD (speaker or T-Coil).
- 3) The grid is in a reference plane, which is defined as the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the WD handset, which, in normal handset use, rest against the ear.
- 4) The measurement plane is parallel to, and 10.0 mm in front of, the reference plane.

Figure 1. WD reference and plan for RF emission measurement

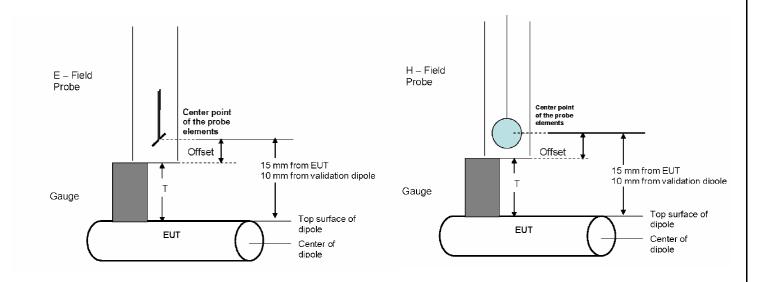


Figure 2. Gauge Block with E-field Probe

Report No.: R0809233-HAC-M

Figure 3. Gauge Block with H-field Probe

Near-Field Test Procedure

The electric field probe, and, separately, the magnetic field probe, is to be used to measure the highest field strength in the 5 cm by 5 cm scan surface. The average field strength measured over many pulse cycles may be measured, with the peak then being calculated from the measured average value and the known duty cycle of the WD.

The 5 cm by 5 cm area is divided into nine subgrids (see the diagram in Figure A.2). Three contiguous subgrids on the perimeter may be excluded from the measurement. This allows for RF "hot spots" that can easily be avoided in actual use. The highest reading found in the area defined by the middle subgrid and the remaining

subgrids determines the category rating. The field probe is carefully moved through the measurement area and the maximum reading is located. In order to accurately scan the entire 5 cm by 5 cm area, the center of the probe shall be moved through this area. Accordingly the total area covered by the outside edge of the probe shall be the 5 cm by 5 cm area, increased by half (1/2) the probe diameter on all sides.

The method of displaying the data is not important as long as good measurement techniques are followed and the resultant highest .eld strength is obtained.

The distance from the WD reference plane to the nearest point on the probe element shall be 1.0 cm. The WD reference plane is a plane parallel with the front "face" of the WD and containing the highest point on its contour. The probe element is that portion of the probe that is designed to receive and sense the field being measured. The physical body of the probe housing shall not be used when setting this 1.0 cm distance as this would place the sensing elements at an indeterminate distance from the reference plane. Although it is theoretically possible to measure at almost any distance and calculate the equivalent field strengths at 1.0 cm, it is not recommended as these calculations are very difficult and prone to errors.

In the case of a field probe that may have less than three orthogonal elements, it is necessary to rotate the probe to obtain the measurement. Two methods may be used. In the preferred method, the probe shall be rotated in three dimensions for maximum alignment and the reading at maximum field alignment used. An alternative method is to rotate the probe about its geometric center so as to obtain measurements in all three mutually orthogonal orientations. The geometric center is the point that is physically located at the center of the electromagnetic sensing element of the probe. This may be determined from physical measurements or from field pattern measurements during calibration. The maximum field shall be the vector sum of all three individual mutually orthogonal measurements. Note that even when using three element probes, the probe may be rotated so as to align one element for maximum field coupling. When this is done the reading of the single, maximally aligned element is used as the field reading at that location. Readings taken in this manner are preferred over those taken with the non-aligned method because of the greater accuracy. However, when the alignment method is used, the probe shall be realigned at every measurement point.

MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the DASY4 measurement system and is given in the following Table.

Wireless Communication Device Near-Field Measurement Uncertainty Estimation (According to ANSI C63.19							
Error Description	Uncertainty Value	Prob. Dist.	Div.	(c i) E	(c i) H	Std. Unc. (E	Std. Unc. H
Measurement System							
Probe Calibration	± 5.1 %	N	1	1	1	± 5.1 %	±5.1%
Axial Isotropy	± 4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
Sensor Displacement	±16.5%	R	$\sqrt{3}$	1	0.145	±9.5%	±1.4%
Test Arch	±7.2%	R	$\sqrt{3}$	1	0	±4.1%	±0.0%
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
Scaling to Peak Envelope Power	±0.0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%
System Detection Limit	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%
RF Ambient Conditions	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
RF Reflections	±12.0%	R	$\sqrt{3}$	1	1	±6.9%	±6.9%
Probe Positioner	±1.2%	R	$\sqrt{3}$	1	0.67	±0.7%	±0.5%
Probe Positioning	±4.7%	R	$\sqrt{3}$	1	0.67	±2.7%	±1.8%
Extrap. and Interpolation	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
	Te	est Sample	Related				
Device Positioning Vertical	±4.7%	R	$\sqrt{3}$	1	0.67	±2.7%	±1.8%
Device Positioning Lateral	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%
Device Holder and Phantom	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%
Phantom and Setup Related							
Phantom Thickness	± 2.4%	R	$\sqrt{3}$	1	0.67	±1.4%	±0.9%
Combined Std. Uncertain	nty					±15.2%	±10.8%
Expanded Std. Uncertainty or	n Power					±30.4%	±21.6%
Expanded Std. Uncertainty o	n Field					±15.2%	±10.8%

HAC MEASUREMENT SUMMARY

HAC Test Data

This page summarizes the results of the performed dosimetric evaluation. The plots with the corresponding E & H Fields distributions, which reveal information about the category of the wireless communication device with respect to the HAC test result, could be found in Appendix A.

Environmental Conditions

Ambient Temperature:	22° C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

^{*} Testing was performed by Jimmy Nguyen on 2008-11-04

Frequency (MHz)	Test Type	Medium	Phantom	Notes / Accessories	Peak Field (V/m, E-Field) (A/m, H-Field)	HAC Category	Plot #
824.2	E-Field	Air	Arch	none	266.1	М3	1
836.6	E-Field	Air	Arch	none	293.9	M3	2
848.8	E-Field	Air	Arch	none	265.3	М3	3
824.2	H-Field	Air	Arch	none	0.736	M3	7
836.6	H-Field	Air	Arch	none	0.76	M3	8
848.8	H-Field	Air	Arch	none	0.749	М3	9

Frequency (MHz)	Test Type	Medium	Phantom	Notes / Accessories	Peak Field (V/m, E-Field) (A/m, H-Field)	HAC Category	Plot #
1850.2	E-Field	Air	Arch	none	73	M3	4
18880.0	E-Field	Air	Arch	none	73.7	М3	5
1908.8	E-Field	Air	Arch	none	74.9	М3	6
1850.2	H-Field	Air	Arch	none	0.248	М3	10
1880.0	H-Field	Air	Arch	none	0.238	М3	11
1908.8	H-Field	Air	Arch	none	0.205	М3	12

APPENDIX A – HAC MEASUREMENT RESULTS

GSM850 E-Field Testing, Low Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section DASY4 Configuration:

Probe: ER3DV6 - SN2338; ConvF(1, 1, 1); Calibrated: 3/11/2005

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

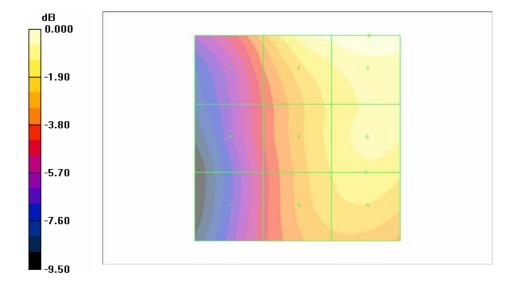
• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan 10mm above CD/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 266.1 V/m


Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 64.1 V/m; Power Drift = 0.062 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
193.5 M3	255.4 M3	266.1 M3
Grid 4	Grid 5	Grid 6
161.7 M3	220.0 M3	236.3 M3
Grid 7	Grid 8	Grid 9
156.4 M3	214.3 M3	225.8 M3

0 dB = 266.1 V/m

Plot #1

GSM850 E-Field Testing, Middle Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section DASY4 Configuration:

Probe: ER3DV6 - SN2338; ConvF(1, 1, 1); Calibrated: 3/11/2005

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

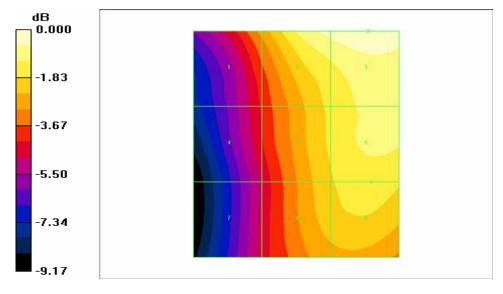
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan 10mm above CD/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 263.9 V/m


Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 67.0 V/m; Power Drift = -0.009 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
213.4 M3	251.6 M3	263.9 M3
Grid 4	Grid 5	Grid 6
182.0 M3	243.0 M3	260.5 M3
Grid 7	Grid 8	Grid 9

0 dB = 263.9 V/m

Plot # 2

GSM850 E-Field Testing, High Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m³

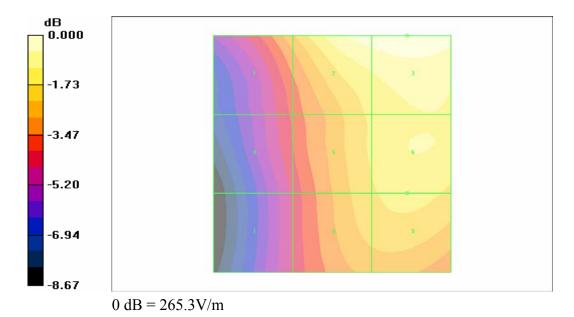
Phantom section: RF Section DASY4 Configuration:

• Probe: ER3DV6 - SN2338; ConvF(1, 1, 1); Calibrated: 3/11/2005

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan 10mm above CD/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 265.3 V/m Probe Modulation Factor = 2.88 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 64.8 V/m; Power Drift = 0.063 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
201.9 M3	258.7 M3	265.3 M3
Grid 4	Grid 5	Grid 6
169.5 M3	221.2 M3	233.1 M3
Grid 7	Grid 8	Grid 9
158.8 M3	215.0 M3	222.7 M3

Plot #3

PCS1900 E-Field Testing, Low Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: PCS1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section DASY4 Configuration:

Probe: ER3DV6 - SN2338; ConvF(1, 1, 1); Calibrated: 9/22/2008

• Sensor-Surface: (Fix Surface)

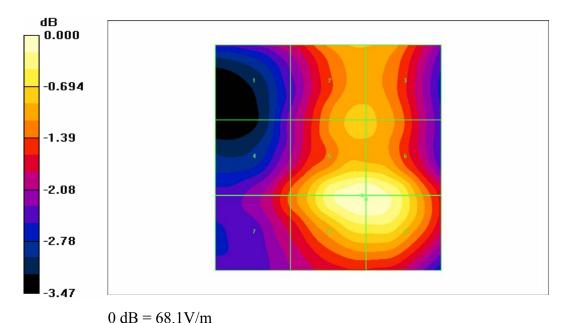
• Electronics: DAE3 Sn456; Calibrated: 11/8/2007

• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Post processing SW: SEMCAD, V1.8 Build 184

E Scan 10mm above CD/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 68.1 V/m

Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 20.7 V/m; Power Drift = 0.044 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
56.3 M3	52.7 M3	57.6 M3
Grid 4	Grid 5	Grid 6
64.5 M3	68.0 M3	68.1 M3
Grid 7	Grid 8	Grid 9
64.7 M3	68.1 M3	68.1 M3

00.1 V/III

Plot #4

PCS1900 E-Field Testing, Middle Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m³

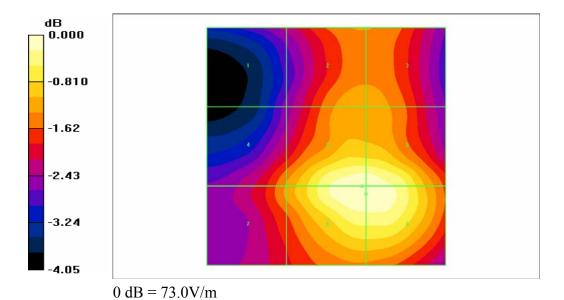
Phantom section: RF Section DASY4 Configuration:

Probe: ER3DV6 - SN2338; ConvF(1, 1, 1); Calibrated: 3/11/2005

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan 10mm above CD/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 73.0 V/m Probe Modulation Factor = 2.88 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 21.3 V/m; Power Drift = 0.002 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
63.9 M3	65.2 M3	65.3 M3
Grid 4	Grid 5	Grid 6
68.8 M3	69.6 M3	72.1 M3
Grid 7	Grid 8	Grid 9
69.7 M3	70.3 M3	73.0 M3

Plot # 5

PCS1900 E-Field Testing, High Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: PCS1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section DASY4 Configuration:

Probe: ER3DV6 - SN2338; ConvF(1, 1, 1); Calibrated: 3/11/2005

• Sensor-Surface: (Fix Surface)

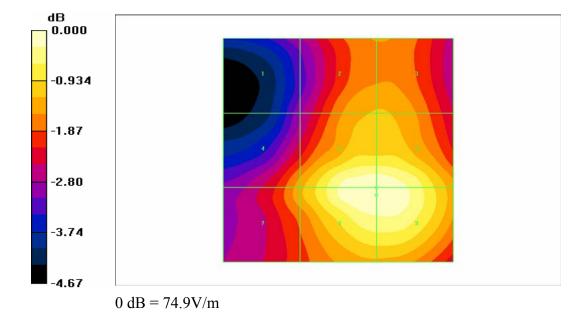
• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan 10mm above CD/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 74.9 V/m

Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 25.8 V/m; Power Drift = -0.007 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
70.5 M3	73.7 M3	73.7 M3
Grid 4	Grid 5	Grid 6
72.8 M3	74.6 M3	74.6 M3
Grid 7	Grid 8	Grid 9
73.3 M3	74.9 M3	74.9 M3

Plot # 6

GSM850 H-Field Testing, Low Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section DASY4 Configuration:

• Probe: H3DV6 - SN6158; Calibrated: 9/22/2008

• Sensor-Surface: (Fix Surface)

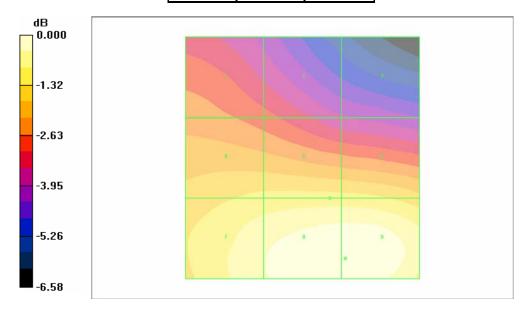
• Electronics: DAE3 Sn456; Calibrated: 11/8/2007

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Post processing SW: SEMCAD, V1.8 Build 184

H Scan 10mm above 835 MHz/Hearing Aid Compatibility Test (61x61x1):

Maximum value of peak Total field = 0.736 A/m


Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm

Reference Value = 0.245 A/m; Power Drift = -0.048 dB

Peak H-field in A/m

Grid 1 0.514 M3	Grid 2 0.473 M3	Grid 3 0.400 M3
Grid 4	Grid 5	Grid 6
0.618 M3	0.624 M3	0.622 M3
Grid 7	Grid 8	Grid 9
0.688 M3	0.736 M3	0.736 M3

0 dB = 0.736 A/m

Plot #7

GSM850 H-Field Testing, Middle Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section DASY4 Configuration:

Probe: H3DV6 - SN6158; ; Calibrated: 2/16/2005

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

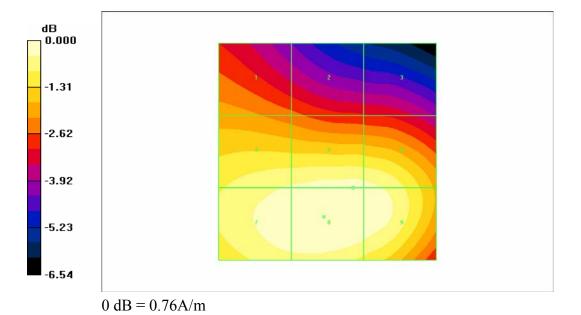
• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan 10mm above 835 MHz/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.76 A/m


Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm

Reference Value = 0.256 A/m; Power Drift = -0.052 dB

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.77 M3	0.80 M3	0.65 M3
Grid 4	Grid 5	Grid 6
0.72 M2	0.74 M3	0.63 M3
Grid 7	Grid 8	Grid 9
0.74 M2	0.76 M2	0.65 M2

Plot #8

GSM850 H-Field Testing, High Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section DASY4 Configuration:

Probe: H3DV6 - SN6158; ; Calibrated: 2/16/2005

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

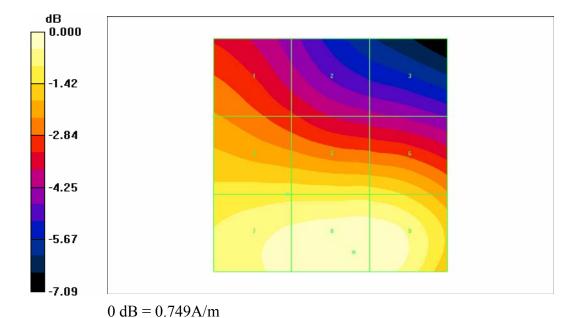
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan 10mm above 835 MHz/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.749 A/m


Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.221 A/m; Power Drift = -0.021 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.728 M3	0.656 M3	0.594 M3
Grid 4	Grid 5	Grid 6
0.735 M3	0.734 M3	0.631 M3
Grid 7	Grid 8	Grid 9
0.728 M3	0.749 M3	0.644 M3

Plot #9

PCS1900 H-Field Testing, Low Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: PCS1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section DASY4 Configuration:

Probe: H3DV6 - SN6158; Calibrated: 9/22/2008

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 11/8/2007

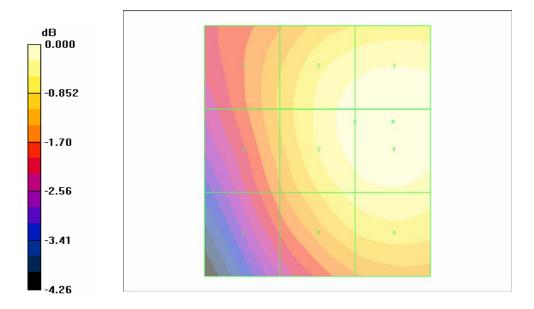
• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Post processing SW: SEMCAD, V1.8 Build 184

H Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.248 A/m


Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.185 A/m; Power Drift = 0.031 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.219 M3	0.244 M3	0.248 M3
Grid 4	Grid 5	Grid 6
0.219 M3	0.244 M3	0.248 M3
Grid 7	Grid 8	Grid 9
0.209 M3	0.236 M3	0.239 M3

0 dB = 0.248 A/m

Plot # 10

PCS1900 H-Field Testing, Middle Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: PCS1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section DASY4 Configuration:

Probe: H3DV6 - SN6158; ; Calibrated: 2/16/2005

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

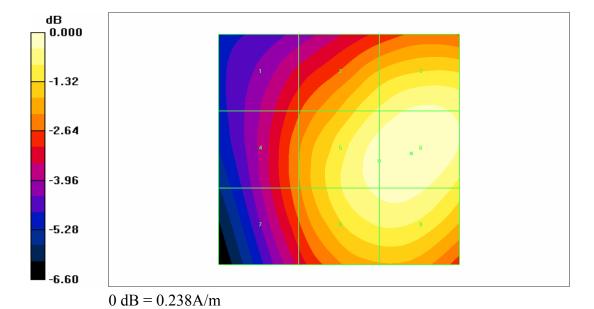
• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.238 A/m


Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.159 A/m; Power Drift = 0.041 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.195 M3	0.191 M3	0.218 M3
Grid 4	Grid 5	Grid 6
0.218 M3	0.227 M3	0.238 M3
Grid 7	Grid 8	Grid 9
0.215 M3	0.218 M3	0.223 M3

Plot #11

PCS1900 H-Field Testing, High Channel

Hop-on, Inc.; Type: GSM 850/1900 Dual Band Cellular Phone; Serial: Hop 1800-2

Communication System: PCS1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1$ kg/m3

Phantom section: RF Section DASY4 Configuration:

Probe: H3DV6 - SN6158; ; Calibrated: 2/16/2005

• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn456; Calibrated: 6/1/2004

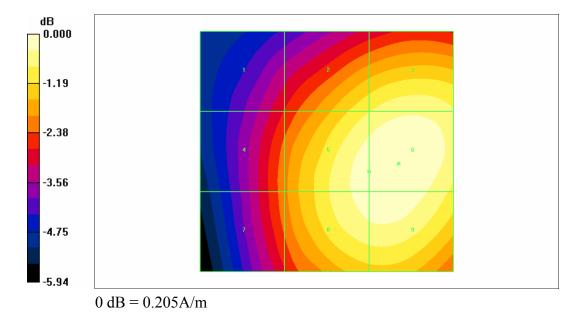
• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (61x61x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.205 A/m


Probe Modulation Factor = 2.88

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.120 A/m; Power Drift = 0.039 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.196 M3	0.169 M3	0.184 M3
Grid 4	Grid 5	Grid 6
0.219 M3	0.198 M3	0.205 M3
Grid 7	Grid 8	Grid 9
0.218 M3	0.197 M3	0.201 M3

Plot # 12

FCC ID: QHO-HOP1800 Hop-on Inc.

APPENDIX B – PROBE CALIBRATION CERTIFICATIONS

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

BACL

Accreditation No.: SCS 108

Certificate No: ER3-2338 Sep 08 CALIBRATION CERTIFICATE Object ER3DV6 - SN:2338 Calibration procedure(s) QA CAL-02.v5 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: September 22, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration GB41293874 Apr-09 Power meter E4419B 1-Apr-08 (No. 217-00788) MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 3N, 35054 (3c) 1-Jul-08 (No. 217-08865) Jul-09 Reference 3 dB Attenuator 31-Mar-08 (No. 217-00787) Apr-09 Reference 20 dB Attenuator SN: S5086 (20b) Reference 30 dB Attenuator SN: 85129 (30b) 1-Jul-08 (No. 217-00866) Jul-09 Reference Probe ER30V6 SN: 2328 2-Oct-07 (No. ER3-2328_Oct07) Oct-08 DAE4 SN: 789 5-Dec-07 (No. DAE4-789_Dec07) Dec-08 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Network Analyzer HP 8753E Name Function Technical Manager Calibrated by: Katja Pokovic Quality Manager Approved by: Niels Kuster Issued: September 22, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ER3-2338_Sep08

Report No.: R0809233-HAC-M

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalennage
Servizie svizzere di taratura
S Swiss Calibration Service

creditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\theta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2338_Sep08 Page 2 of 9

Report No.: R0809233-HAC-M

ER3DV6 SN:2338

September 22, 2008

Probe ER3DV6

SN:2338

Manufactured: June 15, 2004

Last calibrated: September 25, 2006 Recalibrated: September 22, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ER3-2338_Sep08 Page 3 of 9

Report No.: R0809233-HAC-M

ER3DV6 SN:2338

September 22, 2008

DASY - Parameters of Probe: ER3DV6 SN:2338

Sensitivity in Free Space [μV/(V/m)²]

Diode Compression^A

NormX 1.64 ± 10.1 % (k=2) NormY 1.70 ± 10.1 % (k=2) NormZ 1.97 ± 10.1 % (k=2) DCP X 95 mV DCP Y 95 mV DCP Z 97 mV

Frequency Correction

X 0.0 Y 0.0 Z 0.0

Sensor Offset (Probe Tip to Sensor Center)

X 2.5 mm Y 2.5 mm Z 2.5 mm

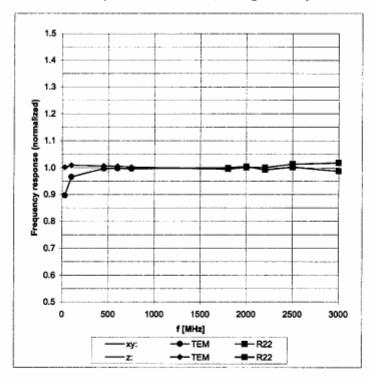
Connector Angle 21 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2338_Sep08

Report No.: R0809233-HAC-M

Page 4 of 9


A numerical linearization parameter: uncertainty not required

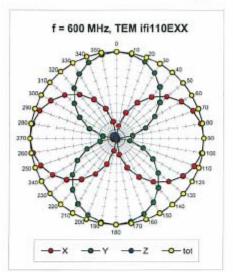
ER3DV6 SN:2338

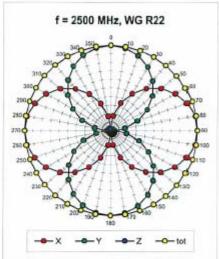
September 22, 2008

Frequency Response of E-Field

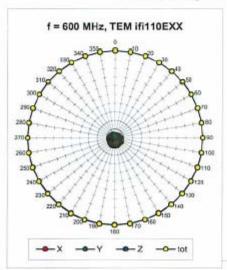
(TEM-Cell:ifi110 EXX, Waveguide R22)

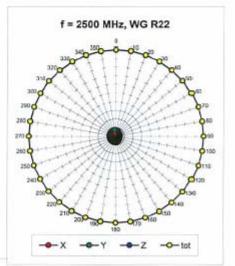
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ER3-2338_Sep08

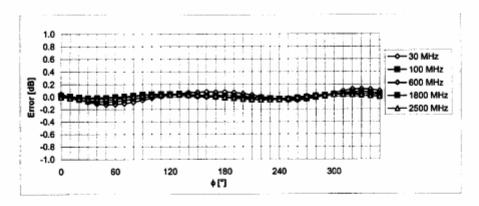

Page 5 of 9

ER3DV6 SN:2338


September 22, 2008

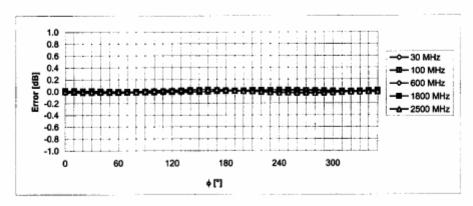

Receiving Pattern (ϕ), θ = 0°

Receiving Pattern (φ), θ = 90°


Certificate No: ER3-2338_Sep08

Page 6 of 9

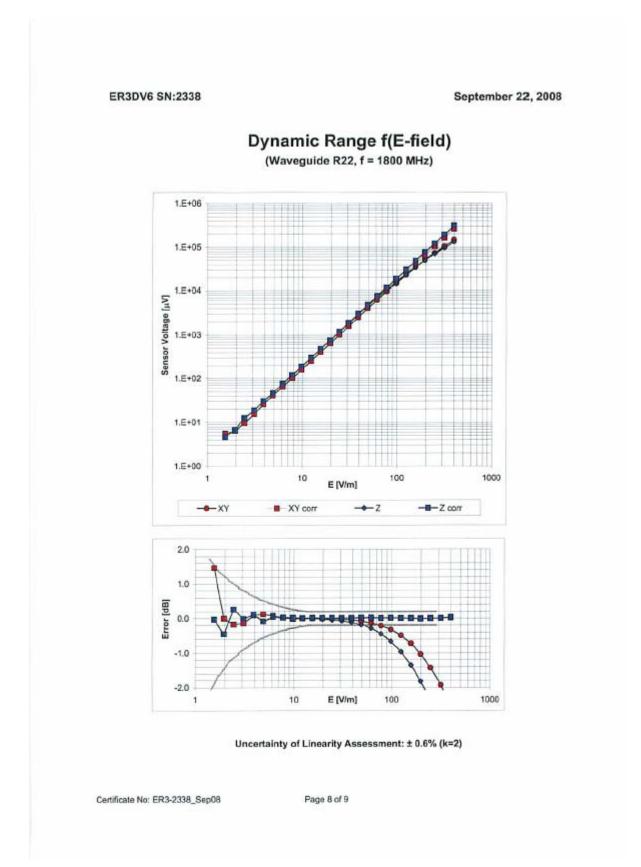
ER3DV6 SN:2338


September 22, 2008

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

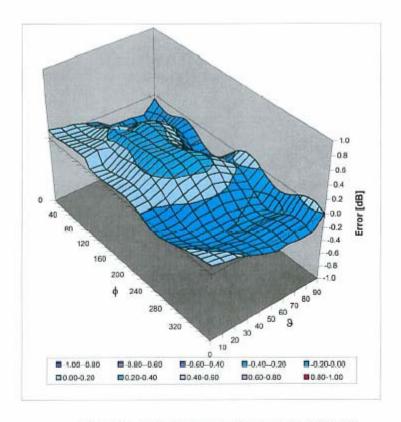
Receiving Pattern (ϕ), ϑ = 90°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ER3-2338_Sep08

Report No.: R0809233-HAC-M


Page 7 of 9

ER3DV6 SN:2338

September 22, 2008

Deviation from Isotropy in Air Error (ϕ, θ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2338_Sep08

Page 9 of 9

FCC ID: QHO-HOP1800 Hop-on Inc.

> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: H3-6158_Sep08

Accreditation No.: SCS 108

BACL CALIBRATION CERTIFICATE H3DV6 - SN:6158 Object QA CAL-03.v5 Calibration procedure(s) Calibration procedure for H-field probes optimized for close near field evaluations in air Calibration date: September 22, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Heterence 3 ets Attenuator SN: 85054 (36) 1-Jul-08 (No. 217-00865) **BU-16** Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-09787) Apr-09 SN: S5129 (30b) Reference 30 dB Attenuator 1-Jul-08 (No. 217-00856) Jul-09 Reference Probe H3DV6 2-Oct-07 (No. H3-6182_Oct07) SN: 6182 Oct-08 DAE4 SN: 789 5-Dec-07 (No. DAE4-789_Dec07) Dec-08 Secondary Standards ID# Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Name Function Signature Calibrated by: Katja Pokovic Technical Manager Approved by: Niels Kuster Quality Manager Issued: September 22, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: H3-6158_Sep08

Report No.: R0809233-HAC-M

Page 1 of 9

FCC ID: QHO-HOP1800 Hop-on Inc.

> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalonnage rvizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point Polarization ϕ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

information used in DASY system to align probe sensor X to the robot Connector Angle

coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- X,Y,Z_a0a1a2: Assessed for E-field polarization 9 = 90 for XY sensors and 9 = 0 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X a0a1a2 (no uncertainty required).

Page 2 of 9

Certificate No: H3-6158_Sep08

Report No.: R0809233-HAC-M

H3DV6 SN:6158

September 22, 2008

Probe H3DV6

SN:6158

Manufactured: June 22, 2004

Last calibrated: September 25, 2006 Recalibrated: September 22, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: H3-6158_Sep08

Report No.: R0809233-HAC-M

Page 3 of 9

H3DV6 SN:6158

September 22, 2008

DASY - Parameters of Probe: H3DV6 SN:6158

Sensitivity in Free Space [A/m / √(µV)]

```
a0 a1 a2

X 2.617E-03 -5.925E-5 3.143E-5 ± 5.1 % (k=2)

Y 2.590E-03 -8.373E-5 1.400E-6 ± 5.1 % (k=2)

Z 2.996E-03 -1.719E-4 4.549E-5 ± 5.1 % (k=2)
```

Diode Compression¹

DCP X 85 mV DCP Y 91 mV DCP Z 83 mV

Sensor Offset (Probe Tip to Sensor Center)

X 3.0 mm Y 3.0 mm Z 3.0 mm

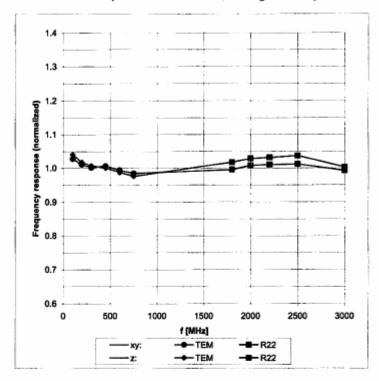
Connector Angle 100 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: H3-6158_Sep08

Report No.: R0809233-HAC-M

Page 4 of 9


¹ numerical linearization parameter: uncertainty not required

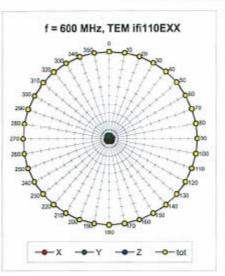
H3DV6 SN:6158

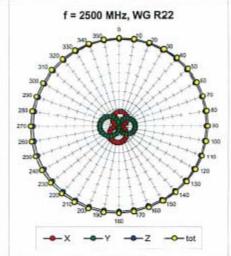
September 22, 2008

Frequency Response of H-Field

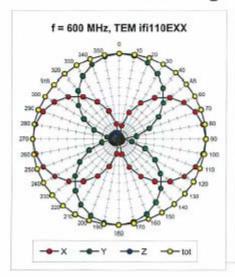
(TEM-Cell:ifi110 EXX, Waveguide R22)

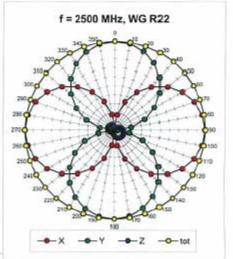
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: H3-6158_Sep08

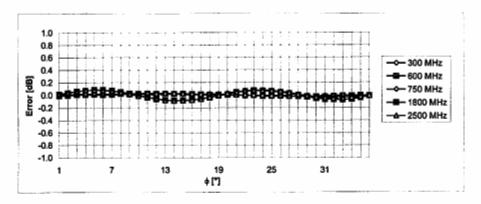

Page 5 of 9

H3DV6 SN:6158


September 22, 2008

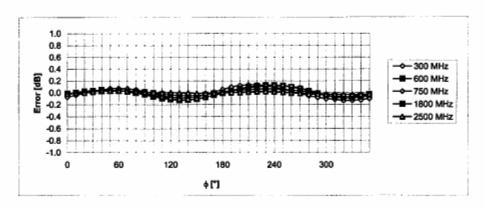

Receiving Pattern (ϕ), $9 = 90^{\circ}$

Receiving Pattern (ϕ), ϑ = 0°


Certificate No: H3-6158_Sep08

Page 6 of 9

H3DV6 SN:6158


September 22, 2008

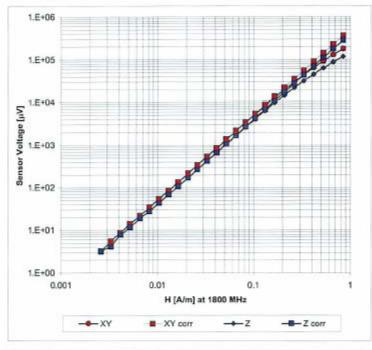
Receiving Pattern (ϕ), ϑ = 90°

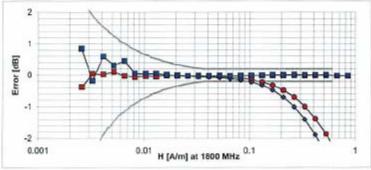
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: H3-6158_Sep08


Page 7 of 9

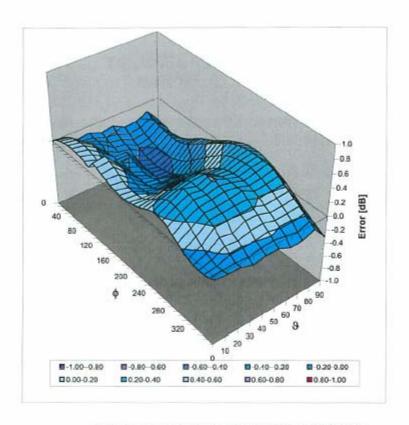

H3DV6 SN:6158

September 22, 2008

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: H3-6158_Sep08

Page 8 of 9

H3DV6 SN:6158

September 22, 2008

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: H3-6158_Sep08

Page 9 of 9

APPENDIX C – DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

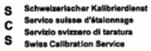
BACL

Certificate No: CD835V3-1012 Sep08

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE CD835V3 - SN: 1012 Object Calibration procedure(s) QA CAL-20.v4 Calibration procedure for dipoles in air September 17, 2008 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID II Cal Date (Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 04-Oct-07 (No. 217-00736) Oct-08 US37292783 04-Oct-07 (No. 217-00736) Power sensor HP 8481A Oct-08 SN: 2336 31-Dec-07 (No. ER3-2336_Dec07) Dec-08 Probe ER3DV6 Probe H3DV6 SN: 6065 31-Dec-07 (No. H3-6065_-Dec07) Dec-08 DAE4 SN: 781 2-Oct-07 (No. DAE4-781_Oct07) Oct-08 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter EPM-4419B GB42420191 11-May-05 (in house check Oct-07) In house check: Oct-08 Power sensor HP 8482A US37295597 In house check: Oct-08 11-May-05 (in house check Oct-07) Power sensor HP 8482H 3318A09450 08-Jan-02 (in house check Oct-07) In house check: Oct-08 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 RF generator E4433B MY 41310391 22-Nov-04 (in house check Oct-07) In house check: Oct-09 Name Function Calibrated by: Claudio Leubier Laboratory Technician Fin Bomholt Technical Director Approved by: Issued: September 17, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD835V3-1012_Sep08


Report No.: R0809233-HAC-M

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

References

[1] ANSI-C63.19-2006

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other
 axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at
 a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole
 connector is set with a calibrated power meter connected and monitored with an auxiliary power meter
 connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to
 the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole
 positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are
 performed in a shielded room with absorbers around the setup to reduce the reflections.
 It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a
 line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and
 able to move elastically in vertical direction without changing its relative position to the top center of the Test
 Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface
 Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The
 proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom
 with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip
 of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the
 accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

Certificate No: CD835V3-1012_Sep08

Report No.: R0809233-HAC-M

Page 2 of 6

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B71
DASY PP Version	SEMCAD	V1.8 B184
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.455 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end-	100 mW forward power	169.7 V/m
Maximum measured above low end	100 mW forward power	161.0 V/m
Averaged maximum above arm	100 mW forward power	165.4 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	15.5 dB	(42.8 – j14.1) Ohm
835 MHz	34.2 dB	(50.2 + j1.9) Ohm
900 MHz	17.2 dB	(54.9 – j13.7) Ohm
950 MHz	18.6 dB	(43.0 + j8.4) Ohm
960 MHz	14.9 dB	(49.5 + j18.1) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD835V3-1012_Sep08

Page 3 of 6

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD835V3-1012_Sep08

Page 4 of 6

3.3.2 DASY4 H-field result

Date/Time: 16.09.2008 13:04:52

Test Laboratory: SPEAG Lab 2

H_CD835_1012_080916

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1012 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; ; Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

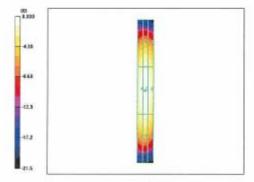
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.455 A/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.484 A/m; Power Drift = 0.006 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.389 M4	0.408 M4	0.381 M4
Grid 4	Grid 5	Grid 6
0.436 M4	0.455 M4	0.424 M4
Grid 7	Grid 8	Grid 9
0.388 M4	0.405 M4	0.371 M4

0 dB = 0.455A/m

Certificate No: CD835V3-1012_Sep08

Report No.: R0809233-HAC-M

Page 5 of 6

3.3.3 DASY4 E-field result

Date/Time: 17.09.2008 13:03:59

Test Laboratory: SPEAG Lab 2

E_CD835_1012_080917

DUT: HAC-Dipole 835 MHz; Type: D835V3; SerIal: 1012 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31,12,2007

Sensor-Surface: (Fix Surface)

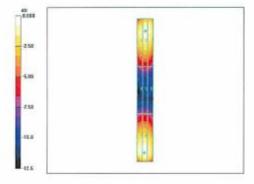
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 169.7 V/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 109.6 V/m; Power Drift = 0.011 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
155.2 M4	161.0 M4	158.2 M4
Grid 4	Grid 5	Grid 6
81.9 M4	83.9 M4	81.5 M4
Grid 7	Grid 8	Grid 9
164.6 M4	169.7 M4	159.1 M4

0 dB - 169.7V/m

Certificate No: CD835V3-1012_Sep08

Report No.: R0809233-HAC-M

Page 6 of 6

FCC ID: QHO-HOP1800 Hop-on Inc.

> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Certificate No: CD1880V3-1009_Sep08

BACL CALIBRATION CERTIFICATE CD1880V3 - SN: 1009 Object Calibration procedure(s) QA CAL-20.v4 Calibration procedure for dipoles in air Calibration date: September 17, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (\$1). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 04-Oct-07 (No. 217-00736) Oct-08 Power sensor HP 8481A US37292783 04-Oct-07 (No. 217-00736) Oct-08 Probe ER3DV6 SN: 2336 31-Dec-07 (No. ER3-2336 Dec07) Dec-08 Probe H3DV6 SN: 6065 31-Dec-07 (No. H3-6065_-Dec07) Dec-08 DAE4 SN: 781 2-Oct-07 (No. DAE4-781_Oct07) Oct-08 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter EPM-4419B GB42420191 11-May-05 (in house check Oct-07) In house check: Oct-08 Power sensor HP 8482A US37295597 11-May-05 (in house check Oct-07) In house check: Oct-08 3318409450 Power sensor HP 8482H 08-Jan-02 (in house check Oct-07) In house check: Oct-08 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-09 Name Function Calibrated by: Claudio Leubler Laboratory Technician Approved by: Fin Bomholt Technical Director Issued: September 17, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD1880V3-1009_Sep08

Report No.: R0809233-HAC-M

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

References

 ANSI-C63.19-2006
 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other
 axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to
 be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD1880V3-1009_Sep08

Report No.: R0809233-HAC-M

Page 2 of 6

1. Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY4 SEMCAD HAC Test Arch	V4.7 B71 V1.8 B184
	7.110-2.101
HAC Test Arch	00 1110 004 DA 114070
	SD HAC P01 BA, #1070
10 mm	
dx, dy = 5 mm	area = 20 x 90 mm
1880 MHz ± 1 MHz	
20.0 dBm = 100mW	
< 0.05 dB	
	10 mm dx, dy = 5 mm 1880 MHz ± 1 MHz 20.0 dBm = 100mW

2. Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.467 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	140.0 V/m
Maximum measured above low end	100 mW forward power	139.3 V/m
Averaged maximum above arm	100 mW forward power	139.7 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3. Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	25.3 dB	(48.1 + j5.0) Ohm
1880 MHz	22.8 dB	(49.8 + j7.2) Ohm
1900 MHz	24.4 dB	(52.7 + j5.6) Ohm
1950 MHz	28.9 dB	(53.3 – j1.6) Ohm
2000 MHz	22.6 dB	(43.1 + j1.0) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1009_Sep08

Report No.: R0809233-HAC-M

Page 3 of 6

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD1880V3-1009_Sep08

Page 4 of 6

DASY4 H-Field Result

Date/Time: 16.09.2008 14:30:31

Test Laboratory: SPEAG Lab 2

H_CD1880_1009_080916

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1009 Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

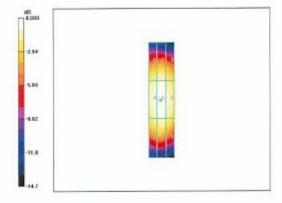
Phantom section: RF Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: H3DV6 SN6065; ; Calibrated: 31.12.2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 02,10,2007
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):


Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.467 A/m Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.495 A/m; Power Drift = -0.005 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.411 M2	0.426 M2	0.401 M2
Grid 4	Grid 5	Grid 6
0.450 M2	0.467 M2	0.439 M2
Grid 7	Grid 8	Grid 9
0.412 M2	0.430 M2	0.400 M2

0 dB = 0.467 A/m

Certificate No: CD1880V3-1009_Sep08

Page 5 of 6

3.3.2 DASY4 E-Field Result

Date/Time: 17.09.2008 11:26:17

Test Laboratory: SPEAG Lab 2

E_CD1880_1009_080917

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1009

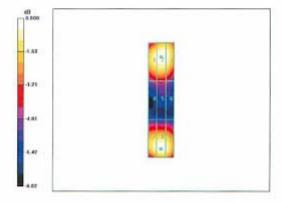
Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_i = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 02.10.2007
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 140.0 V/m Probe Modulation Factor = 1.00 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 155.2 V/m; Power Drift = -0.007 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

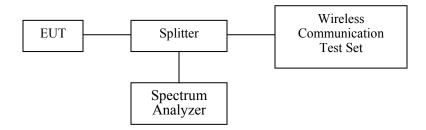
Grid 1	Grid 2	Grid 3
135.5 M2	140.0 M2	136.7 M2
Grid 4	Grid 5	Grid 6
87.5 M3	89.6 M3	86.3 M3
Grid 7	Grid 8	Grid 9
133.9 M2	139.3 M2	134.5 M2

0 dB = 140.0 V/m

Certificate No: CD1880V3-1009_Sep08

Report No.: R0809233-HAC-M

Page 6 of 6


APPENDIX D – OUTPUT POWER EASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

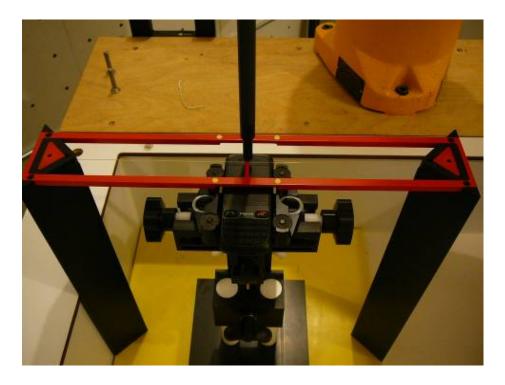
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Test Equipment

Manufacturer	Description	Model No.	Serial No.	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2008-05-19
Agilent	Wireless Communication Test Set	E5515C	GB44051221	2008-08-08

Test Results

Cellular Band (Part 22H)


Channel	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Limit (dBm)
Low	824.2	32.52	1786	38.45
Middle	836.6	32.46	1761	38.45
High	848.8	32.36	1721	38.45

PCS Band (Part 24E)

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Limit (dBm)
Low	1850.2	30.69	1172	33
Middle	1880.0	30.43	1104	33
High	1909.8	29.84	963	33

APPENDIX F – TEST SETUP PHOTOS

E-Field Setup View

H-Field Setup View

APPENDIX G-EUT PHOTO

EUT – Front View

EUT – Back View

EUT – Battery Compartment View

EUT – Battery View

EUT – Accessory Charger

APPENDIX H - REFERENCES

- [1] ANSI C63.19:2007. Americation National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids
- [2] CFR47, Part20.19, Federal Communications Commission (FCC), Hearing Aid-Compatible Mobile Handsets
- [3] FCC 08-68 A1, A2, A3, A4, A5, WT Docket 07-250, February 28, 2008.
- [4] FCC OET KDB 285076, Equipment Authorization Guidance for Hearing Aid Compability, September 25, 2008.

***** END OF REPORT *****

Report No.: R0809233-HAC-M Page 76 of 76 HAC (RF Emissions) Test Report