

Actions Mesures

Z.I. des Blanchisseries - 38500 VOIRON - France - Tél. +33 (0)4 76 65 76 50 - Fax +33 (0)4 76 66 18 30

EMC TEST REPORT

Nr 2686-FCC

This test report applies only on equipment described hereafter.

Proposal number: 200302-2252

Date.....: February 11th 12th & 31st, 2003

Location..... SMEE Actions Mesures Laboratory - 38 VOIRON

Performed by Jacques LORQUIN

Customer.....: TAGSYS S.A. (M. D'ANNUNZIO)

180, Chemin de Saint Lambert13821 La PENNE SUR HUVEAUNE

FRANCE

Product: Library Stack Antenna L-SA2 with L-L100

Type of test...... Radiated and Conducted Emission Test

Applied standards...... ANSI C63-4 (1992+2000)

47 CFR Part 15 Subpart C

Result of tests.....: Radiated Emission : Comply

Conducted Emission: Comply

The reproduction of this test report is authorized only under its entire form. This report contents 17 pages.

1. System test configuration

1.1. Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). The LSA1 is connected to L-L100, which was connected to a Personnel computer. It has been tested with a laptop Dell model latitude CPi PPL.

1.2. HARDWARE IDENTIFICATION:

• Equipment under test (EUT):

> 8 Book Library Stack Antenna L-SA2 sn:proto FCCID: QHKLSA2ANT

- Input/output: 1x I/O BNC connector

- Size : 330x400x10mm

Tested with:

L-L100 pn: SE10120B0 sn:M029010004

- Input/output:
 - * 1x serial connector (DB9)
 - * 1x parallel connector
 - * Ch1 BNC antenna connector
 - * Ch2 BNC antenna connector
 - * Syn IN/OUT BNC connector
 - * I/O ports (1,2,3,4, gnd, Vin, Vout, gnd)
 - * power supply
- Size : 250x300x75mm
- Frequencies: crystal 32.768kHz and 14.7456MHz

oscillator 27.12MHz; (no clock or signal higher than 108Mhz)

- output power : Ch1: 1W; Ch2: not used.

1.3. Auxiliaries

The FCC IDs for all equipment, more description of all cables used in the tested system are :

Trade Mark - Model Number (Serial number)	FCC ID	Description	Cable description
FOLIO 20 D6 (sn: none)	None	Smart label	
DELL latitude CPi model PPL (sn:0006692D-12800-031-2130)	Doc of Conf	laptop	All data cables are shielded
Dell model PA-6 pn:9364U	Doc of Conf	adapter	Power cable unshielded.

1.4. Equipment modifications

No equipment modification has been necessary during testing to achieve compliance to FCC part 15 Subpart C requirements. The unit tested was representative to a production unit.

Nr 2686-FCC February 11th 12th & 31st , 2003 page 2 /17

1.5. EUT Exercise software

The EUT exercise program (Tagsyslibrary_test.exe, running under Windows 95) used during radiated and conducted testing was designed to exercise the L-SA2 in a manner similar to a typical use:

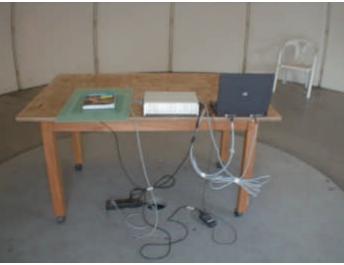
- Carrier on,
- Reading the tag's number,
- Display the number of the tag on the monitor.
- Write ES bit onto tag

Parameter: normal skipping 770ms

1.6. Special accessories

The serial and parallel interfaces cables used for compliance testing is shielded as normally supplied. All these cables are normally recommended to be used with the product.

1.7. I/O cables


- 2x Standard power cord Length:1.8m (PC and L-L100)
- 1x video cable with 2 integrated ferrite (shielded cable, length: 1.8m)
- 1x Parallel cable #174-8747 (shielded cable, length: 2m)
- 1x serial cable #174-8545 (Shielded cable, length:4.5m)
- 1x Coaxial cable with 6 ferrites (length: 3m) provided with L-SA2

2. Radiated emission data

2.1. SET-UP

The EUT is placed on a non-conducting table of 80cm height. A smart label is set on the library stack antenna L-SA2.

Nr 2686-FCC February 11th 12th & 31st , 2003 page 3 /17

Equipment configuration and running mode:

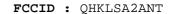
- The L-L100 is plug on serial and parallel connectors;
- The L-L100 is powered by 230V/50Hz;
- Power output of L-L100: Ch1=1W;
- The Antenna (L-SA2) is connected to the Ch1 of the L-L100;
- PC and EUT are ON;
- software is running;

The installation of EUT is identical for pre-characterization measurement in a 3 meters full anechoic chamber and for measures on a 10 meters Open site.

2.2. TEST EQUIPMENT

Test Equipment up to 1GHz on 10 meters open site:

Equipment	Company	Model	Serial	Calibration Due
Spectrum Analyzer	HP	8568B	2732A04140	March 22 nd ,2003
Quasi-Peak adapter	HP	85650A	2811A01136	March 22 nd ,2003
RF Pre-selector	HP	85685A	2833A00773	March 22 nd ,2003
Biconical Antenna	EMCO	3104C	9401-4636	April 4 th ,2003
Log Periodic	EMCO	3146	2178	April 4 th ,2003
Antenna				
Spectrum Analyzer	HP	8593E	3409u00537	June 29 th ,2003
Loop antenna	Electro- metrics	EM-6879	690234	February 10 th ,2004
Amplifier	HP	8447F H64	3113A06394	March 28 th ,2003
OATS				April 9 th ,2003

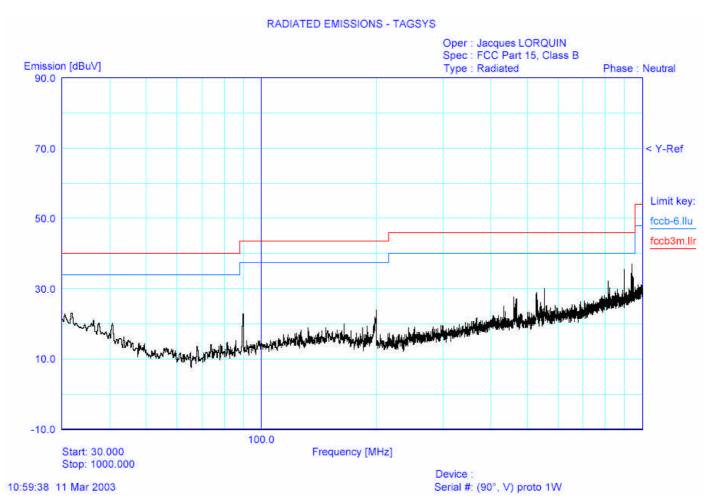

EMCO-1050, 6 meters height antenna mast & EMCO-1060, 3 meters diameter Turntable.

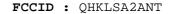
A 10 meters Open site located in SMEE Actions Mesures - Voiron (FRANCE).

Pre-scan, test Equipment up to 1GHz:

Equipment	Company	Model	Serial	Calibration Due
EMC Analyzer	HP	8591EM	3536A00384	March 29 th ,2003
Amplifier	HP	8447F H64	3113A06394	March 28 th ,2003
Antenna (30MHz-1GHz)	CHASE	CBL6111A	1628	March 29 th ,2003
Loop antenna	Electro-metrics	EM-6879	690234	February 10 th ,2004

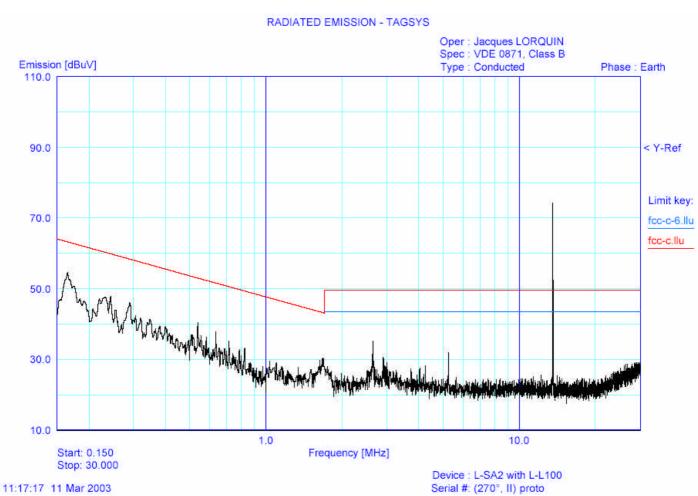
Nr 2686-FCC February 11th 12th & 31st , 2003 page 4 /17





2.3. TEST SEQUENCE AND RESULTS

2.3.1.Pre-characterization at 3 meters


A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization, and on 4 faces of the EUT. See below for a graph example:

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) axis and the loop antenna position was rotated during the test for maximized the emission measurement. See below for a graph example:

Result below 30 MHz

2.3.2. Characterization on 10 meters open site from 30MHz to 1GHz

The product has been tested according to ANSI C63.4-(1992), FCC part 15 subpart C. Radiated Emission were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested with 230V / 50Hz power line voltage, at a distance of 10 meters from the antenna and compared to the FCC part 15 subpart C §15.209 limits. Measurement bandwidth was 120kHz from 30 MHz to 1GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on clause 2.1.

No	Frequency (MHz)	QPeak Lmt (dBμV/m)	QPeak (dBμV/m)	QPeak-Lmt (dB)	Angle (deg)	Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	40.665	40.0	38.9	-1.1	16	V	113	11.6	*
2	131.070	43.5	33.4	-10.1	309	V	298	14.9	*
3	466.903	46.0	35.9	-10.1	11	Н	158	21.1	*
4	528.055	46.0	44.4	-1.6	22	Н	166	22.5	*
5	576.039	46.0	39.7	-6.3	19	Н	187	23.2	*
6	813.611	46.0	40.8	-5.2	211	V	207	26.8	*

^{*:} The results are extrapolated with §15.31 requirement.

2.3.3.Characterization on 10 meters open site below 30 MHz

The product has been tested with 230V / 50Hz power line voltage, at a distance of 10 meters from the antenna and compared to the FCC part 15 subpart C $\S15.209\&\S15.225$ limits. Measurement bandwidth was 9kHz from 150kHz to 30 MHz and 100 Hz from 9 kHz to 150 kHz.

The loop antenna position was rotated to locate the orientation that maximized emission reception during testing. Antenna search was performed for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on clause 2.1.

Frequency (MHz)	QPeak Lmt (dBμV/m)	QPeak (dBμV/m)	QPeak-Lmt (dB)	Angle EUT (deg)	Pol	Angle Ant. (deg)	Tot Corr (dB)
13.56* ¹	80	57.4	-22.6	180	vertical	90	35.4
27.12			No	ot trace	able signa	1	

 $^{*^1}$: Fundamental - 15.225 limits. Measure have been done at 10m distance and corrected following requirements of 15.209.e)

Nr 2686-FCC February 11th 12th & 31st , 2003 page 7 /17

2.4. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Factor

AG = Amplifier Gain

Assume a receiver reading of $52.5 dB\mu V$ is obtained. The antenna factor of 7.4 and a cable factor of 1.1 is added. The amplifier gain of 29dB is subtracted, giving a field strength of $32~dB\mu V/m$.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

The 32 dBµV/m value can be mathematically converted to its corresponding level in $\mu V/m.$

Level in $\mu V/m$ = Common Antilogarithm [(32dB $\mu V/m$)/20] = 39.8 $\mu V/m$.

3. Conducted emission data

The product has been tested according to ANSI C63.4-(1992) and FCC Part 15 subpart C.

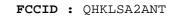
The product has been tested with 110V/60Hz power line voltage and compared to the FCC Part 15 subpart C §15.207 limits. Measurement bandwidth was 9kHz from 150 kHz to 30 MHz.

Measurement was initially made with an HP-8591EM Spectrum Analyzer in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement with the Rohde & Schwarz ESH3 receiver for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary.

The Peak data are shown on the following plots. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

3.1. SET-UP

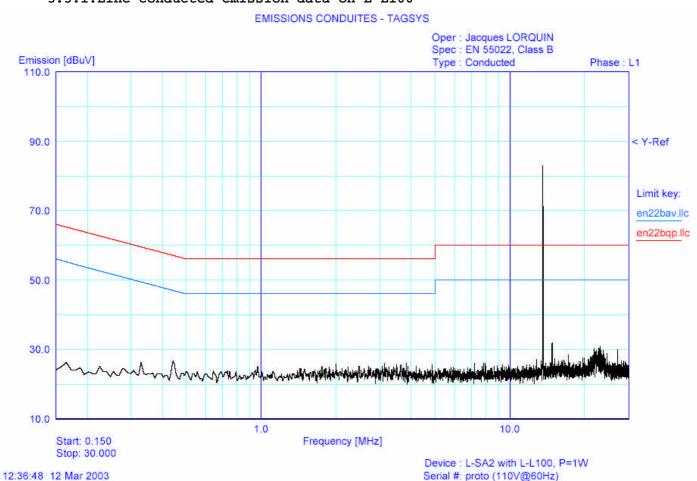

The EUT is placed on a non-conducting table of 80cm height. The cable of the power supply has been shorted to 1meter length. The MEDIO L100 is powered trough the LISN.

Equipment configuration and running mode:

- The L-L100 is plug on serial and parallel connectors;
- The L-L100 is powered by 110V/60Hz;
- The Antenna is connected to the Ch1 of the L-L100;
- Power output: 1W
- PC and EUT are ON;

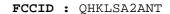
- software is running;

3.2. TEST EQUIPMENT

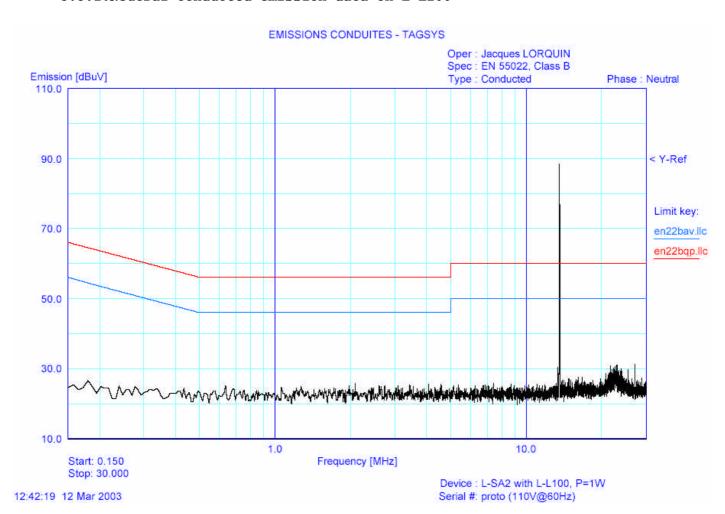

	Model	Serial	Calibration Due
HP	8591EM	3536A00384	March 29 th ,2003
Rohde&Schwar	ESH3	872079/117	March 21 st ,2003
Z			
HP	11947A	3107A01596	March 28 th ,2003
EMCO	3810/2SH	9511-11821628	December 12 th ,2003
Telemeter	TGmbH NNB	9511-11821628	September 13 th
Electronis	2/16		,2003
Rayproof		4854	none
	Rohde&Schwar z HP EMCO Telemeter Electronis	Rohde&Schwar ESH3 z HP 11947A EMCO 3810/2SH Telemeter TGmbH NNB Electronis 2/16	Rohde&Schwar ESH3 872079/117 z 872079/117 HP 11947A 3107A01596 EMCO 3810/2SH 9511-11821628 Telemeter TGmbH NNB 9511-11821628 Electronis 2/16

3.3. TEST SEQUENCE AND RESULTS

Measures are performed on line 1 and line 2 of the power supply of the L-L100,

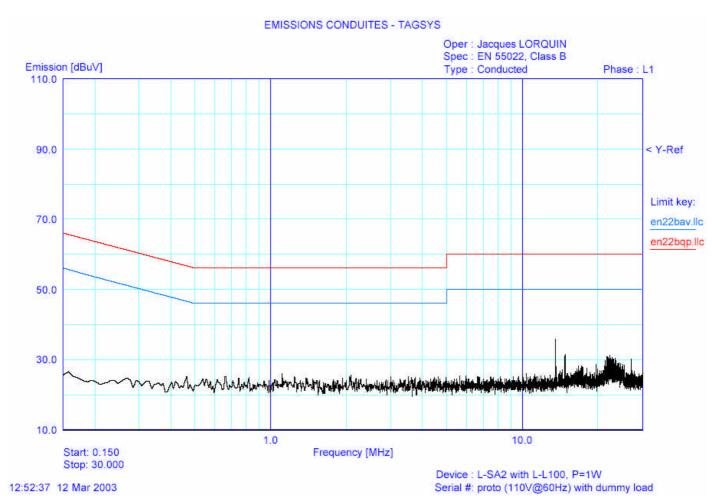

3.3.1.Line conducted emission data on L-L100

Mum	Freq.	Peak	Q-Peak	QP limit	QP delta	Average	AVG Limit	AVG Delta	Comment.
Num	[MHz]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	
1	13.56	83.27	-	-		-	-		Carrier*
2	14.76	31.92	28.19	60.0	-31.81	25.79	50.0	-24.21	

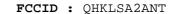

^{*:} Carrier - \$15.207(b): Limits shall not apply to carrier current systems operating as intentional radiators on frequencies below 30MHz.

Nr 2686-FCC February 11th 12th & 31st , 2003 page 11 /17

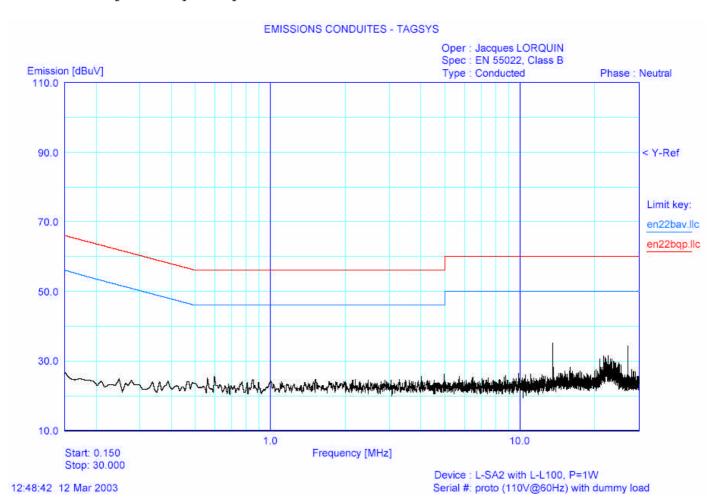
3.3.2. Neutral conducted emission data on L-L100


Freq.	Peak	Q-Peak	QP limit	QP delta	Average	AVG Limit	AVG Delta	Comment.
[MHz]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	
13.56	89.0	-			-			Carrier*
21.71	28.62	22.05	60.0	-37.95	14.88	50.0	-35.12	
27.04	31.97	29.30	60.0	-30.7	27.21	50.0	-22.79	
27.12	31.39	28.78	60.0	-31.22	26.54	50.0	-23.46	
	[MHz] 13.56 21.71 27.04	[MHz] [dBµV] 13.56 89.0 21.71 28.62 27.04 31.97	[MHz] [dBμV] [dBμV] 13.56 89.0 - 21.71 28.62 22.05 27.04 31.97 29.30	[MHz] [dBμV] [dBμV] [dBμV] 13.56 89.0 - 21.71 28.62 22.05 60.0 27.04 31.97 29.30 60.0	[MHz] [dBμV] [dBμV] [dBμV] [dBμV] 13.56 89.0 - 21.71 28.62 22.05 60.0 -37.95 27.04 31.97 29.30 60.0 -30.7	[MHz] [dBμV] [dBμV] [dBμV] [dBμV] [dBμV] 13.56 89.0 - - - 21.71 28.62 22.05 60.0 -37.95 14.88 27.04 31.97 29.30 60.0 -30.7 27.21	[MHz] [dBμV] [dBμV]<	[MHz] [dBμV] [dBμV]<

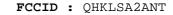
^{*:} Carrier - \$15.207(b): Limits shall not apply to carrier current systems operating as intentional radiators on frequencies below 30MHz.


3.3.3.Line conducted emission data on L-L100 with dummy load

Antenna is replaced by dummy loads.


Mum	Freq.	Peak	Q-Peak	QP limit	QP delta	Average	AVG Limit	AVG Delta	Comment.
Num.	[MHz]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	
1	13.56	83.27	36.68	60.0		34.59	50.0		Carrier*
2	14.76	30.80	28.05	60.0	-31.95	25.68	50.0	-24.32	

^{*:} Carrier - \$15.207(b): Limits shall not apply to carrier current systems operating as intentional radiators on frequencies below 30MHz.



3.3.4. Neutral conducted emission data on L-L100 with dummy load Antenna is replaced by dummy loads.

NT	Freq.	Peak	Q-Peak	QP limit	QP delta	Average	AVG Limit	AVG Delta	Comment.
Num.	[MHz]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	[dBµV]	
1	13.56	36.13	34.64	60.0		33.79	50.0		Carrier*
2	27.12	35.59	33.38	60.0	-26.62	32.28	50.0	-17.72	

^{*:} Carrier - §15.207(b): Limits shall not apply to carrier current systems operating as intentional radiators on frequencies below 30MHz.

Field strength of fundamental §15.225(a)

The polarization of the measurements for the larger power level is vertical (the test is perform for both vertical and horizontal axis, and the loop antenna position was rotated during the test for maximized the emission measurement.) Measure have been done at 10m distance and corrected following requirements of 15.209.e)

Frequency	QPeak Lmt	QPeak	QPeak-Lmt	Angle	Pol	Angle Ant.	Tot
(MHz)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	EUT		(deg)	Corr
				(deg)			(dB)
13.56	80	57.4	-22.6	180	vertical	90	35.4

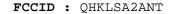
No significantly variation of the fundamental amplitude during voltage variation testing per 15.31(e). Maximum deviation under extreme test condition (voltage variation from 85% to 115%): 0.2dBc

Limits Subclause §15.225(a)

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
13.56	10 000 80dBµV/m	30

5. Fundamental frequency tolerance (15.225.c)

The frequency tolerance of the carrier signal shall be maintained within ± -0.01 % of the operating frequency.


5.1. Voltage fluctuation

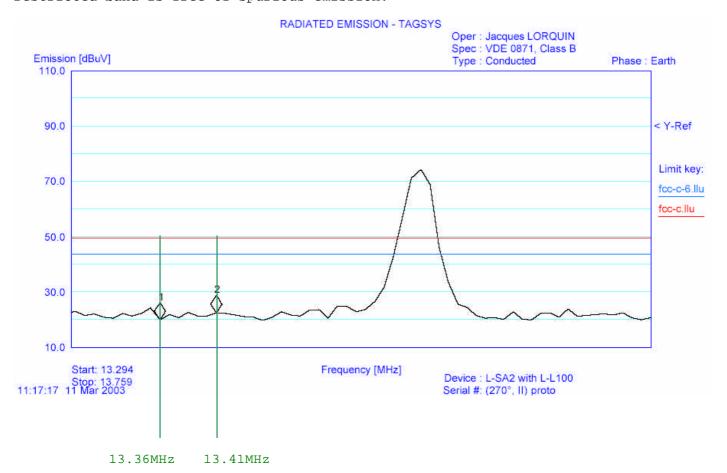
Power supply has been set at 85% and 115% of nominal voltage, at 20°C.

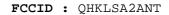
Nominal voltage: 110-230V/60Hz Frequency of carrier: 13.56 MHz

Upper limit: 13.561356 MHz Lower limit: 13.558644 MHz

Voltage	85V	230V	276V
Frequency (MHz)	13.560000	13.559960	13.560025
Result	Pass	_	Pass

5.2. temperature

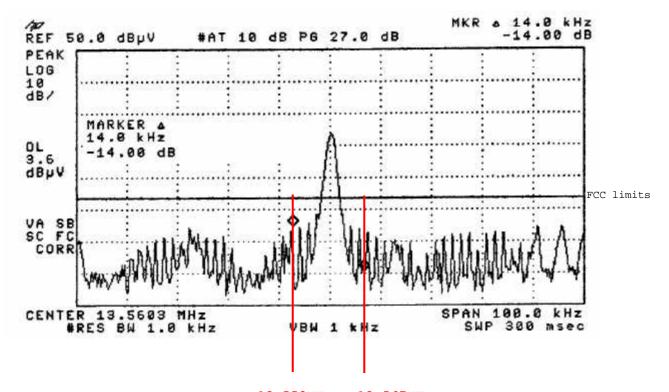

Temperature has been set at $-20\,^{\circ}\text{C}$ and $+50\,^{\circ}\text{C}$ at nominal voltage $230\,\text{V}/50\,\text{Hz}$.


Frequency of carrier: 13.56 MHz Upper limit: 13.561356 MHz Lower limit: 13.558644 MHz

Voltage	-20°C	20°C	+50°C
Frequency (MHz)	13.559925	13.559960	13.560015
Result	Pass	-	Pass

6. Occupied bandwidth

Here is a plot of the occupied bandwidth, which show that , 13.36 MHz - 13.41 MHzrestricted band is free of spurious emission.



7. Band-edge compliance §15.209

Write time : 770ms

13.553MHz - 13.567MHz

End of Tests