FCC-ID	QHC-I210G24	
IC-ID (Industry Canada)	4393B-I210G24	CETECON

MPE Prediction

Calculations can be made to predict RF field strength and power density levels around typical RF sources using the general equations (3) and (4) on page 19 of the following FCC document: "OET Bulletin 65, Edition 97-01 - Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields".

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure:

Frequency Range (MHz)	Power density (mW/cm ²)	Averaging time (minutes)
300 – 1500	f (MHz) /1500	30
1500 – 100.000	1.0	30

Based on the above table the limits are:

For 850 MHz frequency band device: 0.57 mW/cm² For 1900 MHz frequency band device: 1 mW/cm²

Using the equation from page 19 of OET Bulletin 65, Edition 97-01:

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Note:

This device is to be used only for fixed and mobile applications.

The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all the persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

§ 2.1091:

The limit for 850 MHz mobile operations where no routine evaluation is required is: 1.5W ERP The limit for 1700 / 1900 MHz mobile operations where no routine evaluation is required is: 3W EIRP

Max permissive power according to §24.232 : 2W EIRP Max permissive power according to §\$22.913 (a): 7W ERP

FCC-ID	QHC-I210G24
IC-ID (Industry Canada)	4393B-I210G24

For the unit tested by Cetecom Inc., the power density at a distance of 20cm can be deducted as follows-

```
Operation in cellular band (824-849 MHz)
```

```
EIRP= 32.5+2.14= 34.64 dBm= 2910.7 mW
Power density= EIRP*DutyCycle/(4\pi R^2)
= 2910.7*0.5/(4*\pi*20^2)
= 0.29 mW/cm<sup>2</sup>
```

where duty cycle is 0.5 (worst case) and R is 20cm.

The power density limit for 850 band operation is 0.55 mW/cm². Hence the device is compliant with the rules on RF exposure.

Operation in PCS band (1850-1910 MHz)

```
EIRP= 30.00 dBm= 1000 mW
Power density= EIRP*DutyCycle/(4\pi R^2)
= 1000*0.5/(4*\pi*20^2)
= 0.10 mW/cm<sup>2</sup>
```

where duty cycle is 0.5 (worst case) and R is 20cm.

The power density limit for 1900 band operation is 1 mW/cm². Hence the device is compliant with the rules on RF exposure.

Operation in Zigbee mode (2.4GHz)

```
EIRP= 19.53 dBm= 89.74 mW
Power density= EIRP/(4\pi R^2)
= 89.74/(4*\pi*20^2)
= 0.018 mW/cm<sup>2</sup>
```

R is 20cm.

The power density limit for 2.4Ghz band operation is $1~\text{mW/cm}^2$. Hence the device is compliant with the rules on RF exposure.

FCC-ID	QHC-I210G24
IC-ID (Industry Canada)	4393B-I210G24

Duty

Equivalent conducted output

power (Maximum conducted

6.90

dBi

Compliance with MPE limits can be guaranteed as the calculation below shows:

Maximum

conducted output

850 MHz frequency band

Mode

 $G_{850\,MHz\,band}$

Maximum output power considerations:

Maximum

conducted output

Min (G_1, G_2, G_3)

	power (dBm)	power (mW)	cycle	output power x duty cycle) (mW)
GSM	33.03	2009.0	25%	502.27	
P R S	Distance:	input to the antenna:	:	502.27 20 0,57	mW cm mW/cm ²
G_1	Antenna gain (dE	Bi) to comply with M	PE limits:	7.47	dBi
ERP power G_2		Bi) to comply with EF		1,5 6.90	W ERP
ERP power	r limit according to §2	nt conducted output 2.913:	power x P	7 (Antenna gam / 1,04)	W ERP
G_3		Bi) to comply with EF on conducted output p		7.57 ntenna gain / 1,64)	dBi

Therefore the maximum antenna gain for mobile operation to comply with MPE and ERP limits shall not exceed **6.90 dBi**.

FCC-ID	QHC-I210G24
IC-ID (Industry Canada)	4393B-I210G24

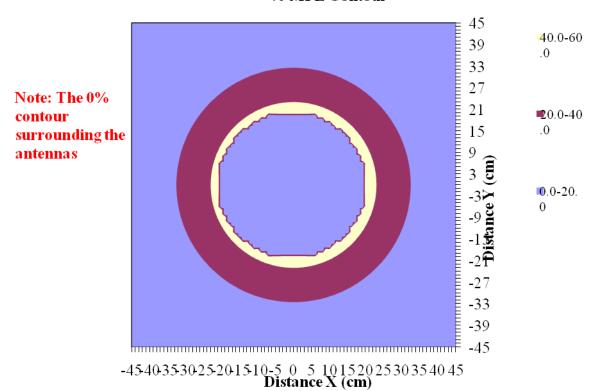
1900 MHz frequency band

Maximum output power considerations:

Mode	Maximum conducted output power (dBm)	Maximum conducted output power (mW)	Duty cycle	Equivalent conducted output power (Maximum conducted output power x duty cycle) (mW)
GSM	30.17	1039.9	25%	259.98

P	Maximum power input to the antenna:	259.98	mW
R	Distance:	20	cm
S	MPE limit for uncontrolled exposure:	1	mW/cm^2
G_1	Antenna gain (dBi) to comply with MPE limits:	12.85	dBi
EIRP power li	mit according to §2.1091:	3	W EIRP
G_2	Antenna gain (dBi) to comply with ERP limits: (EIRP = Equivalent conducted output power x Antenna gain)	12.77	dBi
EIRP power li	mit according to §24.232:	2	W EIRP
G_3	Antenna gain (dBi) to comply with EIRP limits: (EIRP = Maximum conducted output power x Antenna gain)	2.83	dBi
$G_{1900\mathrm{MHzband}}$	$Min (G_1, G_2, G_3)$	2.83	dBi

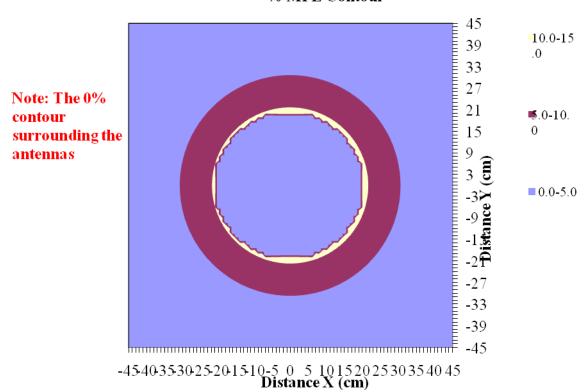
Therefore the maximum antenna gain for mobile operation to comply with MPE and ERP limits shall not exceed **2.83 dBi**.


FCC-ID	QHC-I210G24
IC-ID (Industry Canada)	4393B-I210G24

Prediction for Simultaneous Transmission

The MPE limit was made using a separation distance of 1 cm to represent the worse case. Output power listed below is for 50% duty cycle in GSM mode.

Antenna No.		Total	1	2
Tx Status			On	On
Frequency	MHz		2440	848.8
MPE Limit	mW/cm ²		1.00	0.57
Max % MPE	%	52.9	1.8	51.2
Power	(W)	1.545	0.090	1.455
Antenna Gain	dBi		0.00	0.00
EIRP	(W)	1.55	0.090	1.455
X	(cm)		-1.0	0.0
Υ	(cm)		0.0	0.0
Sector			FALSE	FALSE
Arc			FALSE	FALSE
θ_1		innut	-120	-120
θ_2	degs	input	60	60
θ_1		ootuol	-120	-120
θ_2		actual	60	60


% MPE Contour

FCC-ID	QHC-I210G24
IC-ID (Industry Canada)	4393B-I210G24

	1	1	1	
Antenna No.		Total	1	2
Tx Status			On	On
Frequency	MHz		2440	1850.2
MPE Limit	mW/cm ²		1.00	1.00
Max % MPE	%	11.7	1.8	9.9
Power	(W)	0.590	0.090	0.500
Antenna Gain	dBi		0.00	0.00
EIRP	(W)	0.59	0.090	0.500
X	(cm)		-1.0	0.0
Υ	(cm)		0.0	0.0
Sector			FALSE	FALSE
Arc			FALSE	FALSE
θ_1		innut	-120	-120
θ_2	degs	input	60	60
θ_1		actual	-120	-120
θ_2		actual	60	60

% MPE Contour

