

FCC/IC Test Report

FOR

Manufacturer: Itron Inc.

Model: I210 3G

Product Description: Smart Meter

FCC ID: QHC-010102A IC ID: 4393B-010102A

47 CFR Part 15.247 for DTS Systems IC RSS-210 Issue 8

TEST REPORT #: EMC_ITRO1-0078-12001_DTS DATE: 2013-04-25

FCC Accredited

IC recognized # 3462B-1

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

EMC_ITRO1-008-12001_DTS

Test Report #: FCC ID: QHC-010102A Date of Report : 2013-04-25 IC ID: 4393B-010102A

TABLE OF CONTENTS

1	Asse	essment	4
2	Adn	ninistrative Data	5
	2.1	Identification of the Testing Laboratory Issuing the Test Report	
	2.2	Identification of the Client.	
	2.3	Identification of the Manufacturer.	
	2.4	Environmental conditions during Test:	5
	2.5	Dates of Testing:	
3	Equ	ipment under Test (EUT)	6
	3.1	Specification of the Equipment under Test	
	3.2	Identification of the Equipment under Test (EUT)	
4	Sub	ject of Investigation	7
5		mary of Measurement Results	
6		surements	
Ŭ	6.1	Measurement Method:	
	6.2	Radiated Measurement Procedure	
	6.3	Sample Calculations for Radiated Measurements	
	6.4	Conducted Measurement Procedure	
	6.5	Maximum Peak Conducted Output Power	
	6.5.1	*	
	6.5.2	Test Conditions:	13
	6.5.3	Test Procedure:	13
	6.5.4	Test Result:	14
	6.5.5	Test Data/plots:	15
	6.6	Emission/ Occupied Bandwidth	19
	6.6.1	Limits:	19
	6.6.2	Test Conditions:	19
	6.6.3	Test Procedure:	19
	6.6.4	Test Result:	19
	6.6.5	Test Data/plots:	20
	6.7	Maximum Power Spectral Density Level in the Fundamental Emission	24
	6.7.1		
	6.7.2	1	
	6.7.3		
	6.7.4		
	6.7.5	1	
	6.8	Unwanted Emissions into Non-Restricted Frequency Bands- Conducted	
	6.8.1	σ	
	6.8.2		
	6.8.3		
	6.8.4	1	
	6.9	Unwanted Emissions into Restricted Frequency Bands- Radiated	
	6.9.1		
	6.9.2		
	6.9.3		
	6.9.4	1	
	6.10	Transmitter Spurious Emissions- Radiated	35

	6.10.1 Limits:		35
	6.10.2 Test Result:		35
	6.10.3 Test data/plot	ots:	36
7	AC Power Line Cond	ducted Emissions	44
	7.1.1 References:		44
	7.1.2 Limits:		44
	7.1.3 Test Conditions:		44
8	Test Equipment and A	Ancillaries used for tests	46
9	Block Diagrams		47
10	_		

Test Report #:

EMC_ITRO1-008-12001_DTS

Date of Report: 2013-04-25

FCC ID: QHC-010102A IC ID: 4393B-010102A

1 Assessment

The following device was tested against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and Industry Canada Standards RSS 210 Issue 8

No deviations were ascertained during the course of the tests performed.

Company	Description	Model
Itron Inc.	Smart Meter	I210 3G

Responsible for Testing Laboratory:

Sajay Jose

2013-04-25	Compliance	(Test Lab Manager)	
Date	Section	Name	Signature

Responsible for the Report:

Daniel	Sal	linas
Danici	Sa	mas

2013-04-25	Compliance	(EMC Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A

Date of Report: 2013-04-25 IC ID: 4393B-010102A

Administrative Data 2

Identification of the Testing Laboratory Issuing the Test Report 2.1

Company Name:	CETECOM Inc.
Department:	Compliance
Address:	411 Dixon Landing Road
	Milpitas, CA 95035
	U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Test Lab Manager:	Sajay Jose
Responsible Project Leader:	Daniel Salinas

2.2 **Identification of the Client**

Applicant's Name:	Itron Inc.
Street Address:	440 Old Canton Road Suite 300
City/Zip Code	Jackson MS 39211
Country	USA
Contact Person:	Mike Mathis
Phone No.	+1 (601) 362 1780 x1018
e-mail:	Mike.mathis@itron.com

2.3 **Identification of the Manufacturer**

Same as client

2.4 **Environmental conditions during Test:**

The following environmental conditions were maintained during the course of testing:

Ambient Temperature: 20-25°C Relative humidity: 40-60%

2.5 **Dates of Testing:**

Nov 29, 2012 – Apr 2, 2013

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Model:	I210 3G
FCC-ID:	QHC-010102A
IC-ID:	4393B-010102A
Product Description:	Smart Meter
Frequency Range and mode of test:	IEEE 802.15.4: 2405-2475MHz
No. of channels:	15
Type(s) of Modulation:	O-QPSK
Antenna Info:	Embedded Antenna Manufacturer stated Antenna Fain: +6 dBi
Max. Output Powers:	Conducted: 11.50 dBm (0.014 W) Radiated: 17.50 dBm (0.056 W)
Other Integrated Radios in the device:	GSM: 850/900/1800/1900 UMTS: Bands I/II/V
Rated Power Supply:	90VAC / 240VAC / 260 VAC
Rated Operating Temperature Range:	-40 °C / 25 °C / 85 °C
Test Sample Status:	Production

3.2 <u>Identification of the Equipment under Test (EUT)</u>

EUT#	Serial Number	HW Version	SW Version	Notes/Comments
1	43915685	55M- 000600050	660-040404-P01	Radiated Sample
2	55376128	55M- 000600050	660-040404-P01	Conducted Sample

4 Subject of Investigation

The objective of the measurements applied by CETECOM Inc. was to establish compliance of the EUT as described under Ch. 3 of this Test Report, with the applicable criteria specified in

FCC CFR47 Parts 15.247, 15.207, 15.209

> IC RSS-210 Issue 8

This test report is to support a request for new equipment authorization under the

FCC ID: QHC-010102A and IC ID: 4393B-010102A

Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A

Date of Report: 2013-04-25 IC ID: 4393B-010102A

5 **Summary of Measurement Results**

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
§15.247(e) RSS210 A8.2(b)	Power Spectral Density	Nominal	IEEE 802.15.4	•				Complies
§15.247(a)(1) RSS210 A8.1(b)	Carrier Frequency Separation	Nominal	-			•		See Note 1
§15.247(a)(1) RSS210 A8.1(d)	Number of Hopping Channels	Nominal	-			•		See Note 1
\$15.247(a)(1)(iii) RSS210 A8.3(1)	Time of occupancy	Nominal	-					See Note 1
§15.247(a)(1) RSS210 A8.2(a)	Spectrum Bandwidth	Nominal	IEEE 802.15.4					Complies
§15.247(b)(1) RSS210 A8.4(2)	Maximum Peak Conducted Output Power	Nominal	IEEE 802.15.4	•				Complies
\$15.247(d) RSS210 A8.5	Band edge compliance- Conducted	Nominal	IEEE 802.15.4					Complies
§15.247(d) RSS210 A8.5	Band edge compliance- Radiated	Nominal	IEEE 802.15.4	•				Complies
\$15.247(d) RSS210 A8.5	TX Spurious emissions- Conducted	Nominal	IEEE 802.15.4					Complies
\$15.247(d) RSS210 A8.5	TX Spurious emissions- Radiated	Nominal	IEEE 802.15.4	•				Complies
§15.209(a) RSS Gen	TX Spurious Emissions Radiated<30MHz	Nominal	IEEE 802.15.4					Complies
§15.207(a) RSS Gen	AC Line Conducted Emissions<30MHz	Nominal	IEEE 802.15.4					Complies

Note: NA= Not Applicable; NP= Not Performed.

- Test only applicable to frequency hopping systems.
 Band Edge compliance-conducted is NOT PERFORMED as the device passes radiated measurement.

6 Measurements

6.1 Measurement Method:

All radiated and conducted testing is performed according to guidelines in FCC publication KDB558074 D01: Measurement Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247, Apr 2013.

6.2 Radiated Measurement Procedure

ANSI C63.4 (2009) Section 8.3.1.1: Exploratory radiated emission measurements

Exploratory radiated measurements shall be performed at the measurement distance or at a closer distance than that specified for compliance to determine the emission characteristics of the EUT. At near distances, for EUTs of comparably small size, it is relatively easy to determine the spectrum signature of the EUT and, if applicable, the EUT configuration that produces the maximum level of emissions. A shielded room may be used for exploratory testing, but may have anomalies that can lead to significant errors in amplitude measurements.

Broadband antennas and a spectrum analyzer or a radio-noise meter with a panoramic display are often useful in this type of testing. It is recommended that either a headset or loudspeaker be connected as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT when the exploratory and final testing is performed in an OATS with strong ambient signals. Caution should be taken if either antenna height between 1 and 4 meters or EUT azimuth is not fully explored. Not fully exploring these parameters during exploratory testing may require complete testing at the OATS or semi-anechoic chamber when the final full spectrum testing is conducted.

The EUT should be set up in its typical configuration and arrangement, and operated in its various modes. For tabletop systems, cables or wires should be manipulated within the range of likely arrangements. For floor-standing equipment, the cables or wires should be located in the same manner as the user would install them and no further manipulation is made. For combination EUTs, the tabletop and floor-standing portions of the EUT shall follow the procedures for their respective setups and cable manipulation. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions.

For each mode of operation required to be tested, the frequency spectrum shall be monitored. Variations in antenna height between 1 and 4 m, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) shall be explored to produce the emission that has the highest amplitude relative to the limit. A step-by-step technique for determining this emission can be found in Annex C.

When measuring emissions above 1 GHz, the frequencies of maximum emission shall be determined by manually positioning the antenna close to the EUT and by moving the antenna over all sides of the EUT while observing a spectral display. It will be advantageous to have prior knowledge of the frequencies of emissions above 1 GHz. If the EUT is a device with dimensions approximately equal to that of the measurement antenna beamwidth, the measurement antenna shall be aligned with the EUT.

ANSI C63.4 (2009) Section 8.3.1.2: Final radiated emission measurements

Based on the measurement results in 8.3.1.1, the one EUT, cable and wire arrangement, and mode of operation that produces the emission that has the highest amplitude relative to the limit is selected for the final measurement. The final measurement is then performed on a site meeting the requirements of 5.3, 5.4, or 5.5 as appropriate without variation of the EUT arrangement or EUT mode of operation. If the EUT is relocated from an exploratory test site to a final test site, the highest emission shall be remaximized at the final test location before final radiated emissions measurements are performed. However, antenna height and polarity and EUT azimuth are to be varied. In addition, the full frequency spectrum (for the range to be checked for meeting compliance) shall be investigated.

This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. During the full frequency spectrum investigation, particular focus should be made on those frequencies found in exploratory testing that were used to find the final test configuration, mode of operation, and arrangement (associated with achieving the least margin with respect to the limit). This full spectrum test constitutes the compliance measurement.

For measurements above 1 GHz, use the cable, EUT arrangement, and mode of operation determined in the exploratory testing to produce the emission that has the highest amplitude relative to the limit. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the antenna in the "cone of radiation" from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response. The antenna may have to be higher or lower than the EUT, depending on the EUT's size and mounting height, but the antenna should be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. If the transmission line for the measurement antenna restricts its range of height and polarization, the steps needed to ensure the correct measurement of the maximum emissions, shall be described in detail in the report of measurements. Data collected shall satisfy the report requirements of Clause 10.

NOTES

- 1— Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 2—Use of waveguide and flexible waveguide may be necessary at frequencies above 10 GHz to achieve usable signal-to noise ratios at required measurement distances. If so, it may be necessary to restrict the height search of the antenna, and special care should be taken to ensure that maximum emissions are correctly measured.
- 3—All presently known devices causing emissions above 10 GHz are physically small compared with the beam-widths of typical horn antennas used for EMC measurements. For such EUTs and frequencies, it may be preferable to vary the height and polarization of the EUT instead of the receiving antenna to maximize the measured emissions.

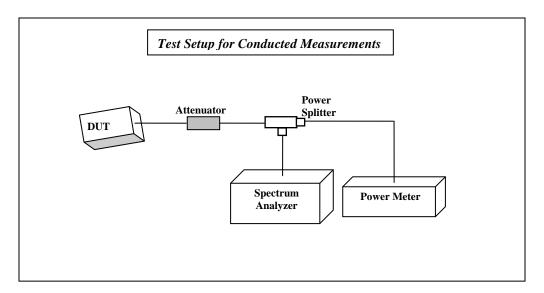
Measurement Uncertainty: ±3dB

Sample Calculations for Radiated Measurements

6.3.1.1 Field Strength Measurements:

Measurements from the Spectrum Analyzer/ Receiver are used to calculate the Field Strength, taking into account the following parameters:

- 1. Measured reading in dBμV
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m


FS $(dB\mu V/m)$ = Measured Value on SA $(dB\mu V)$ + Cable Loss (dB) + Antenna Factor (dB/m) Eg:

Frequency (MHz)	Measured SA (dBμV)	Cable Loss (dB)	Antenna Factor Correction (dB)	Field Strength Result (dBµV/m)
1000	80.5	3.5	14	98.0

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the above equation.

6.4 Conducted Measurement Procedure

- 1. Connect the equipment as shown in the above diagram.
- 2. A test SW provided by the manufacturer is used to control the different modulations, data rates and max output power configurations.
- 3. Measurements are to be performed with the EUT set to the low, middle and high channels.

6.5 Maximum Peak Conducted Output Power

6.5.1 Limits:

§15.247 (b)(3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

RSS 210- A8.4(2)

Nominal Peak Output Power < 30 dBm (1W)

6.5.2 Test Conditions:

Tnom: 22°C; Vnom: 240 VAC Measurement Uncertainty= ±0.5 dB

6.5.3 Test Procedure:

Measurement according to FCC KDB 558074 D01 DTS Meas Guidance v02, section 8.1.1- Option 2 **Spectrum Analyzer settings:**

RBW=1MHz, VBW=3MHz, Detector: Peak- Max Hold.

Sweep Time: Auto

Span= 3 MHz (to fully encompass DTS Bandwidth)

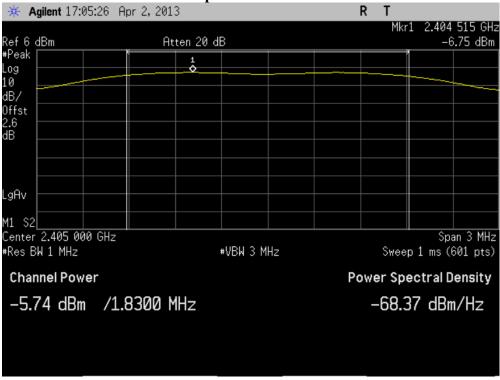
Antenna Gain (dBi): 6

Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A

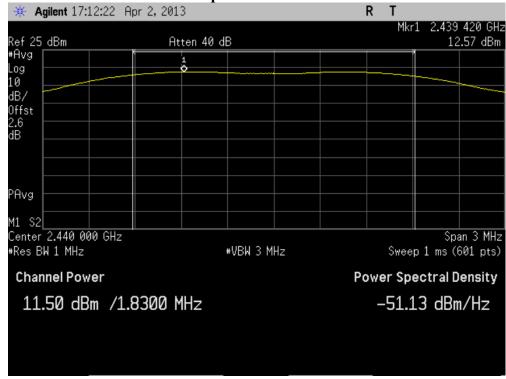
Date of Report: 2013-04-25 IC ID: 4393B-010102A

6.5.4 Test Result:

Maximum Peak Conducted Output Power (dBm)					
	Frequency (MHz)				
Mode	2405 Channel 11	2440 Channel 18	2475 Channel 25		
	Peak (dBm)	Peak (dBm)	Peak (dBm)		
IEEE 802.15.4	-5.74	11.50	-7.52		


Maximum Peak Radiated Output Power (dBm)					
	Frequency (MHz)				
Mode	2405 Channel 11	2440 Channel 18	2475 Channel 25		
IEEE 802.15.4	0.191	17.50	-1.186		

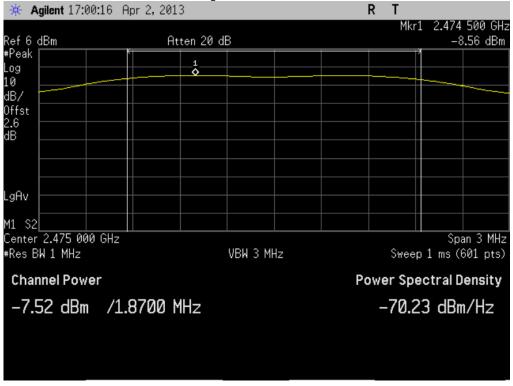
6.5.4.1 <u>Measurement Result</u> Pass.



6.5.5 Test Data/plots:

Measured Maximum Peak Conducted Output Power: 2405 MHz

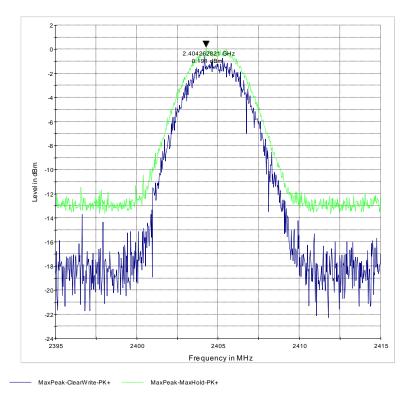
Measured Maximum Peak Conducted Output Power: 2440 MHz



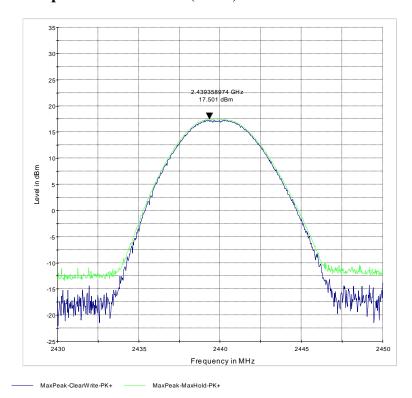
Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A

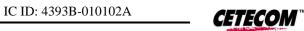
Date of Report: 2013-04-25 IC ID: 4393B-010102A

Measured Maximum Peak Conducted Output Power: 2475 MHz

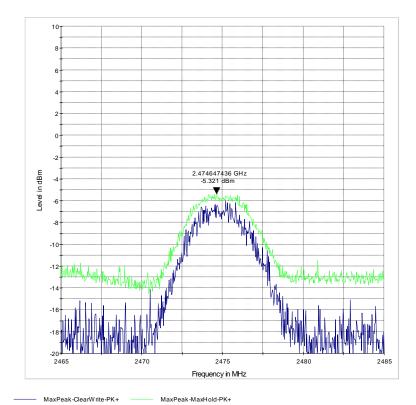


EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A


Test Report #: Date of Report: 2013-04-25 IC ID: 4393B-010102A



Measured Effective Isotropic Radiated Power (EIRP): 2405 MHz



Measured Effective Isotropic Radiated Power (EIRP): 2440 MHz

Measured Effective Isotropic Radiated Power (EIRP): 2475 MHz

6.6 Emission/ Occupied Bandwidth

6.6.1 Limits:

§15.247 (a)(2)

RSS-210 A8.2 (a)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.6.2 Test Conditions:

Tnom: 22°C; Vnom: 240VAC

Measurement Uncertainty= $\pm 100 \text{ kHz}$

6.6.3 Test Procedure:

Measurement according to FCC KDB 558074 D01 Meas Guidance v02, section 7.1 – DTS (6dB) Channel Bandwidth Procedure Option 1

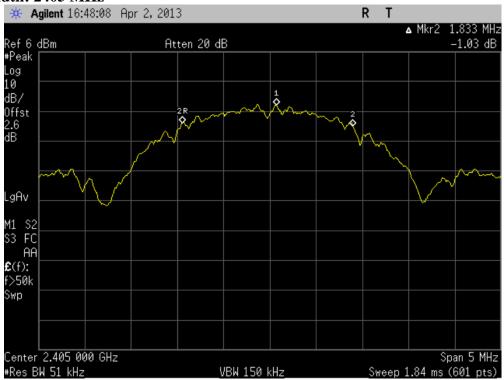
Spectrum Analyzer settings:

RBW = 51 kHz, VBW = 150 kHz, Detector: Peak- Max hold;

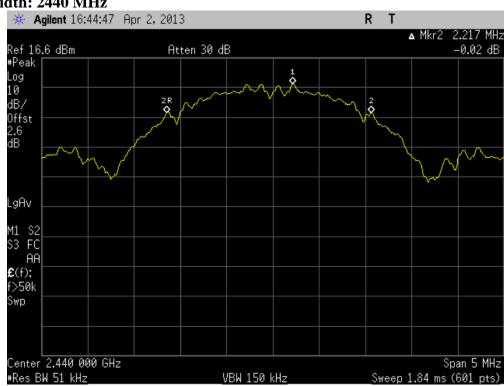
Sweep Time: Auto Span = 5 MHz

6.6.4 Test Result:

Emission Bandwidth (MHz)							
			Frequen	cy (MHz)			
Mode	24	05	2440		2475		
	Chan	nel 11	Chan	Channel 18 Channel			
	6dB 20dB/ 99%		6dB	20dB/ 99%	6dB	20dB/ 99%	
IEEE 802.15.4	1.833	2.77	2.217	2.75	1.867	2.75	

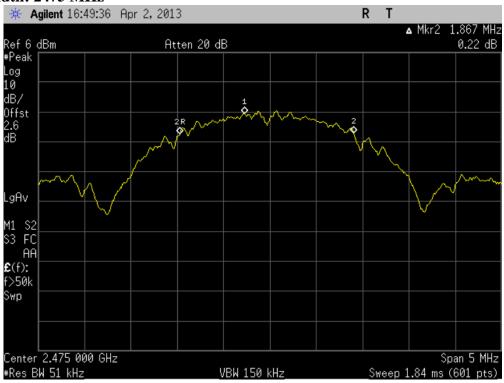

6.6.4.1 Measurement Result

Pass.

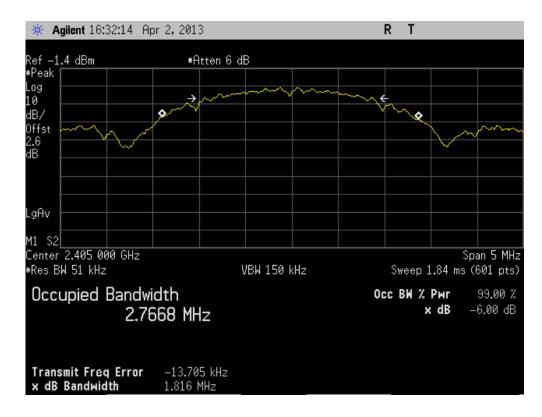


6.6.5 Test Data/plots:

6dB Bandwidth: 2405 MHz

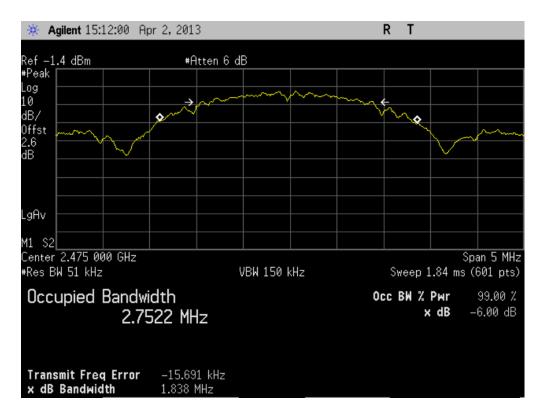


6dB Bandwidth: 2440 MHz



6dB Bandwidth: 2475 MHz

20dB Bandwidth: 2405 MHz



20dB Bandwidth: 2440 MHz

20dB Bandwidth: 2475 MHz

6.7 <u>Maximum Power Spectral Density Level in the Fundamental Emission</u>

6.7.1 Limits:

§ 15.247 (e)

RSS 210- A8.2(b)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

6.7.2 Measurement procedure:

Measurement according to FCC KDB 558074 D01 Meas Guidance v02, section 9.1 Option 1

- 1. Set the analyzer center frequency to DTS channel center frequency
- 2. Span = $1.5 \times DTS$ channel Bandwidth
- 3. RBW = 3 KHz; VBW = 9.1 KHz; Detector: Peak Max hold

6.7.3 Test Conditions:

Tnom: 20°C; Vnom: 240 VAC Measurement Uncertainty: ±0.5dB

6.7.4 Test results:

Measured Conducted Power Spectral Density (dBm)						
		Frequency (MHz)				
Mode	2405	2475				
	Channel 11	Channel 18	Channel 25			
IEEE 802.15.4	-22.22	-2.16	-24.08			

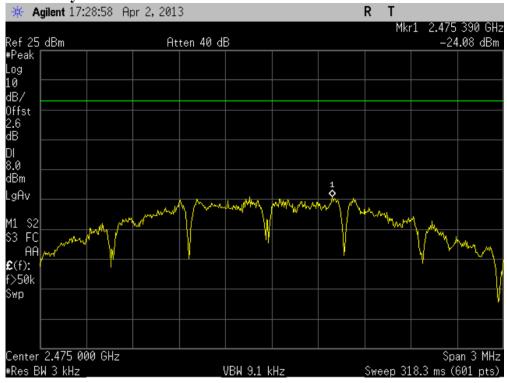
6.7.4.1 <u>Measurement Result</u>

Pass.

6.7.5 Test Data/plots:

Power Spectral Density: 2405 MHz

Power Spectral Density: 2440 MHz



Test Report #: FCC ID: QHC-010102A EMC_ITRO1-008-12001_DTS

Date of Report: 2013-04-25 IC ID: 4393B-010102A

Power Spectral Density: 2475 MHz

Test Report #: EMC ITRO1-008-12001 DTS FCC ID: QHC-010102A

IC ID: 4393B-010102A Date of Report: 2013-04-25

6.8 **Unwanted Emissions into Non-Restricted Frequency Bands- Conducted**

6.8.1 Reference and Limits:

§ 15.247 (d) RSS 210-A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

-20dBc in the frequency range 30MHz- 25GHz.

6.8.2 Test Conditions:

Tnom: 20°C; Vnom: 240 VAC Measurement Uncertainty: ±1.0 dB **Spectrum Analyzer settings:**

RBW=100kHz, VBW=300kHz, Detector: Peak- Max hold;

Sweep Time: Auto

Span = 30 MHz - 25 GHz

6.8.3 **Test Result:**

Conducted Spurious Emissions					
Channel	Frequency (MHz)	Amplitude (dBm)	Limits		
		802.15.4 IEEE 802.15.4			
Law	2405	-10.22			
Low	Spurious	All other peaks >20dB below limit	-20dBc		
M:J	2440	9.41			
Mid	Spurious	All other peaks >20dB below limit	-20dBc		
IIiah	2475	-11.96			
High	Spurious	All other peaks >20dB below limit	-20dBc		

6.8.3.1 Measurement Result

Pass.

6.8.4 Test data/ plots:

Conducted Spurious Emission: 2405 MHz

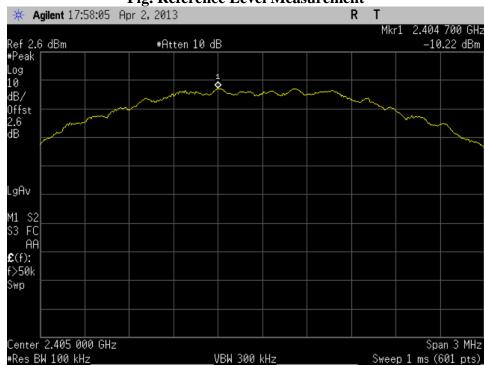
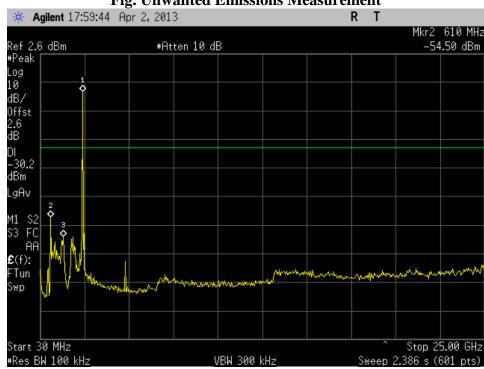



Fig. Unwanted Emissions Measurement

Conducted Spurious Emission: 2440 MHz

Fig. Reference Level Measurement

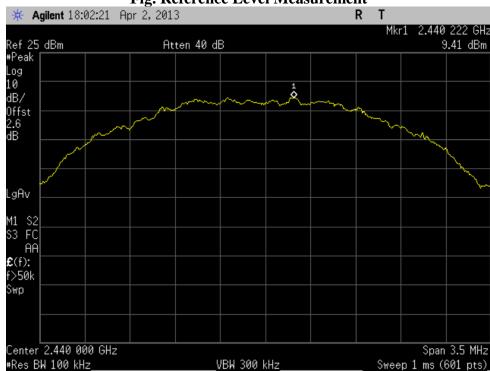
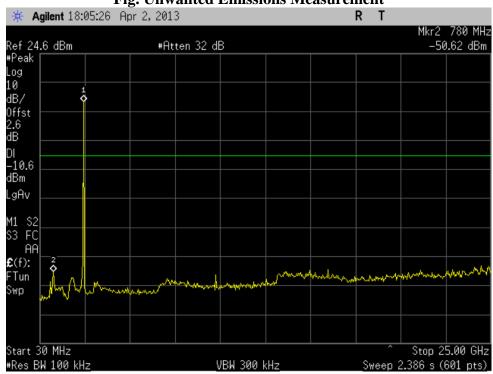



Fig. Unwanted Emissions Measurement

Conducted Spurious Emission: 2475 MHz

Fig. Reference Level Measurement

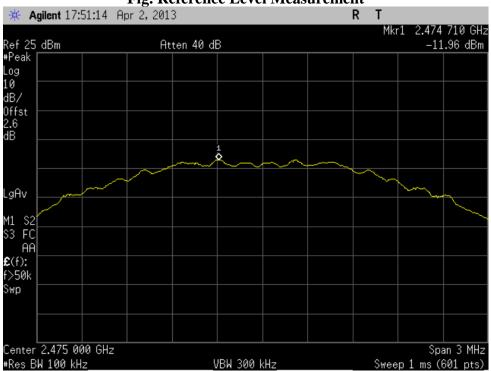
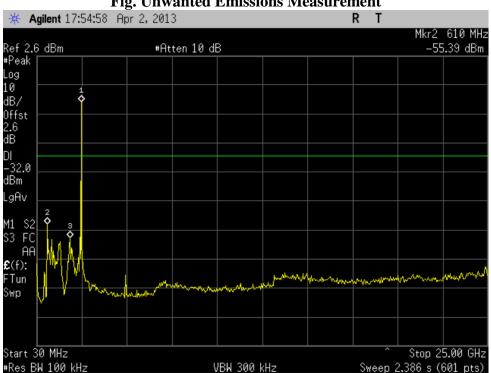



Fig. Unwanted Emissions Measurement

6.9 Unwanted Emissions into Restricted Frequency Bands- Radiated

6.9.1 Limits: §15.247/15.205 RSS-210 A8.5

15.247 (d) Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

15.205 (a) Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

15.209 (a) Emission Limits:

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (m)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

6.9.2 Test Conditions:

Tnom: 20°C; Vnom: 240 VAC

6.9.3 Measurement Procedure:

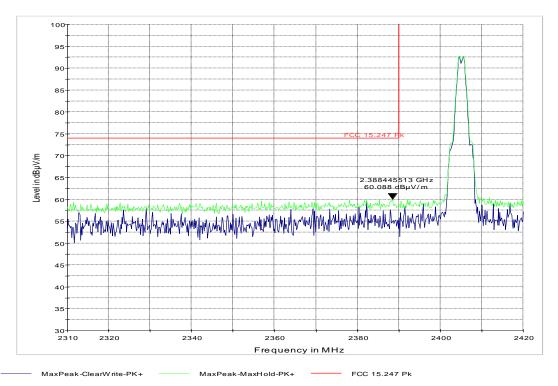
Peak measurements are made using a peak detector and RBW=1MHz.

*PEAK LIMIT= 74dBµV/m

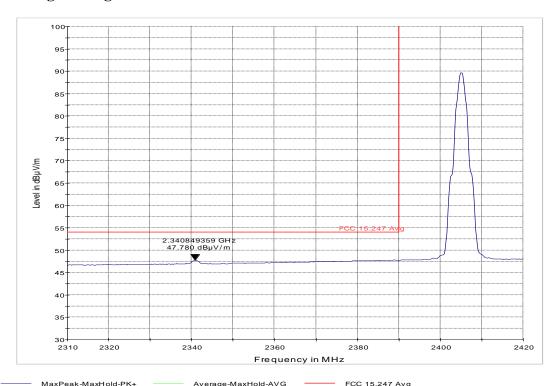
Average measurements performed using a peak detector and according to video averaging procedure with RBW=1MHz and VBW=10Hz.

*AVG. LIMIT= $54dB\mu V/m$

Measurement Uncertainty: ±3.0dB


6.9.3.1 Measurement Result

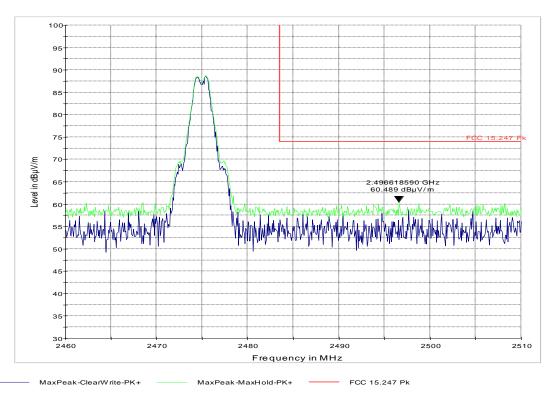
Pass.



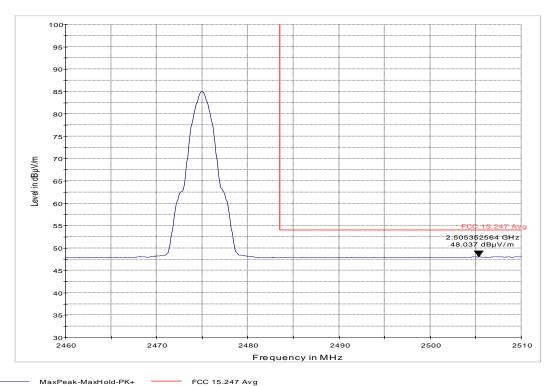
6.9.4 Test Data/plots:

Lower band edge peak - IEEE 802.15.4 mode: 2405 MHz

Lower band edge average - IEEE 802.15.4 mode: 2405 MHz



Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A


Date of Report: 2013-04-25 IC ID: 4393B-010102A

Higher band edge peak - IEEE 802.15.4 mode: 2475 MHz

Higher band edge average - IEEE 802.15.4 mode: 2475 MHz

Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A

6.10 **Transmitter Spurious Emissions- Radiated**

6.10.1 Limits:

§15.247/15.205 **RSS 210-A8.5**

Frequency of emission (MHz)	Field strength (μV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30

Frequency of emission (MHz)	Field strength (μV/m)
30–88	100 (40dBμV/m)
88–216	$150 (43.5 \text{ dB}\mu\text{V/m})$
216–960	200 (46 dBμV/m)
Above 960	500 (54 dBμV/m)

6.10.2 Test Result:

Test mode: Modulation: IEEE 802.15.4 Mode

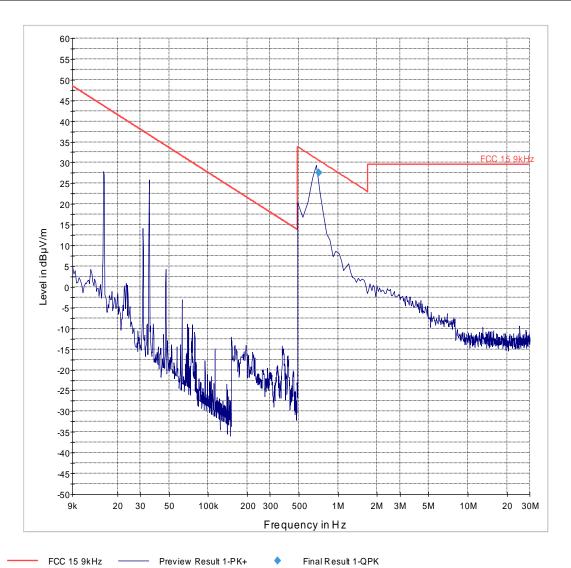
Unless mentioned otherwise, the emissions outside the limit lines in the plots are from the transmit signal.

Plots reported here represent the worse case emissions for horizontal and vertical antenna polarizations and for three orientations of the EUT.

Measurement Uncertainty: ±3.0dB

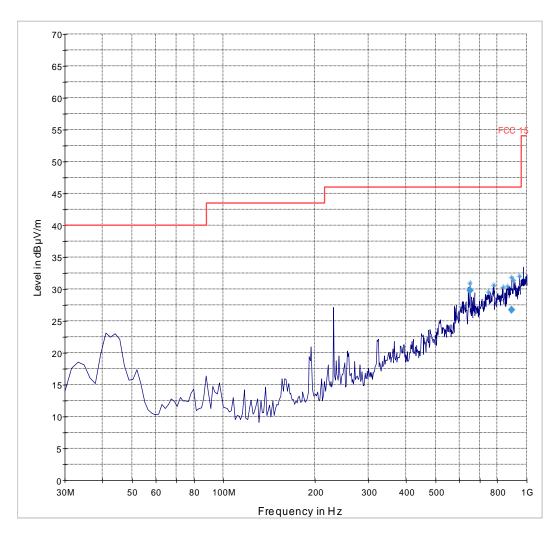
6.10.2.1 Measurement Result

Pass.



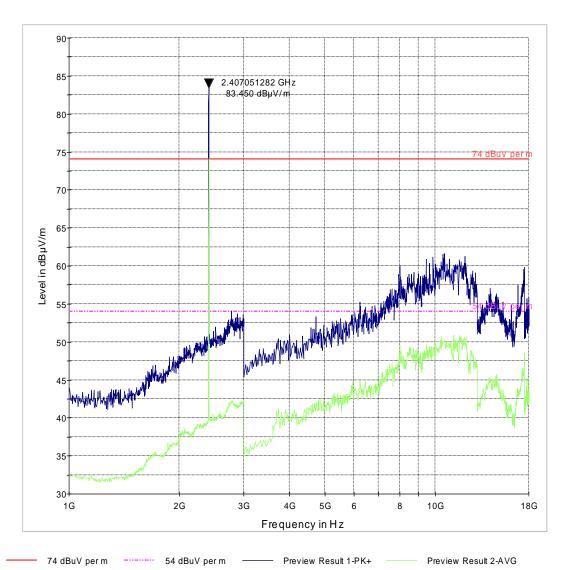
6.10.3 Test data/ plots:

Transmitter Radiated Spurious Emission:<30MHz


Note: Worst case representation for all modes of operation in this frequency range-Limits adjusted for 3m measurement.

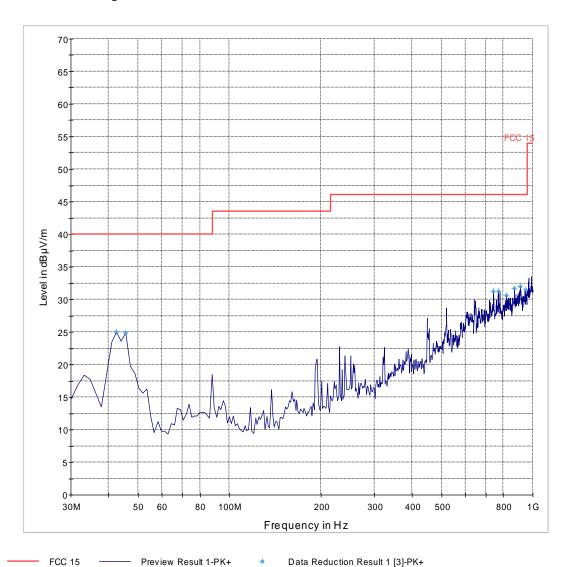
Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
0.713782	27.6	1000.0	9.000	200.0	V	250.0	8.8	2.9	30.5

Transmitter Radiated Spurious Emission- Ch11 (2405 MHz): 30M-1GHz

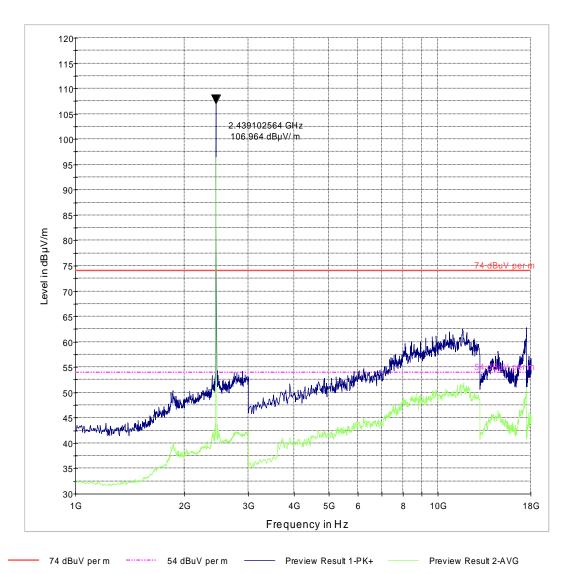

FCC 15

* Data Reduction Result 1 [3]-PK+

↑ Final Measurement Result 1-QPK

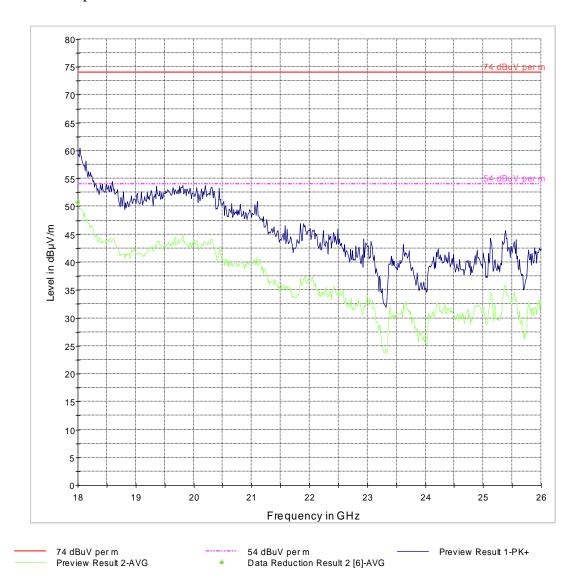


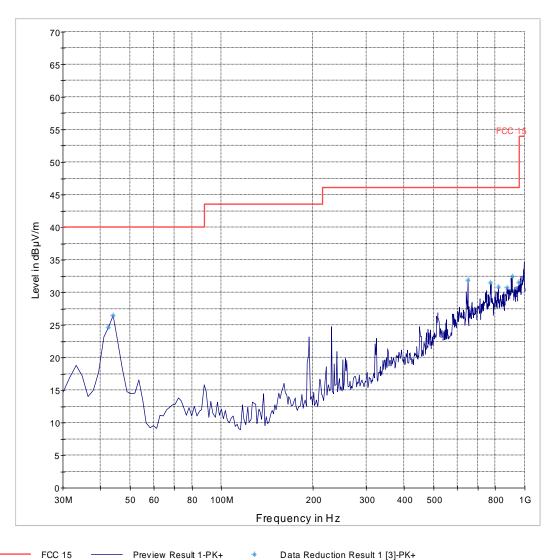
Transmitter Radiated Spurious Emission- Ch11 (2405 MHz): 1G-18GHz



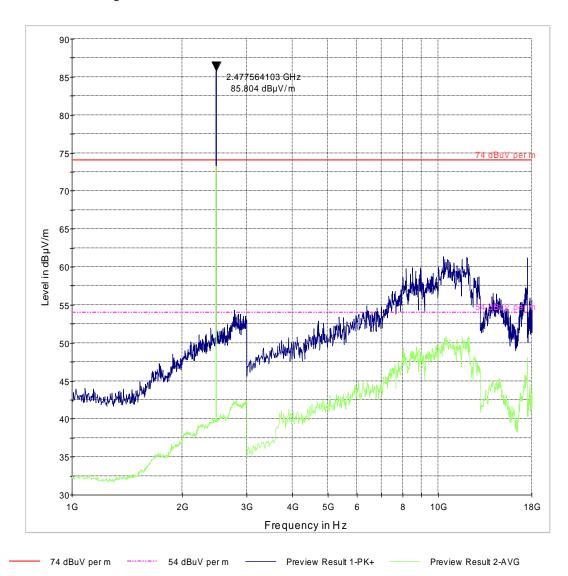
Transmitter Radiated Spurious Emission- Ch18 (2440 MHz): 30M-1GHz

2A CETECOM™


Transmitter Radiated Spurious Emission- Ch18(2440 MHz): 1G-18GHz


Transmitter Radiated Spurious Emission- Ch18 (2440 MHz): 18G-26GHz

Note: Worst case representation of all channels


Transmitter Radiated Spurious Emission- Ch25 (2475 MHz): 30M-1GHz

FCC 15 Preview Result 1-PK+

Transmitter Radiated Spurious Emission- Ch25 (2475 MHz): 1G-18GHz

7 AC Power Line Conducted Emissions

7.1.1 References:

FCC: CFR Part 15.207 IC: RSS-Gen Section 7.2.2

The purpose of this test is to measure unwanted radio frequency currents induced in any AC conductor external to the equipment which could conduct interference to other equipment via the AC electrical network.

7.1.2 Limits:

7.1.2.1 §15.207 Conducted limits- Intentional Radiators:

(a) Except as shown in paragraphs (b) and (c) of this section of the CFR, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table (1), as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

7.1.2.2 RSS-Gen 7.2.2

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommunication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown below. The tighter limit applies at the frequency range boundaries.

Table 1:

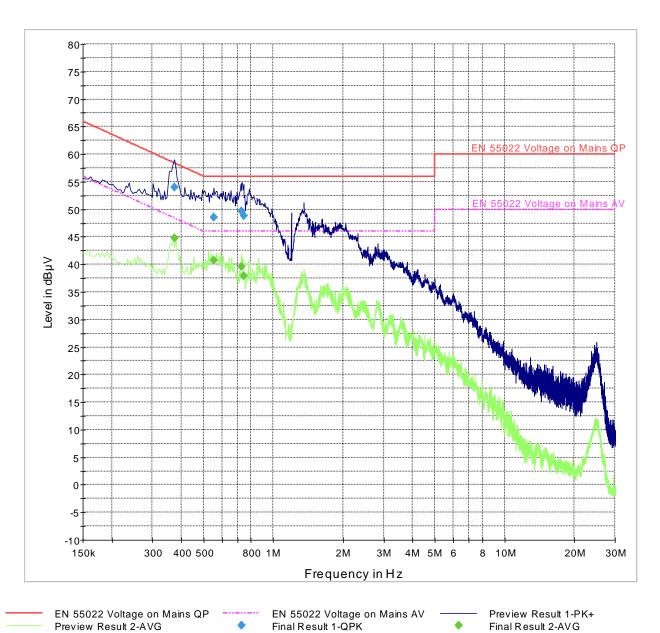
	Conducted limit (dBμV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		

^{*}Decreases with the logarithm of the frequency.

Analyzer Settings: CISPR Bandwidth- 9 KHz.

7.1.3 Test Conditions:

Modulation: TX Mode.


Measurement Uncertainty: ±3.0dB

Note: Plots shown here represent the combined worse case emissions for power lines, phases and neutral line.

7.1.4 Test Results:

IEEE 802.15.4 TX Mode:

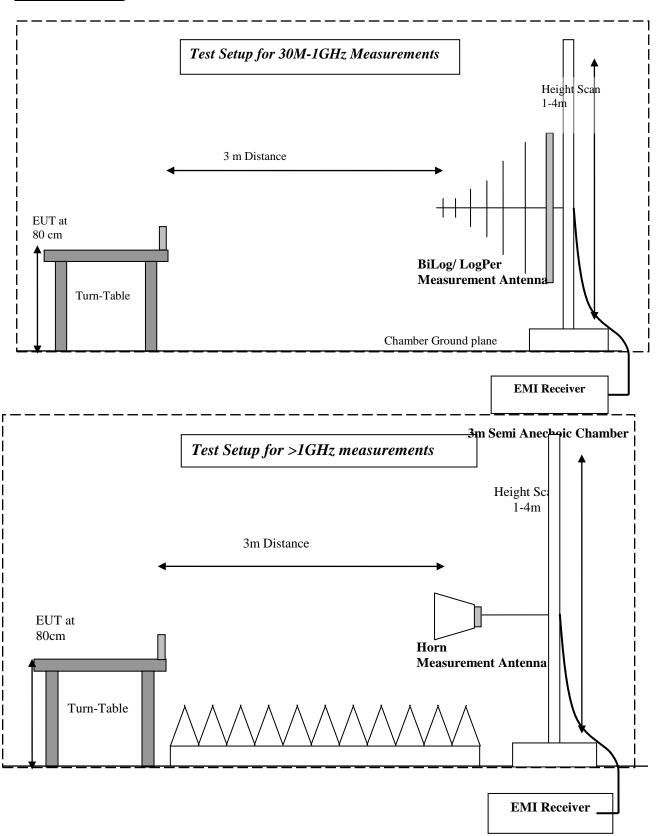
Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A

Date of Report: 2013-04-25 IC ID: 4393B-010102A

8 Test Equipment and Ancillaries used for tests

No.	Equipment Name	Manufacturer	Type/model	Serial No.	Cal Date	Cal Interval			
3m S	3m Semi- Anechoic Chamber:								
	Turn table	EMCO	2075	N/A	N/A	N/A			
	MAPS Position Controller	ETS Lindgren	2092	0004-1510	N/A	N/A			
	Antenna Mast	EMCO	2075	N/A	N/A	N/A			
	Relay Switch Unit	Rohde&Schwarz	RSU	338964/001	N/A	N/A			
	EMI Receiver/Analyzer	Rohde&Schwarz	ESU 40	100251	May 2012	1 Year			
	Spectrum Analyzer	Agilent	E4440A	MY46186445	Dec 2012	1 Year			
	1500MHz HP Filter	Filtek	HP12/1700	14c48	N/A	N/A			
	2800 MHz HP Filter	Filtek	HP12/2800	14C47	N/A	N/A			
	Pre-Amplifier	Miteq	JS40010260	340125	N/A	N/A			
	Binconilog Antenna	EMCO	3141	0005-1186	Apr 2012	3 Years			
	Binconilog Antenna	ETS	3149	J000123908	Feb 2012	3 years			
	Horn Antenna	EMCO	3115	35114	Mar 2012	3 Years			
	LISN	FCC	50-25-2-08	08014	Jul 2012	1 Year			
Ancillary equipment									
	Multimeter	Klein Tools	MM200	001	Apr 2011	2 Years			
	Humidity Temperature Logger	Dickson	TM320	03280063	Apr 2013	1 Year			
	Digital Barometer	VWR	35519-055	91119547	Nov 2011	2 Years			
	DC Power Supply	HP	E3610A	KR83023316	N/A	N/A			
	DC Power Supply	Protek	3003B	H012771	N/A	N/A			
	Communication Antenna	IBP5-900/1940	Kathrein	N/A	N/A	N/A			

Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels. Calibration due dates, unless defined specifically, falls on the last day of the month.


Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A

Date of Report: 2013-04-25 IC ID: 4393B-010102A

9 **Block Diagrams**

Test Report #: EMC_ITRO1-008-12001_DTS FCC ID: QHC-010102A

Date of Report: 2013-04-25 IC ID: 4393B-010102A

10 Revision History

Date	Report Name	Changes to report	Report prepared by
2013-04-25	EMC_ITRO1-008-12001_DTS	First Version	Daniel Salinas