

Intertek
731 Enterprise Drive
Lexington, KY 40510

Tel 859 226 1000
Fax 859 226 1040

www.intertek.com

Vocera Communications, Inc. SAR TEST REPORT

SCOPE OF WORK

Specific Absorption Rate – Minibadge

REPORT NUMBER

104799910LEX-001a.1

ISSUE DATE

12/20/2021

REVISED DATE

2/7/2022

PAGES

49

DOCUMENT CONTROL NUMBER

Non-Specific EMC Report Shell Rev. December 2017

© 2017 INTERTEK

SPECIFIC ABSORPTION RATE TEST REPORT

Report Number: 104799910LEX-001a.1

Project Number: G104799910

Report Issue Date: 12/20/2021

Report Revised Date: 2/7/2022

Product Name: Minibadge

Model: C1000

Standards: FCC Part 2.1093

RSS-102 Issue 5

Tested by:

Intertek Testing Services NA, Inc.
731 Enterprise Drive
Lexington, KY 40510

USA

Client:

Vocera Communications, Inc.
525 Race St, Ste 150
San Jose, CA 95126

USA

Report prepared by

Bryan Taylor, Staff Engineer

Report reviewed by

James Sudduth, Senior Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

1	INTRODUCTION	4
2	TEST SITE DESCRIPTION.....	5
3	DESCRIPTION OF EQUIPMENT UNDER TEST	10
4	SYSTEM VERIFICATION.....	12
5	EVALUATION PROCEDURES.....	17
6	CRITERIA	22
7	TEST CONFIGURATION	22
8	TEST REDUCTIONS	23
9	TEST RESULTS	25
10	SAR DATA:	25
11	APPENDIX A – SYSTEM VALIDATION SUMMARY.....	32
12	APPENDIX B – WORST CASE SAR PLOTS	33
13	APPENDIX C – DIPOLE VALIDATION PLOTS	38

1 INTRODUCTION

At the request of Vocera Communications, Inc. the Minibadge was evaluated for SAR in accordance with the requirements for FCC Part 2.1093 and RSS-102 Issue 5. Testing was performed in accordance with IEEE Std 1528:2013, IEC62209-2:2010, and the Office of Engineering and Technology KDB 447498. Testing was performed at the Intertek facility in Lexington, Kentucky.

For the evaluation, the dosimetric assessment system DASY52 was used. The total uncertainty for the evaluation of the spatial peak SAR values averaged over a cube of 1g tissue mass had been assessed for this system to be $\pm 22.2\%$ from 300MHz – 3GHz and 24.6% from 3GHz – 6GHz.

The Minibadge was tested at the maximum output power measured by Intertek. Maximum output power measurements are tabulated under Section 9 Test Results. The maximum spatial peak SAR value for the sample device averaged over 1g is shown below.

Based on the worst-case data presented below, the Minibadge was found to be **compliant** with the 1.6 W/kg requirements for general population / uncontrolled exposure.

Table 1: Worst Case Reported SAR per Exposure Condition

Device Position	Transmit Mode	Separation Distance	Channel	Conducted Output Power (dBm)	Reported SAR (W/kg)	Limit (W/kg)
Back Side	802.11b	5mm	11	17.15	0.8470	1.6W/kg
Front Side	802.11a	5mm	40	16.98	0.6772	1.6W/kg

2 TEST SITE DESCRIPTION

The SAR test site located at 731 Enterprise Drive, Lexington KY 40510 is comprised of the SPEAG model DASY 5.2 automated near-field scanning system, which is a package, optimized for dosimetric evaluation of mobile radios [3]. This system is installed in an ambient-free shielded chamber. The ambient temperature is controlled to 22.0 $\pm 2^{\circ}\text{C}$. During the SAR evaluations, the RF ambient conditions are monitored continuously for signals that might interfere with the test results. The tissue simulating liquid is also stored in this area in order to keep it at the same constant ambient temperature as the room.

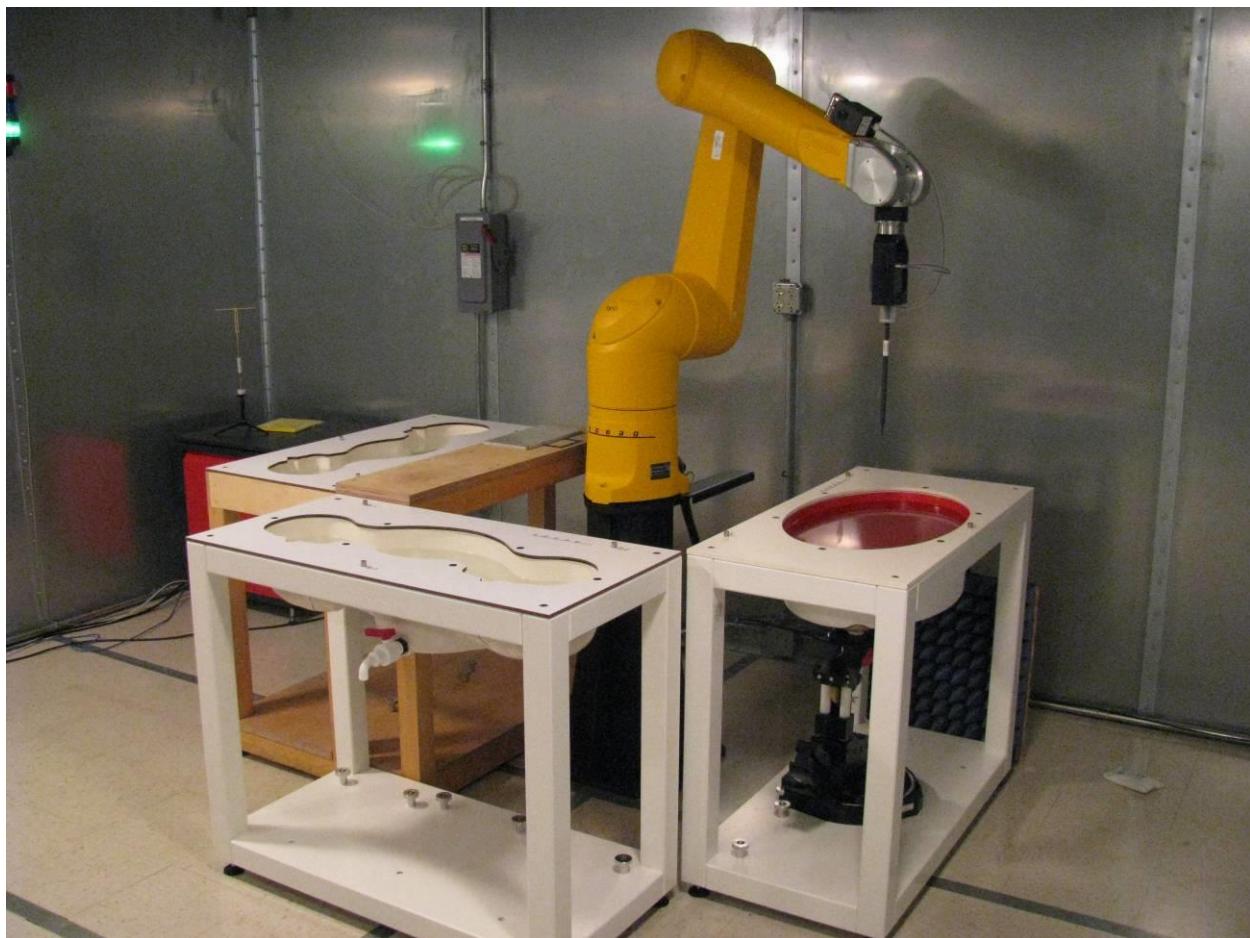


Figure 1: Intertek SAR Test Site

2.1 Measurement Equipment

The following major equipment/components were used for the SAR evaluation:

Table 2: Test Equipment Used for SAR Evaluation

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
SAR Probe	3516	Speag	EXDV3	11/12/2021	11/12/2022
2450MHz Dipole	718	Speag	D240V2	11/9/2021	11/9/2022
DAE	358	Speag	DAE4	11/10/2021	11/10/2022
Vector Signal Generator	3884	Rohde&Schwarz	SMBV100A	9/22/2021	9/22/2022
Network Analyzer	US39173983	Agilent	8753ES	2/18/2021	2/18/2022
USB Power Sensor	100155	Rohde & Schwarz	NRP-Z81	9/17/2021	9/17/2022
Dielectric Probe Kit	1111	Speag	DAK-3.5	11/9/2021	11/9/2022
Spectrum Analyzer	3727	Rohde & Schwarz	FSQ	9/17/2021	9/17/2022
SAM Twin Phantom	1663	Speag	QD 000 P40 C	NCR	NCR
6-axis robot	F11/5H1YA/A/01	Staubli	RX-90	NCR	NCR

*NCR – No Calibration Required

SAR Test Report

2.2 Measurement Uncertainty

The Tables below includes the uncertainty budget suggested by the IEEE Std 1528-2013 and IEC62209-2: 2010 as determined by SPEAG for the DASY5 measurement System.

Error Description	Uncertainty Value	Prob.	Dist.	Div.	$c_i(1g)$	$c_i(10g)$	Std.Unc. (1g)	Std.Unc. (10g)	$(v_i)_{v_{eff}}$
Measurement System									
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞	
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞	
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞	
Boundary Effect	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞	
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞	
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞	
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%	∞	
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞	
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞	
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞	
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞	
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞	
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞	
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞	
Max. SAR Eval.	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞	
Test sample Related									
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145	
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5	
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞	
Power Scaling	±0.0%	R	$\sqrt{3}$	1	1	±0%	±0%	∞	
Phantom and Setup									
Phantom Uncertainty	±6.1%	R	$\sqrt{3}$	1	1	±3.5%	±3.5%	∞	
SAR Correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%	∞	
Liquid Conductivity (mea.)	±2.5%	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%	∞	
Liquid Permittivity(mea.)	±2.5%	R	$\sqrt{3}$	0.26	0.26	±0.3%	±0.4%	∞	
Temp unc. - Conductivity	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%	∞	
Temp unc. - Permittivity	±0.4%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞	
Combined Standard Uncertainty						±11.2%	±11.1%	361	
Expanded STD Uncertainty						±22.3%	±22.2%		

Notes:

Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2013. The budget is valid for the frequency range 300 MHz – 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

SAR Test Report

Error Description	Uncertainty Value	Prob.	Div.	$c_i(1g)$	$c_i(10g)$	Std.Unc. (1g)	Std.Unc. (10g)	(v_i) v_{eff}
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%	∞
Max. SAR Eval.	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Test sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	$\sqrt{3}$	1	1	±0%	±0%	∞
Phantom and Setup								
Phantom Uncertainty	±6.6%	R	$\sqrt{3}$	1	1	±3.8%	±3.8%	∞
SAR Correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity(mea.)	±2.5%	R	$\sqrt{3}$	0.26	0.26	±0.3%	±0.4%	∞
Temp unc. - Conductivity	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%	∞
Temp unc. - Permittivity	±0.4%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±12.3%	±12.2%	748
Expanded STD Uncertainty						±24.6%	±24.5%	

Notes.

Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2013. The budget is valid for the frequency range 3 GHz – 6 GHz and represents a worst-case analysis. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerably smaller.

SAR Test Report

Error Description	Uncertainty Value	Prob.	Div.	$c_i(1g)$	$c_i(10g)$	Std.Unc. (1g)	Std.Unc. (10g)	(v_i) v_{eff}
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%	∞
Post-Processing	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Test sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	$\sqrt{3}$	1	1	±0%	±0%	∞
Phantom and Setup								
Phantom Uncertainty	±7.9%	R	$\sqrt{3}$	1	1	±4.6%	±4.6%	∞
SAR Correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity(mea.)	±2.5%	R	$\sqrt{3}$	0.26	0.26	±0.3%	±0.4%	∞
Temp unc. - Conductivity	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%	∞
Temp unc. - Permittivity	±0.4%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±12.5%	±12.5%	748
Expanded STD Uncertainty						±25.1%	±25.0%	

Notes.

Worst Case uncertainty budget for DASY5 assessed according to IEC62209-2: 2010. The budget is valid for the frequency range 30MHz – 6 GHz and represents a worst-case analysis. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerably smaller.

3 DESCRIPTION OF EQUIPMENT UNDER TEST

Equipment Under Test	
Product Name	Minibadge
Model Number	C1000
Serial Number	AA3301HZ6007F5
Supported Transmit Bands	<u>Bluetooth Low Energy, Bluetooth</u> 2402 – 2480MHz <u>802.11a, b, g, n, ac</u> 2412 – 2462MHz U-NII 1: 5150 – 5250 MHz U-NII 2a: 5250 – 5350 MHz U-NII 2c: 5470 – 5725 MHz U-NII 3: 5725 – 5850 MHz
Receive Date	11/23/2021
Test Start Date	12/1/2021
Test End Date	12/16/2021
Device Received Condition	Good
Test Sample Type	Production
Rated Voltage	3.6VDC (Battery)
Antenna Gains	2.4GHz Bands: 1.45dBi 5GHz Bands: 2.47dBi (Note: antenna gain information was provided by the client and may affect compliance)
Description of Equipment Under Test (provided by client)	
The Minibadge is a small, lightweight, wearable communication device designed to simplify hospital communication and workflow and improve staff safety. A user can “wake up” and operate the device using only their voice, to stay connected even under restrictive PPE. They can make and receive calls; listen and respond to messages and alarm notifications. Visual indicators enable fast triaging of events. A dedicated panic button provides a direct connection to security personnel. The device can be used as a smartphone companion, or by itself. For more information, see user’s manual provided by the manufacturer.	

Operating Band	Technology	Modulation	Frequency Range (MHz)	Maximum Output Power (dBm)	Duty Cycle
2.4GHz ISM	Bluetooth and BLE	GFSK, Pi/4-DQPSK, 8-DPSK	2402 – 2480MHz	3.17	1:1
2.4GHz ISM	WiFi	DSSS, OFDM	2412 – 2462MHz	17.4	1:1
U-NII 1:	WiFi	OFDM	5150 – 5250 MHz	17.04	1:1
U-NII 2a:	WiFi	OFDM	5250 – 5350 MHz	16.98	1:1
U-NII 2c:	WiFi	OFDM	5470 – 5725 MHz	17.29	1:1
U-NII 3:	WiFi	OFDM	5725 – 5850 MHz	17.02	1:1

4 SYSTEM VERIFICATION

System Validation

Prior to the assessment, the system was verified to be within $\pm 10\%$ of the specifications by using the system validation kit. The system validation procedure tests the system against reference SAR values and the performance of probe, readout electronics and software. The test setup utilizes a phantom and reference dipole.

Figure 2: System Verification Setup

Table 3: Dipole Validations

Reference Dipole Validation									
Ambient Temp (°C)	Fluid Temp (°C)	Frequency (MHz)	Dipole	Fluid Type	Dipole Power Input	Cal. Lab SAR (1g)	Measured SAR (1g)	% Error SAR (1g)	Date
23.2	23.1	5200	D5GHzV2	5GHzMSL	1W	74.40	71.70	3.63	12/8/2021
23.1	23.2	5500	D5GHzV2	5GHzMSL	1W	80.00	79.50	0.63	12/10/2021
23.1	23.2	5800	D5GHzV2	5GHzMSL	1W	78.80	81.10	2.92	12/14/2021

Reference Dipole Validation									
Ambient Temp (°C)	Fluid Temp (°C)	Frequency (MHz)	Dipole	Fluid Type	Dipole Power Input	Cal. Lab SAR (10g)	Measured SAR (10g)	% Error SAR (10g)	Date
23.2	23.1	5200	D5GHzV2	5GHzMSL	1W	20.90	18.30	12.44	12/8/2021
23.1	23.2	5500	D5GHzV2	5GHzMSL	1W	22.10	20.70	6.33	12/10/2021
23.1	23.2	5800	D5GHzV2	5GHzMSL	1W	22.20	20.70	6.76	12/14/2021

Measurement Uncertainty for System Validation

Source of Uncertainty	Value(dB)	Probability Distribution	Divisor	c _i	u _i (y)	(u _i (y))^2
Measurement System						
Probe Calibration	5.50	n1	1	1	5.50	30.250
Axial Isotropy	4.70	r	1.732	0.7	2.71	7.364
Hemispherical Isotropy	9.60	r	1.732	0.7	5.54	30.722
Boundary Effect	1.00	r	1.732	1	0.58	0.333
Linearity	4.70	r	1.732	1	2.71	7.364
System Detection Limits	1.00	r	1.732	1	0.58	0.333
Readout Electronics	0.30	n1	1	1	0.30	0.090
Response Time	0.80	r	1.732	1	0.46	0.213
Integration Time	2.60	r	1.732	1	1.50	2.253
RF Ambient Noise	3.00	r	1.732	1	1.73	3.000
RF Ambient Reflections	3.00	r	1.732	1	1.73	3.000
Probe Positioner	0.40	r	1.732	1	0.23	0.053
Probe Positioning	2.90	r	1.732	1	1.67	2.803
Max. SAR Eval.	1.00	r	1.732	1	0.58	0.333
Dipole / Generator / Power Meter Related						
Dipole positioning	2.90	n1	1	1	2.90	8.410
Dipole Calibration Uncertainty	0.68	r	1.732	1	0.39	0.154
Power Meter 1 Uncertainty (+20C to +25C)	0.13	n1	1	2	0.13	0.017
Power Meter 2 Uncertainty (+20C to +25C)	0.04	n1	1	3	0.04	0.002
Sig Gen VSWR Mismatch Error	1.80	n1	1	5	1.80	3.240
Sig Gen Resolution Error	0.01	n1	1	6	0.01	0.000
Sig Gen Level Error	0.90	n1	1	1	0.90	0.810
Phantom and Setup						
Phantom Uncertainty	4.00	r	1.732	1	2.31	5.334
Liquid Conductivity (target)	5.00	r	1.732	0.43	2.89	8.334
Liquid Conductivity (meas.)	2.50	n1	1	0.43	2.50	6.250
Liquid Permittivity (target)	5.00	r	1.732	0.49	2.89	8.334
Liquid Permittivity (meas.)	2.50	n1	1	0.49	2.50	6.250
Combined Standard Uncertainty		N1	1	1	11.63	135.247
Expanded Uncertainty		Normal k=	2		23.26	
Expanded Uncertainty	is	23.3	for	Normal	k=	2

Tissue Simulating Liquid Description and Validation

The dielectric parameters were verified to be within 5% of the target values prior to assessment. The dielectric parameters (ϵ_r , σ) are shown in Table 4. A recipe for the tissue simulating fluid used is shown in Table 5.

Table 4: Dielectric Parameter Validations

Tissue Type	Frequency Measure (MHz)	Dielectric Constant Target	Conductivity Target	Dielectric Constant Measure	Imaginary Part	Conductivity Measure	Dielectric % Deviation	Conductivity % Deviation	Date
2450MSL	2400	52.77	1.95	51.7	14.4	1.92	2.03	1.47	12/8/2021
	2450	52.7	1.95	51.7	14.5	1.98	1.90	1.28	12/8/2021
	2480	52.66	1.95	51.6	14.5	2.00	2.01	2.52	12/8/2021
Tissue Type	Frequency Measure (MHz)	Dielectric Constant Target	Conductivity Target	Dielectric Constant Measure	Imaginary Part	Conductivity Measure	Dielectric % Deviation	Conductivity % Deviation	Date
5GHz MSL	5200	49.01	5.30	49.2	18.3	5.29	0.39	0.18	12/10/2021
	5600	48.47	5.77	49.1	18.6	5.79	1.30	0.36	12/10/2021
	5800	48.2	6.00	48.9	18.9	6.09	1.45	1.57	12/10/2021

Table 5: Tissue Simulating Fluid Recipe

Composition of Ingredients for Liquid Tissue Phantoms (450MHz to 2450 MHz data only)												
Ingredient (% by weight)	f (MHz)											
	450		835		915		1900		2450		5500	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56	54.9	70.45	62.7	68.64	65.53	78.67
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.36	0.5	0	0	0
Sugar	56.32	46.78	56	45	56.5	41.76	0	0	0	0	0	0
HEC	0.98	0.52	1	1	1	1.21	0	0	0	0	0	0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0	0	0	0	0	0
Triton X-100	0	0	0	0	0	0	0	0	36.8	0	17.235	10.665
DGBE	0	0	0	0	0	0	44.92	29.18	0	31.37	0	0
DGHE	0	0	0	0	0	0	0	0	0	0	17.235	10.665
Dielectric Constant	43.42	58	42.54	56.1	42	56.8	39.9	53.3	39.8	52.7		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1	1.07	1.42	1.52	1.88	1.95		

Tissue Simulating Liquid for 5GHz, MBBL3500-5800V5 Manufactured by SPEAG (proprietary mixture)

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

5 EVALUATION PROCEDURES

Prior to any testing, the appropriate fluid was used to fill the phantom to a depth of 15 cm ± 0.2 cm. The fluid parameters were verified and the dipole validation was performed as described in the previous sections.

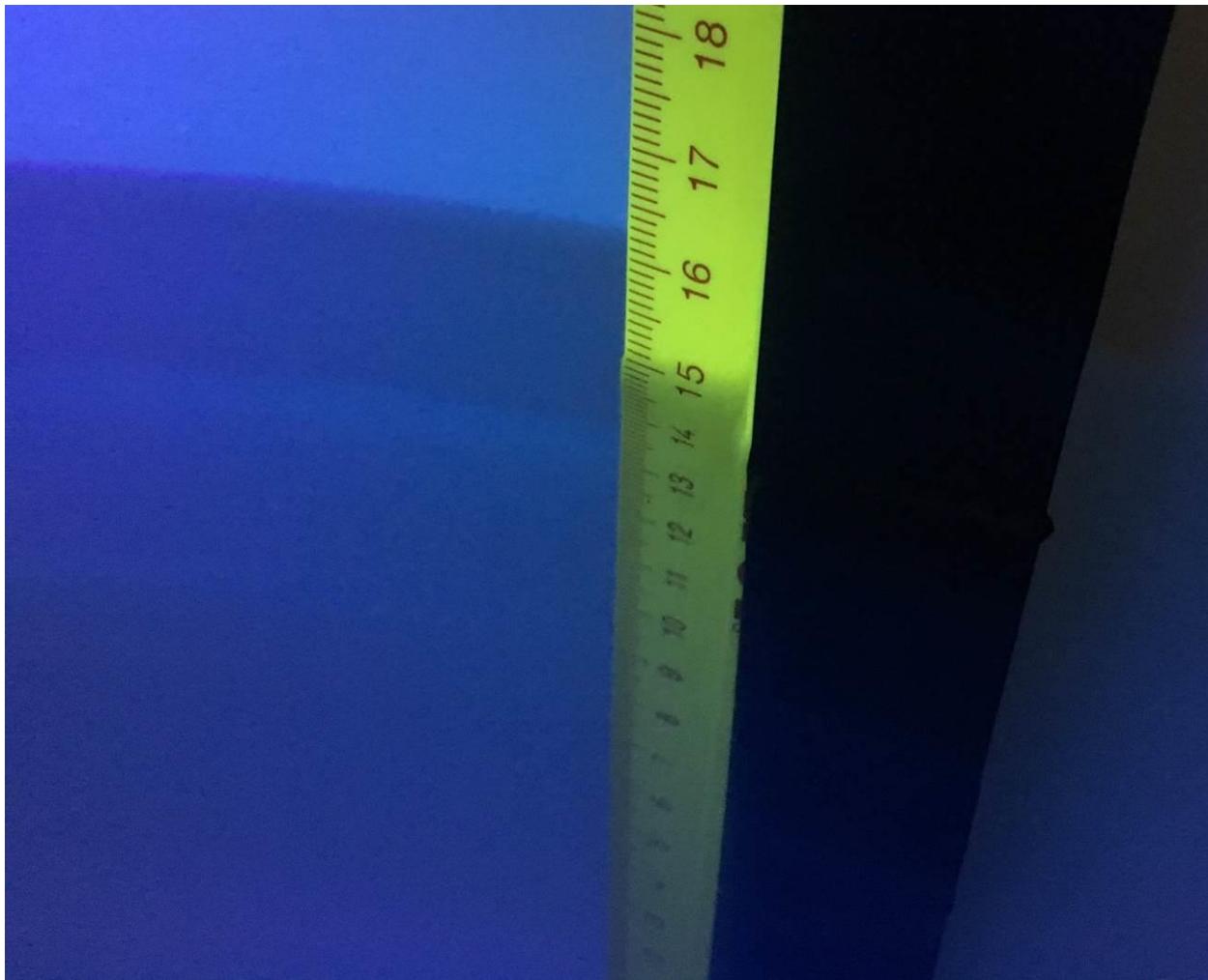


Figure 3: Fluid Depth 15cm

Test Positions:

The Device was positioned against the SAM and flat phantom using the exact procedure described in IEEE Std 1528:2013, IEC62209-2:2010, and the Office of Engineering and Technology KDB 447498.

Reference Power Measurement:

The measurement probe was positioned at a fixed location above the reference point. A power measurement was made with the probe above this reference position so it could be used for the assessing the power drift later in the test procedure.

Area Scan:

A coarse area scan was performed in order to find the approximate location of the peak SAR value. This scan was performed with the measurement probe at a constant height in the simulating fluid. A two dimensional spline interpolation algorithm was then used to determine the peaks and gradients within the scanned area. The area scan resolution conformed to the requirements of KDB 865664 as shown in Table 6.

Zoom Scan:

A zoom scan was performed around the approximate location of the peak SAR as determined from the area scan. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure. The zoom scan resolution conformed to the requirements of KDB 865664 as shown in Table 6.

Table 6: SAR Area and Zoom Scan Resolutions

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded grid	$\Delta z_{\text{Zoom}}(1)$: between 1 st two points closest to phantom surface $\Delta z_{\text{Zoom}}(n > 1)$: between subsequent points	≤ 4 mm $\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1)$
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.			
* When zoom scan is required and the <u>reported</u> SAR from the <i>area scan based 1-g SAR estimation</i> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

Interpolation, Extrapolation and Detection of Maxima:

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method.

Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY5 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

- For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighboring measurement values.
- The spatial location of the quadratic with respect to the measurement values is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.
- After the quadratics are calculated for all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control parameters that govern the behavior of the interpolation method. One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters.

The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, non-physical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1g and 10g cubes by spatially discretizing the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are centered at the location. The location is defined as the center of the incremental volume.

The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5% of the required mass. The cubical volume centered at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10% of air. If these conditions are not satisfied then the center of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centered location in each valid averaging volume.

All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used, but has never been assigned to the center of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centered at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centered on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the post processing engine.

Power Drift Measurement:

The probe was positioned at precisely the same reference point and the reference power measurement was repeated. The difference between the initial reference power and the final one is referred to as the power drift. This value should not exceed 5%. The power drift measurement was used to assess the output power stability of the test sample throughout the SAR scan.

RF Ambient Activity:

During the entire SAR evaluation, the RF ambient activity was monitored using a spectrum analyzer with an antenna connected to it. The spectrum analyzer was tuned to the frequency of measurement and with one trace set to max hold mode. In this way, it was possible to determine if at any point during the SAR measurement there was an interfering ambient signal. If an ambient signal was detected, then the SAR measurement was repeated.

6 CRITERIA

The following ANSI/IEEE C95.1 – 1992 limits for SAR apply to portable devices operating in the General Population/Uncontrolled Exposure environment. Uncontrolled environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Exposure Type (General Population/Uncontrolled Exposure environment)	SAR Limit (W/kg or mW/g)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00

7 TEST CONFIGURATION

The Minibadge was designed to be worn on a lanyard. Therefore, per KDB447498 section 4.2.2 (c) the separation distance used to demonstrate compliance was 5mm. The device could be situated with the front or the back against the users body. Therefore, the SAR testing was performed on the front and back sides.

The device was evaluated according to the specific requirements found in the following KDBs and Standards:

- FCC KDB 447498D01 v06, General RF Exposure Guidance
- FCC KDB 865664D01 v01r04, SAR Measurement Requirements for 100MHz to 6GHz
- FCC KDB 248227 D01 802.11 wi-Fi SAR v02r02, SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters
- RSS-102 Issue 5, Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

8 TEST REDUCTIONS

8.1 2.4GHZ WiFi SAR Reductions

2.4GHz WiFi SAR reduction was applied per KDB248227 D01 v02r02 page 9 as follows:

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.¹⁶ The initial test position procedure is described in the following:

- a) When the *reported* SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- b) When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- c) For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

8.2 5GHz WiFi SAR Reductions

5GHz OFDM SAR reduction was applied per KDB248227 D01 v02r02 Section 5.3.2 Page 11 as follows:

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (see Clause 4).

- a) When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined by applying the following steps sequentially.
 - 1) The largest channel bandwidth configuration is selected among the multiple configurations in a frequency band with the same specified maximum output power.
 - 2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
 - 3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
 - 4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.
- b) After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
 - 1) The channel closest to mid-band frequency is selected for SAR measurement.
 - 2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

9 TEST RESULTS

The worst case 1g SAR value for body exposure was less than the 1.6W/kg limit.

10 SAR DATA:

The results on the following page(s) were obtained when the device was transmitting at maximum output power. The worst case plots, which reveal information about the location of the maximum SAR with respect to the device, are referenced are shown in APPENDIX B – Worst Case SAR Plot. The measured conducted output power was compared to the power declared by the manufacturer and used for scaling the measured SAR values.

Table 7: SAR Results (802.11b)

2.4GHz Band Body SAR Results								
TX Mode	Spacing	Channel	Position	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)
802.11b	5mm	1	Front	0.04	0.6410	0.6484	17.40	17.45
			Back	-0.13	0.7090	0.7172	17.40	17.45
		6	Front	0.02	0.5930	0.6040	17.21	17.29
			Back	0.03	0.8150	0.8302	17.21	17.29
		11	Front	0.26	0.6870	0.6870	17.15	17.15
			Back	0.21	0.8470	0.8470	17.15	17.15

1g SAR Limit = 1.6W/kg

Test Personnel:	Bryan Taylor	Test Date:	12/3/2021 – 12/4/2021
Supervising/Reviewing Engineer:	NA	Tissue Depth:	15cm
Signal Setup:	Test Commands	Ambient Temperature:	22.4C
Power Method:	Fully Charged Battery	Relative Humidity:	48.6%
Pretest Dipole Verification:	Yes	Atmospheric Pressure:	989.2mbar

Deviations, Additions, or Exclusions:

- 1) Per KDB 248227D01 Section 5.2.2, the OFDM SAR measurements were excluded since the reported SAR for DSSS was less than 1.2W/kg and the OFDM specified maximum output power was the same as DSSS specified maximum output power.

Table 8: SAR Results (U-NII-1)

UNII-1 Band Body SAR Results								
TX Mode	Spacing	Channel	Position	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)
802.11a	5mm	36	Front	0.03	0.6240	0.6283	15.28	15.31
			Back	-0.12	0.2780	0.2799	15.28	15.31
		40	Front	0.00	0.6710	0.6772	16.98	17.02
			Back	0.17	0.2320	0.2341	16.98	17.02
		48	Front	-0.13	0.6480	0.6495	17.03	17.04
			Back	0.04	0.2730	0.2736	17.03	17.04

1g SAR Limit = 1.6W/kg

Test Personnel:	Bryan Taylor	Test Date:	12/8/2021
Supervising/Reviewing Engineer:	NA	Tissue Depth:	15cm
Signal Setup:	Test Commands	Ambient Temperature:	22.4C
Power Method:	Fully Charged Battery	Relative Humidity:	48.6%
Pretest Dipole Verification:	Yes	Atmospheric Pressure:	989.2mbar

Deviations, Additions, or Exclusions:

- 1) Testing was performed using 802.11a since it was the lowest order modulation and had the higher measured output power compared with 802.11 n and ac modes.

Table 9: SAR Results (U-NII-2A)

UNII-2A Band Body SAR Results								
TX Mode	Spacing	Channel	Position	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)
802.11a	5mm	52	Front	-0.13	0.5370	0.5395	16.91	16.93
			Back	-0.06	0.2880	0.2893	16.91	16.93
		60	Front	0.35	0.6320	0.6364	16.95	16.98
			Back	0.12	0.2980	0.3001	16.95	16.98
		64	Front	-0.28	0.3460	0.3468	16.94	16.95
			Back	-0.13	0.6580	0.6595	16.94	16.95

1g SAR Limit = 1.6W/kg

Test Personnel:	Bryan Taylor	Test Date:	12/9/2021 – 12/10/2021
Supervising/Reviewing Engineer:	NA	Tissue Depth:	15cm
Signal Setup:	Test Commands	Ambient Temperature:	22.4C
Power Method:	Fully Charged Battery	Relative Humidity:	48.6%
Pretest Dipole Verification:	Yes	Atmospheric Pressure:	989.2mbar

Deviations, Additions, or Exclusions:

- 1) Testing was performed using 802.11a since it was the lowest order modulation and had the higher measured output power compared with 802.11 n and ac modes.

SAR Test Report

Table 10: SAR Results (U-NII-2C)

UNII-2C Band Body SAR Results								
TX Mode	Spacing	Channel	Position	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)
802.11a	5mm	100	Front	-0.16	0.4860	0.5101	15.87	16.08
			Back	-0.14	0.2940	0.3086	15.87	16.08
		116	Front	-0.06	0.5940	0.6365	16.99	17.29
			Back	-0.08	0.4120	0.4415	16.99	17.29
		140	Front	-0.28	0.3880	0.3925	14.96	15.01
			Back	-0.03	0.2600	0.2630	14.96	15.01

1g SAR Limit = 1.6W/kg

Test Personnel:	Bryan Taylor	Test Date:	12/10/2021 – 12/13/2021
Supervising/Reviewing Engineer:	NA	Tissue Depth:	15cm
Signal Setup:	Test Commands	Ambient Temperature:	22.4C
Power Method:	Fully Charged Battery	Relative Humidity:	48.6%
Pretest Dipole Verification:	Yes	Atmospheric Pressure:	989.2mbar

Deviations, Additions, or Exclusions:

- 1) Testing was performed using 802.11a since it was the lowest order modulation and had the higher measured output power compared with 802.11 n and ac modes.

Table 11: SAR Results (U-NII-3)

UNII-3 Band Body SAR Results								
TX Mode	Spacing	Channel	Position	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)
802.11a	5mm	149	Front	-0.15	0.6700	0.6840	16.99	17.08
			Back	-0.07	0.4320	0.4410	16.99	17.08
		157	Front	-0.11	0.6480	0.6616	16.93	17.02
			Back	-0.08	0.4790	0.4890	16.93	17.02
		165	Front	-0.33	0.6330	0.6477	16.79	16.89
			Back	-0.26	0.4740	0.4850	16.79	16.89

1g SAR Limit = 1.6W/kg

Test Personnel:	Bryan Taylor	Test Date:	12/14/2021
Supervising/Reviewing Engineer:	NA	Tissue Depth:	15cm
Signal Setup:	Test Commands	Ambient Temperature:	22.4C
Power Method:	Fully Charged Battery	Relative Humidity:	48.6%
Pretest Dipole Verification:	Yes	Atmospheric Pressure:	989.2mbar

Deviations, Additions, or Exclusions:

- 1) Testing was performed using 802.11a since it was the lowest order modulation and had the higher measured output power compared with 802.11 n and ac modes.

Evaluation For: Vocera Communications, Inc.

Product: Minibadge

Date: 2/7/2022

SAR Test Report

Table 12: SAR Results (Bluetooth)

2.4GHz Band Body SAR Results								
TX Mode	Spacing	Channel	Position	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)
Bluetooth	5mm	2402	Front	-0.12	0.0620	0.0658	2.91	3.17
			Back	-0.08	0.0430	0.0457	2.91	3.17
		2441	Front	0.04	0.0580	0.0627	2.83	3.17
			Back	-0.14	0.0440	0.0476	2.83	3.17
		2480	Front	0.06	0.0490	0.0597	2.31	3.17
			Back	-0.16	0.0420	0.0512	2.31	3.17

1g SAR Limit = 1.6W/kg

Test Personnel:	Bryan Taylor	Test Date:	12/15/2021
Supervising/Reviewing Engineer:	NA	Tissue Depth:	15cm
Signal Setup:	Test Commands	Ambient Temperature:	22.4C
Power Method:	Fully Charged Battery	Relative Humidity:	48.6%
Pretest Dipole Verification:	Yes	Atmospheric Pressure:	989.2mbar

Deviations, Additions, or Exclusions: None

11 APPENDIX A – SYSTEM VALIDATION SUMMARY

Per FCC KDB 865664, a tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters have been included in the summary table below. The validation was performed with reference dipoles using the required tissue equivalent media for system validation according to KDB 865664. Each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point. All measurements were performed using probes calibrated for CW signals. Modulations in the table above represent test configurations for which the SAR system has been validated. The SAR system was also validated with modulated signals per KDB 865664.

Table 13: SAR System Validation Summary

Frequency (MHz)	Date	Probe (SN#)	Probe (Model #)	Probe Calibration Point		Dielectric Properties		CW Validation			Modulation Validation		
				Frequency (MHz)	Fluid Type	σ	ϵ_r	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	PAR
2450	1/10/2021	3516	EX3DV3	2450	Body	50.65	2.02	Pass	Pass	Pass	OFDM	N/A	Pass
5200	1/10/2021	3516	EX3DV3	5200	Body	48.71	5.54	Pass	Pass	Pass	OFDM	N/A	Pass
5500	1/10/2021	3516	EX3DV3	5500	Body	47.68	6.29	Pass	Pass	Pass	OFDM	N/A	Pass
5800	1/10/2021	3516	EX3DV3	5800	Body	48.71	5.54	Pass	Pass	Pass	OFDM	N/A	Pass
Frequency (MHz)	Date	Probe (SN#)	Probe (Model #)	Probe Calibration Point		Dielectric Properties		CW Validation			Modulation Validation		
				Frequency (MHz)	Fluid Type	σ	ϵ_r	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	PAR
835	1/10/2021	3516	EX3DV3	835	Body	54.2	0.98	Pass	Pass	Pass	GMSK	Pass	N/A
900	1/10/2021	3516	EX3DV3	900	Body	54	1.02	Pass	Pass	Pass	GMSK	Pass	N/A
1750	1/10/2021	3516	EX3DV3	1800	Body	52.9	1.41	Pass	Pass	Pass	GMSK	Pass	N/A
1900	1/10/2021	3516	EX3DV3	1900	Body	52.7	1.48	Pass	Pass	Pass	GMSK	Pass	N/A

12 APPENDIX B – WORST CASE SAR PLOTS

Date/Time: 12/3/2021 2:11:35 PM

Test Laboratory: Intertek

File Name: [SAR FCC 2.4GHz Band.da52:4](#)

12.1.1 SAR_FCC_2.4GHz Band

Procedure Notes:

DUT: Vocera C1K Badge;

Communication System: UID 0, Generic 802.11b/g/n (0); Communication System Band: 2.4 GHz Band; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2462 \text{ MHz}$; $\sigma = 2.048 \text{ S/m}$; $\epsilon_r = 50.622$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.27, 8.27, 8.27); Calibrated: 11/12/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2021
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

WiFi Flat Section Band 2/802.11b back side high/Area Scan 2 (51x71x1): Interpolated grid: $dx=1.500 \text{ mm}$, $dy=1.500 \text{ mm}$

Maximum value of SAR (interpolated) = 1.46 W/kg

WiFi Flat Section Band 2/802.11b back side high/zoom scan (9x8x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 24.156 V/m; Power Drift = 0.21 dB

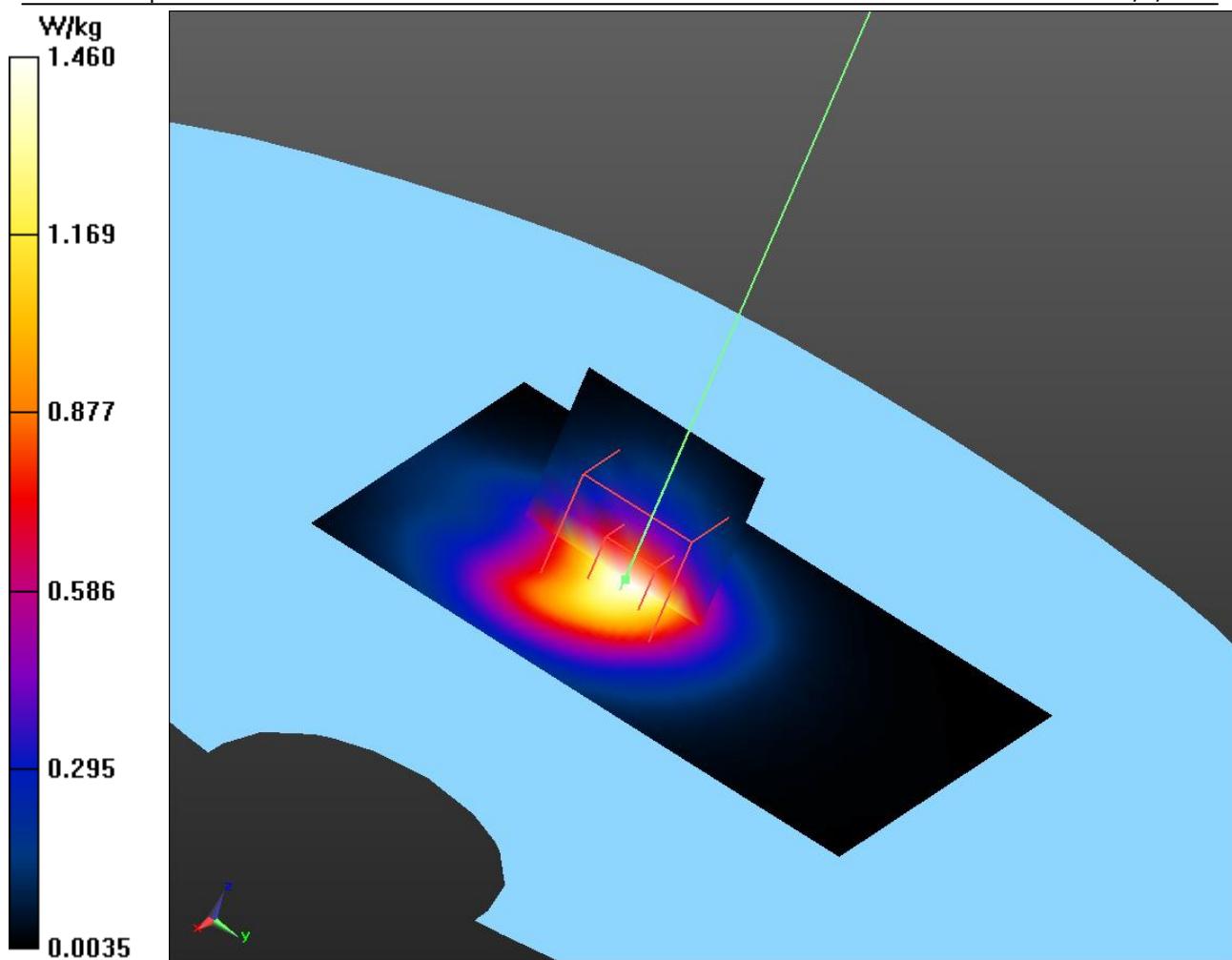
Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.847 W/kg; SAR(10 g) = 0.453 W/kg

Maximum value of SAR (measured) = 1.24 W/kg

WiFi Flat Section Band 2/802.11b back side high/Z Scan 2 (1x1x11): Measurement grid: $dx=20\text{mm}$, $dy=20\text{mm}$, $dz=2\text{mm}$

Maximum value of SAR (measured) = 1.25 W/kg



Evaluation For: Vocera Communications, Inc.

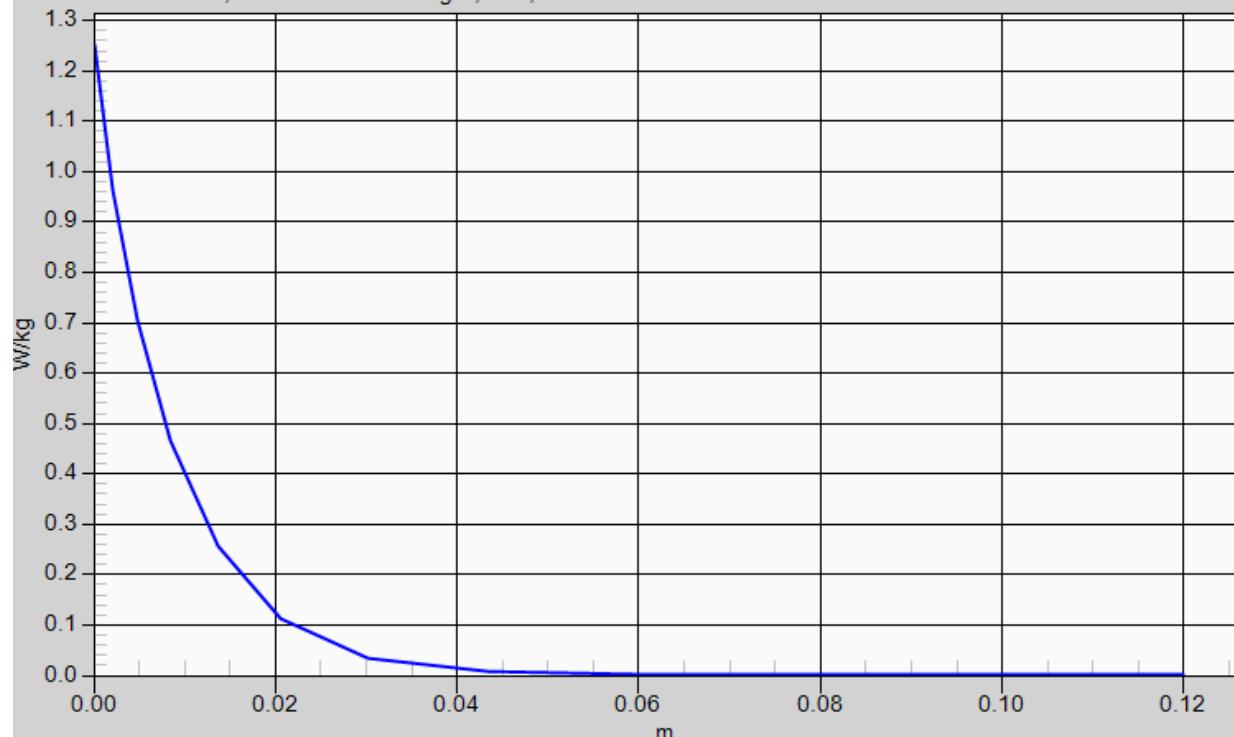
Product: Minibadge

Date: 2/7/2022

SAR Test Report

Evaluation For: Vocera Communications, Inc.

Product: Minibadge


Date: 2/7/2022

SAR Test Report

SAR(x,y,z,f0)

SAR;Z Scan 2:Value Along Z, X=0, Y=0

Markers

Date/Time: 12/8/2021 12:42:07 PM

Test Laboratory: Intertek

File Name: [SAR_5GHz_Bands.da52:4](#)

12.1.2 SAR_5GHz_Bands

Procedure Notes:

DUT: Vocera C1K Badge;

Communication System: UID 0, Generic 802.11a (0); Communication System Band: UNII Band 1; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5200$ MHz; $\sigma = 5.3$ S/m; $\epsilon_r = 47.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(4.48, 4.48, 4.48); Calibrated: 11/12/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2021
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

WWAN Flat-Section MSL Testing/802.11a ch 40 Front/Area Scan 2 (81x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.56 W/kg

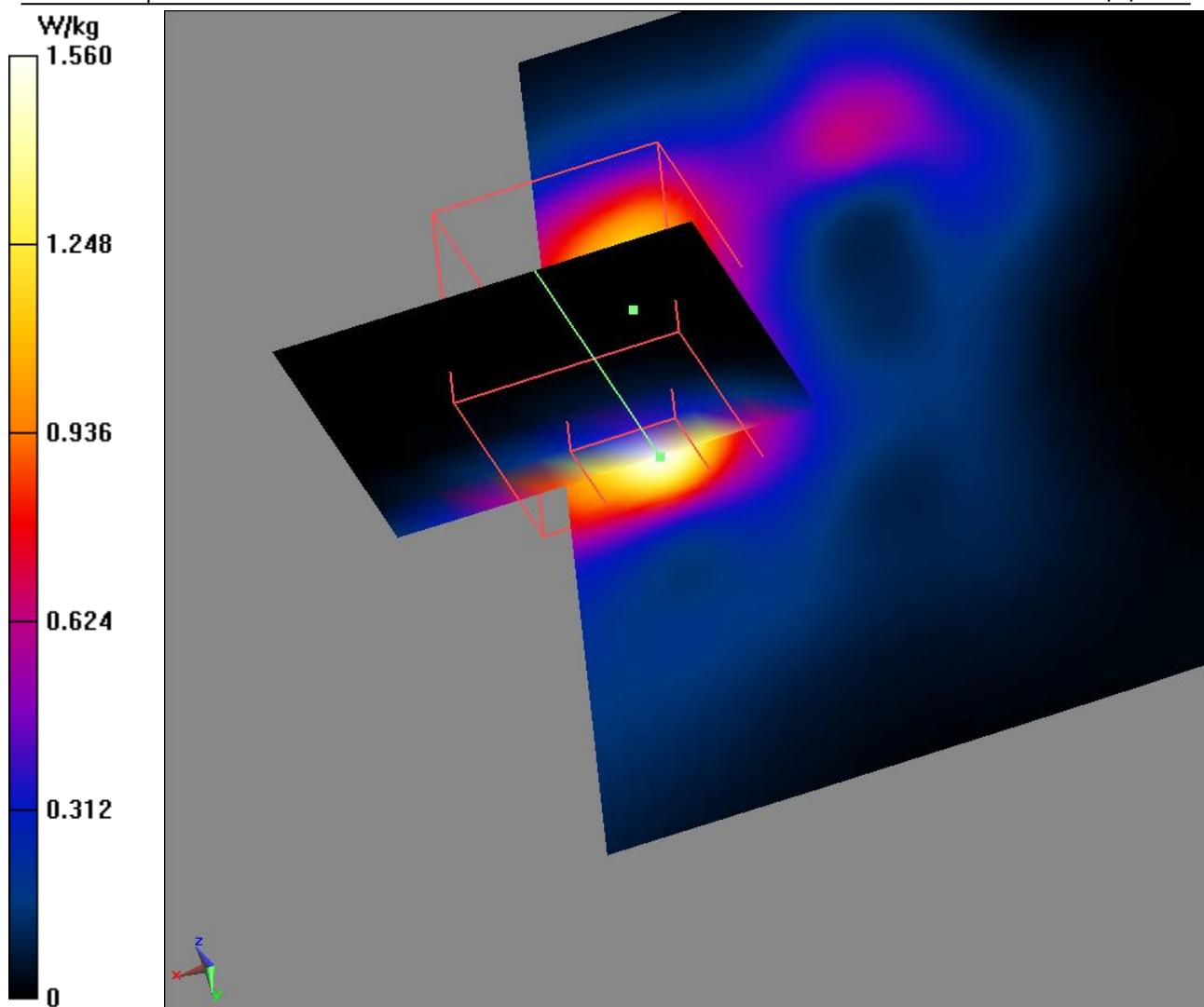
WWAN Flat-Section MSL Testing/802.11a ch 40 Front/Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.110 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 2.36 W/kg

SAR(1 g) = 0.671 W/kg; SAR(10 g) = 0.228 W/kg

Maximum value of SAR (measured) = 1.59 W/kg



Evaluation For: Vocera Communications, Inc.

Product: Minibadge

Date: 2/7/2022

SAR Test Report

13 APPENDIX C – DIPOLE VALIDATION PLOTS

Date/Time: 12/3/2021 10:03:00 AM

Test Laboratory: Intertek

File Name: [Dipole 2450.da52:4](#)

Dipole 2450

Procedure Notes:

DUT: Dipole 2450 MHz D2450V2; Serial: D2450V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450 \text{ MHz}$; $\sigma = 2.02 \text{ S/m}$; $\epsilon_r = 50.71$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

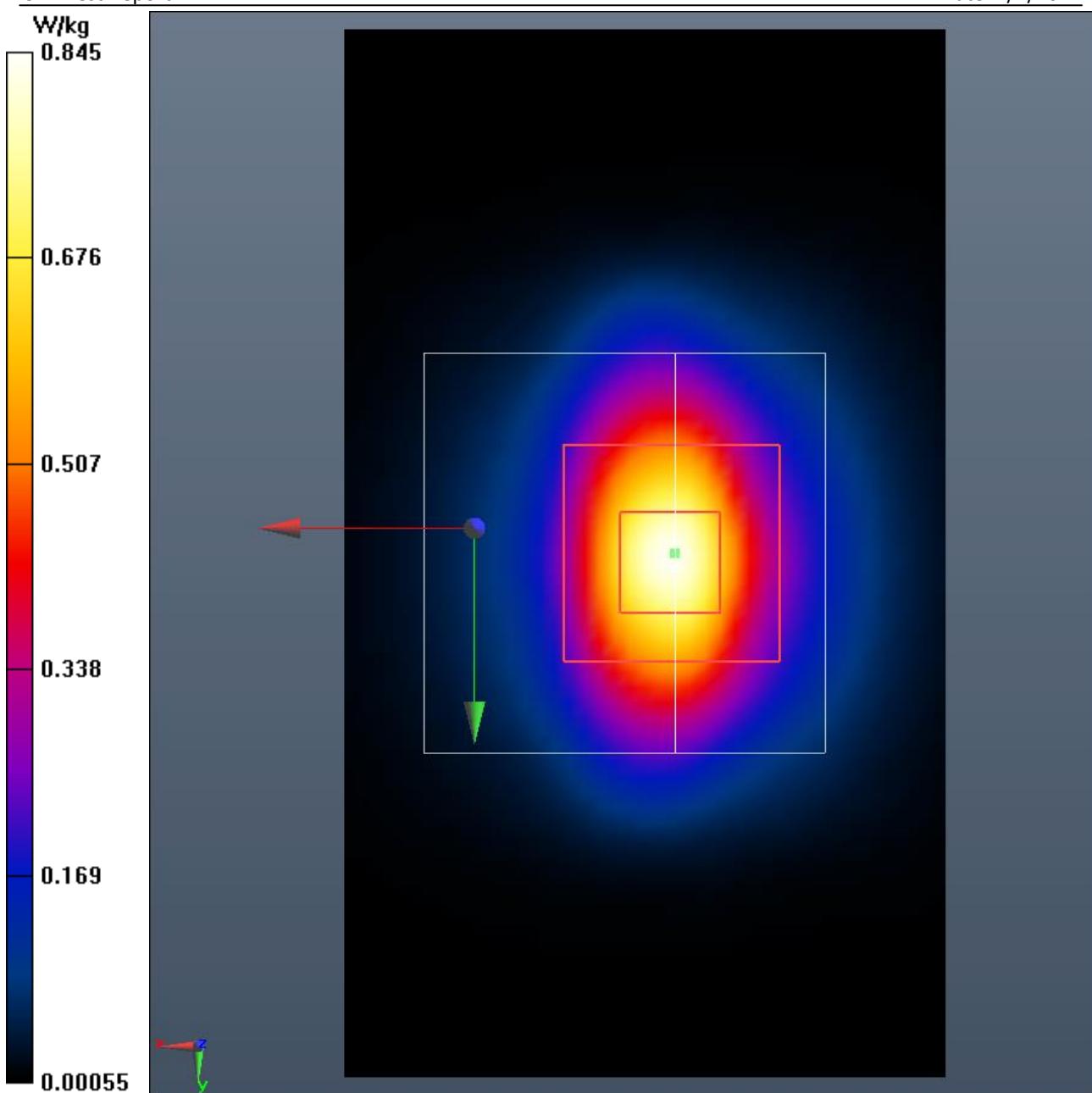
DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.27, 8.27, 8.27); Calibrated: 11/12/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2021
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY5 52.8.7(1137); SEMCAD X 14.6.10(7164)

WWAN Flat-Section MSL Testing/2450MHz Dipole/Area Scan 2 (41x71x1): Interpolated grid: $dx=1.500 \text{ mm}$, $dy=1.500 \text{ mm}$

Maximum value of SAR (interpolated) = 0.845 W/kg

WWAN Flat-Section MSL Testing/2450MHz Dipole/Zoom Scan (9x9x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$


Reference Value = 1.133 V/m; Power Drift = -0.47 dB

Peak SAR (extrapolated) = 107 W/kg

SAR(1 g) = 50 W/kg; SAR(10 g) = 22.7 W/kg

Normalized to target power = 1 W and actual power = 0.009 W

Maximum value of SAR (measured) = 85.5 W/kg

Date/Time: 12/4/2021 10:49:04 AM

Test Laboratory: Intertek

File Name: [Dipole 2450.da52:4](#)

Dipole 2450

Procedure Notes:

DUT: Dipole 2450 MHz D2450V2; Serial: D2450V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450 \text{ MHz}$; $\sigma = 2.02 \text{ S/m}$; $\epsilon_r = 50.71$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

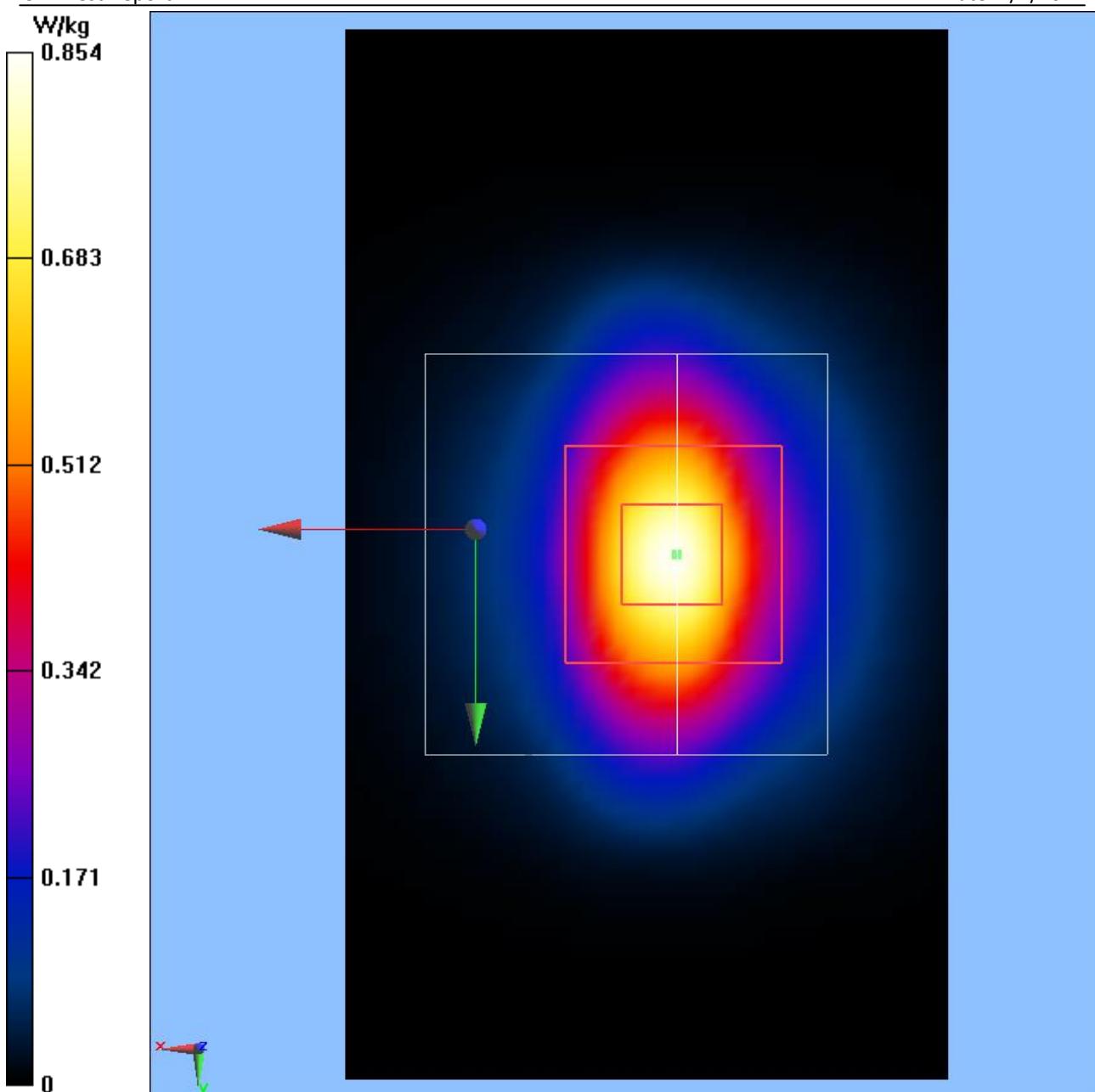
DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.27, 8.27, 8.27); Calibrated: 11/12/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2021
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY5 52.8.7(1137); SEMCAD X 14.6.10(7164)

WWAN Flat-Section MSL Testing/2450MHz Dipole 2/Area Scan 2 (41x71x1): Interpolated grid: $dx=1.500 \text{ mm}$, $dy=1.500 \text{ mm}$

Maximum value of SAR (interpolated) = 0.854 W/kg

WWAN Flat-Section MSL Testing/2450MHz Dipole 2/Zoom Scan (9x9x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$


Reference Value = 1.038 V/m; Power Drift = 0.25 dB

Peak SAR (extrapolated) = 111 W/kg

SAR(1 g) = 51.8 W/kg; SAR(10 g) = 23.4 W/kg

Normalized to target power = 1 W and actual power = 0.009 W

Maximum value of SAR (measured) = 88.7 W/kg

Date/Time: 12/15/2021 11:35:42 AM

Test Laboratory: Intertek

File Name: [Dipole 2450.da52:4](#)**Dipole 2450**

Procedure Notes:

DUT: Dipole 2450 MHz D2450V2; Serial: D2450V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450 \text{ MHz}$; $\sigma = 2.02 \text{ S/m}$; $\epsilon_r = 50.71$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.27, 8.27, 8.27); Calibrated: 11/12/2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2021
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY5 52.8.7(1137); SEMCAD X 14.6.10(7164)

WWAN Flat-Section MSL Testing/2450MHz Dipole 2 2/Area Scan 2 (41x71x1): Interpolated grid: $dx=1.500 \text{ mm}$, $dy=1.500 \text{ mm}$

Maximum value of SAR (interpolated) = 0.862 W/kg

WWAN Flat-Section MSL Testing/2450MHz Dipole 2 2/Zoom Scan (9x9x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

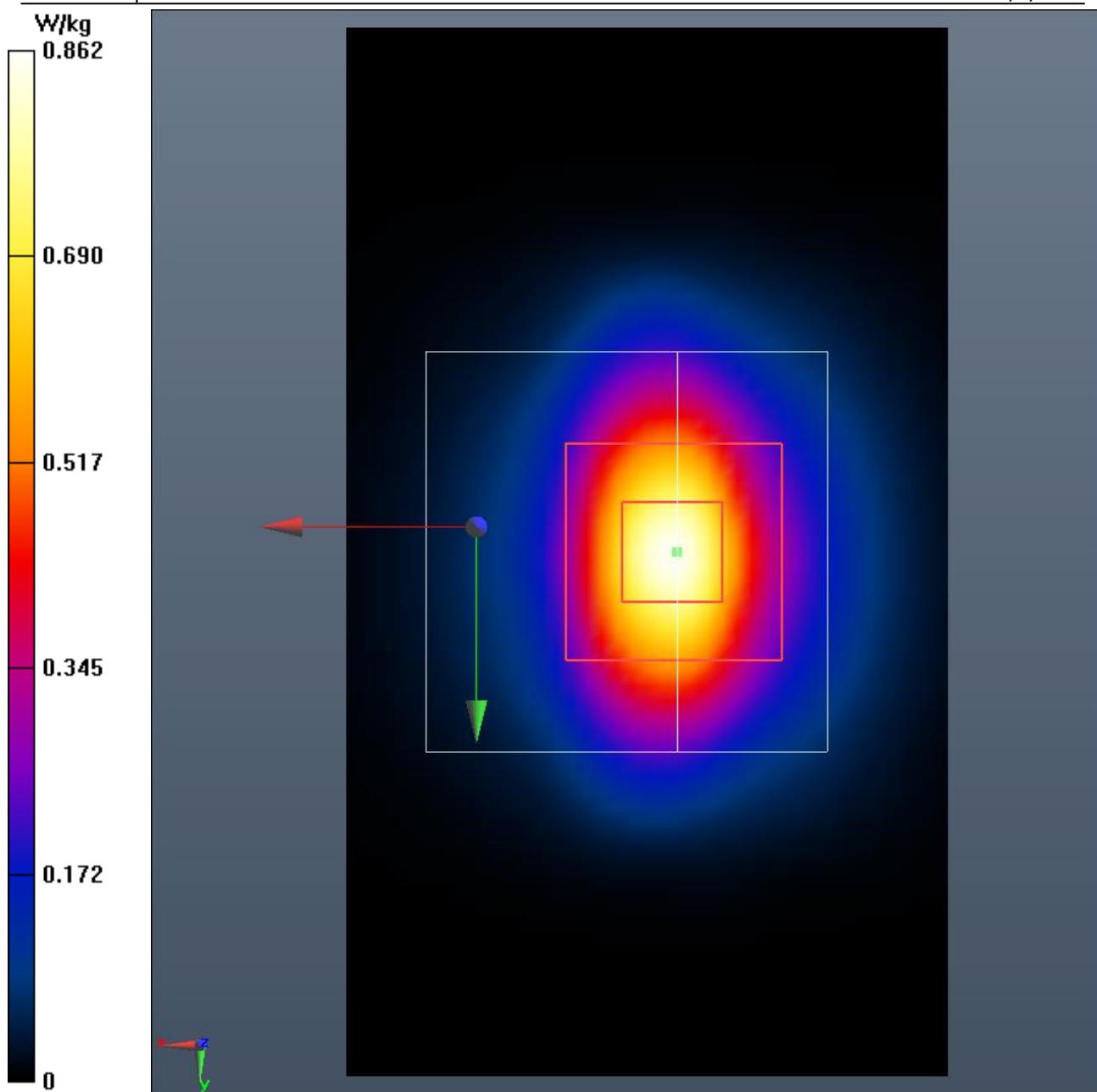
Reference Value = 1.058 V/m; Power Drift = -1.24 dB

Peak SAR (extrapolated) = 111 W/kg

SAR(1 g) = 52.2 W/kg; SAR(10 g) = 23.6 W/kg

Normalized to target power = 1 W and actual power = 0.009 W

Maximum value of SAR (measured) = 89.1 W/kg



Evaluation For: Vocera Communications, Inc.

Product: Minibadge

Date: 2/7/2022

SAR Test Report

Date/Time: 12/8/2021 4:46:36 PM

Test Laboratory: Intertek

File Name: [SAR_5GHz_Dipoles.da52:0](#)

13.1.1 SAR_5GHz_Dipoles

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

DUT: Dipole D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5200 \text{ MHz}$; $\sigma = 5.3 \text{ S/m}$; $\epsilon_r = 47.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(4.48, 4.48, 4.48); Calibrated: 11/12/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2021
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at 5GHz Frequency Band/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Area Scan (51x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm
Maximum value of SAR (interpolated) = 0.143 W/kg

System Performance Check at 5GHz Frequency Band/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

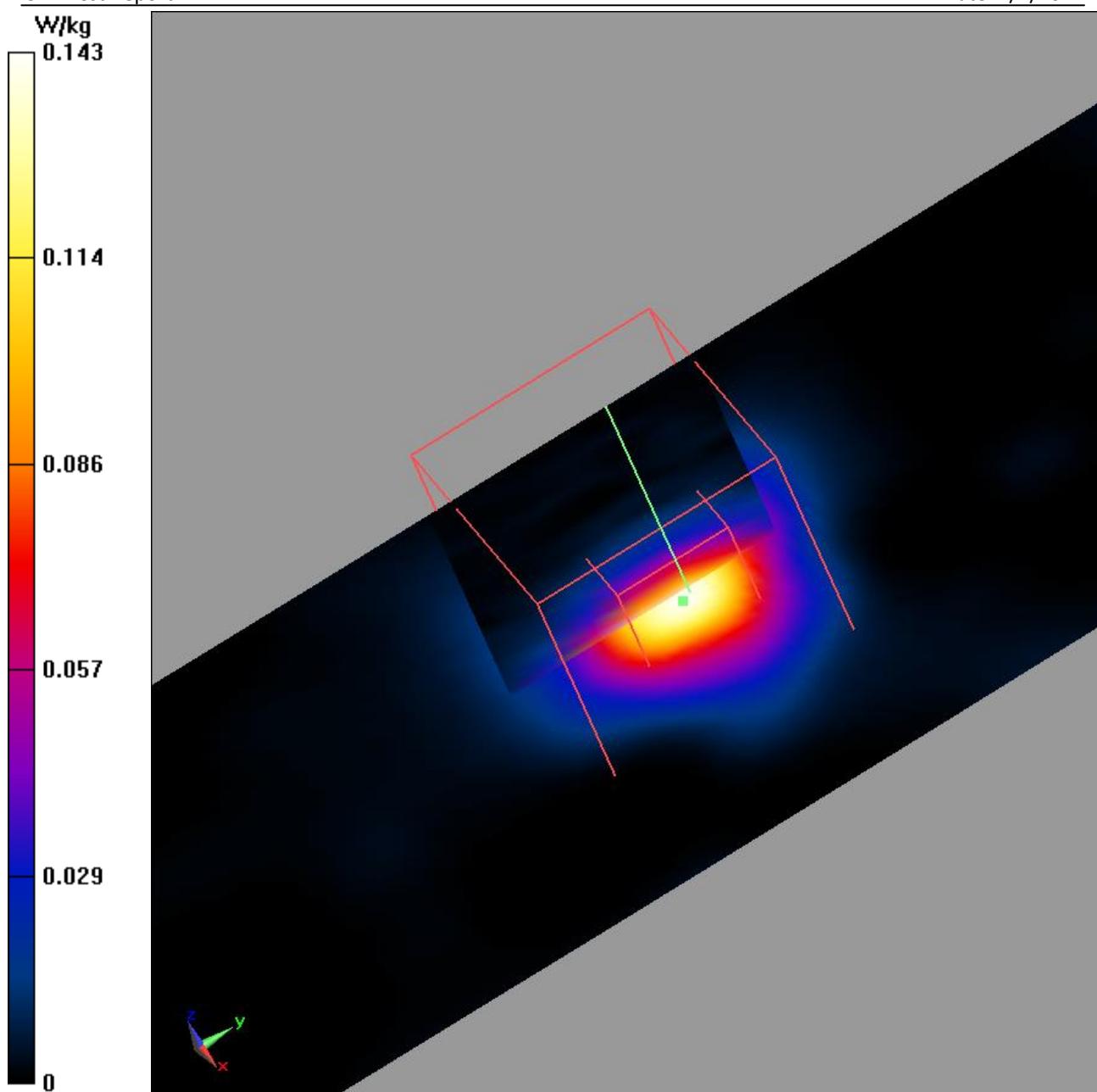
Reference Value = 5.190 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 289 W/kg

SAR(1 g) = 71.7 W/kg; SAR(10 g) = 18.3 W/kg

Normalized to target power = 1 W and actual power = 0.0009 W

Maximum value of SAR (measured) = 176 W/kg



SAR Test Report

Evaluation For: Vocera Communications, Inc.

Product: Minibadge

Date: 2/7/2022

Date/Time: 12/10/2021 12:17:57 PM

Test Laboratory: Intertek

File Name: [SAR_5GHz_Dipoles.da52:0](#)

13.1.2 SAR_5GHz_Dipoles

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

DUT: Dipole D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5500 \text{ MHz}$; $\sigma = 5.68 \text{ S/m}$; $\epsilon_r = 46.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(4.15, 4.15, 4.15); Calibrated: 11/12/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2021
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at 5GHz Frequency Band/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe) 2 3/Area

Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.147 W/kg

System Performance Check at 5GHz Frequency Band/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe) 2 3/Zoom

Scan (7x7x7) (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

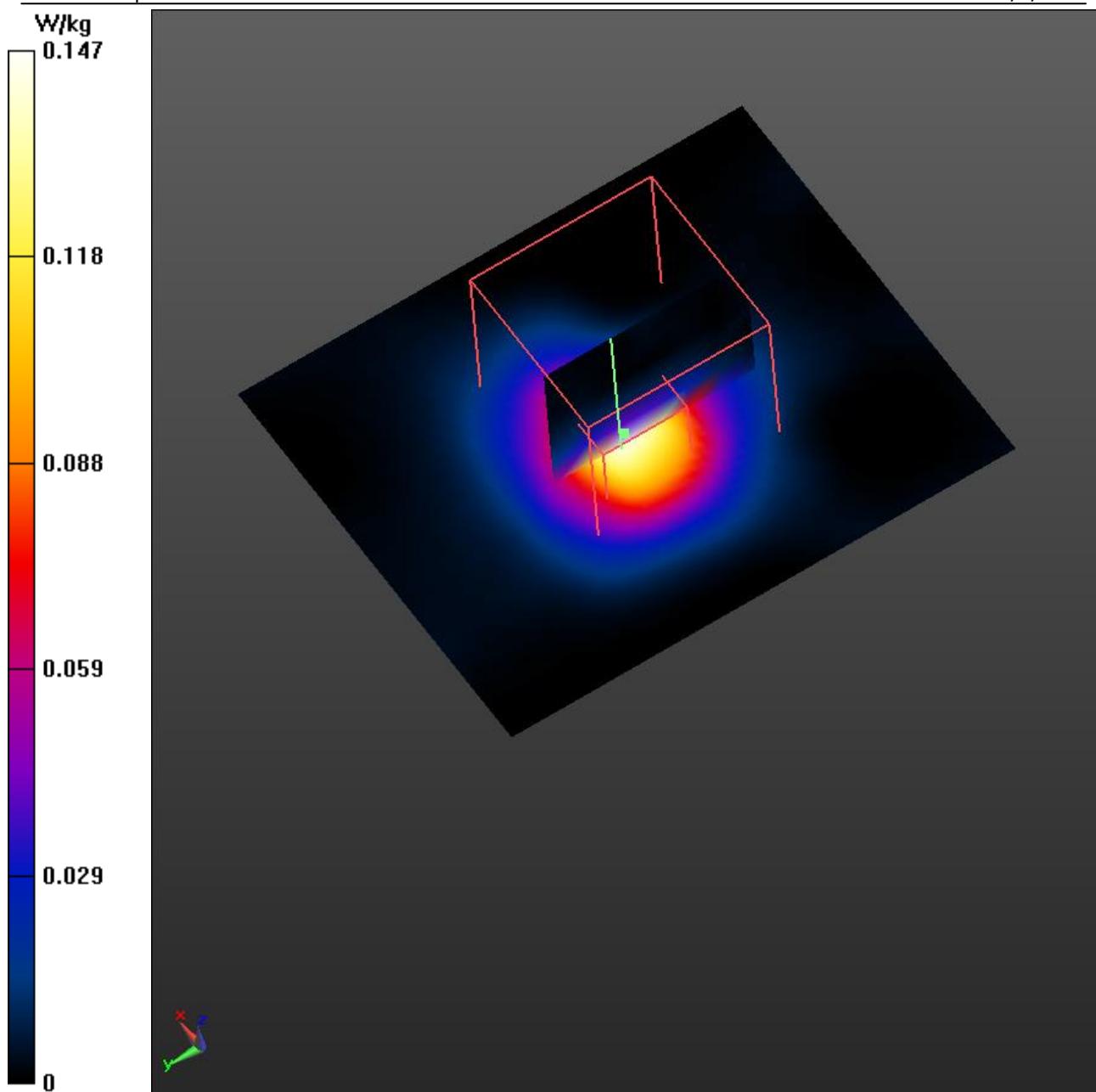
Reference Value = 5.370 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 214 W/kg

SAR(1 g) = 79.5 W/kg; SAR(10 g) = 20.7 W/kg

Normalized to target power = 1 W and actual power = 0.0008 W

Maximum value of SAR (measured) = 212 W/kg



Evaluation For: Vocera Communications, Inc.

Product: Minibadge

Date: 2/7/2022

SAR Test Report

Date/Time: 12/14/2021 1:18:34 PM

Test Laboratory: Intertek

File Name: [SAR_5GHz_Dipoles.da52:0](#)

13.1.3 SAR_5GHz_Dipoles

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

DUT: Dipole D5GHzV2; Serial: D5GHzV2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5800 \text{ MHz}$; $\sigma = 6.07 \text{ S/m}$; $\epsilon_r = 46$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(3.85, 3.85, 3.85); Calibrated: 11/12/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2021
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at 5GHz Frequency Band/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe) 2 2/Area

Scan (51x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.143 W/kg

System Performance Check at 5GHz Frequency Band/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe) 2 2/Zoom

Scan (7x7x7) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

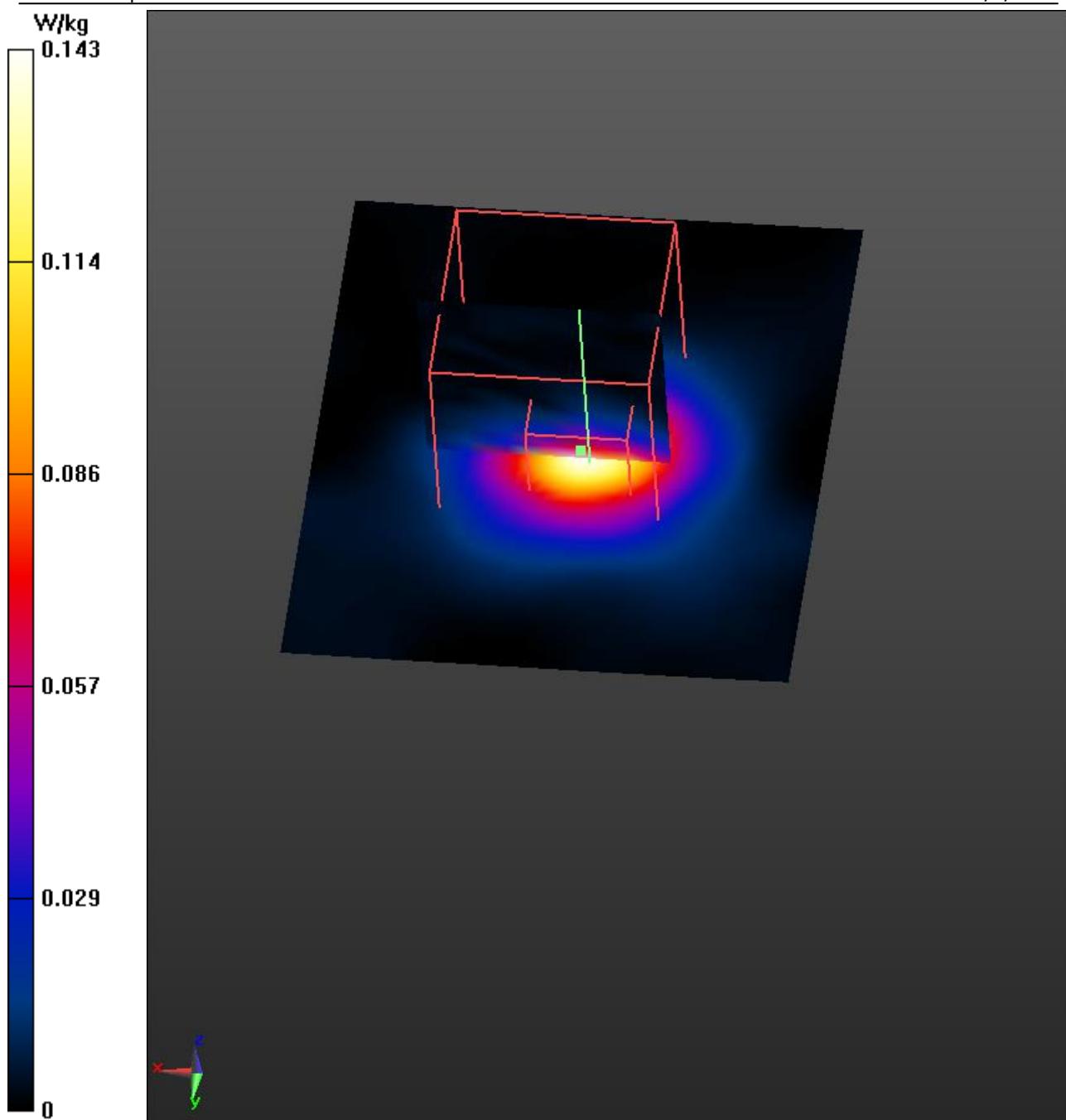
Reference Value = 4.828 V/m; Power Drift = 0.27 dB

Peak SAR (extrapolated) = 360 W/kg

SAR(1 g) = 81.1 W/kg; SAR(10 g) = 20.7 W/kg

Normalized to target power = 1 W and actual power = 0.00075 W

Maximum value of SAR (measured) = 232 W/kg



Evaluation For: Vocera Communications, Inc.

Product: Minibadge

Date: 2/7/2022

SAR Test Report

