

<u>Date(s) of Evaluation</u> July 17 & August 31, 2007

<u>Test Report Issue Date</u> September 06, 2007 <u>Test Report Serial No.</u> 061807QGZ-T838-S15WH

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX E - SYSTEM VALIDATION

Company:	Voc	era Communicatio	ns, Inc.	FCC ID:	QGZB2000	IC ID:	4362A-B2000	vocera.
Model(s):	B200	DUT Type:	Portab	Portable Communications Badge with 802.11b/g WLAN (held-to-ear)				VOCETA
2007 Celltech La	ibs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 46				Page 46 of 48		

Date of Evaluation:

June 08, 2007

Document Serial No.:

SV2450M-060807-R1.3

Fluid Type:

Evaluation Type: System Validation

Validation Dipole:

2450 MHz

Body

2450 I	MHz	SYS'	TEM '	VALI	DAT	ION
--------	-----	------	-------	-------------	-----	-----

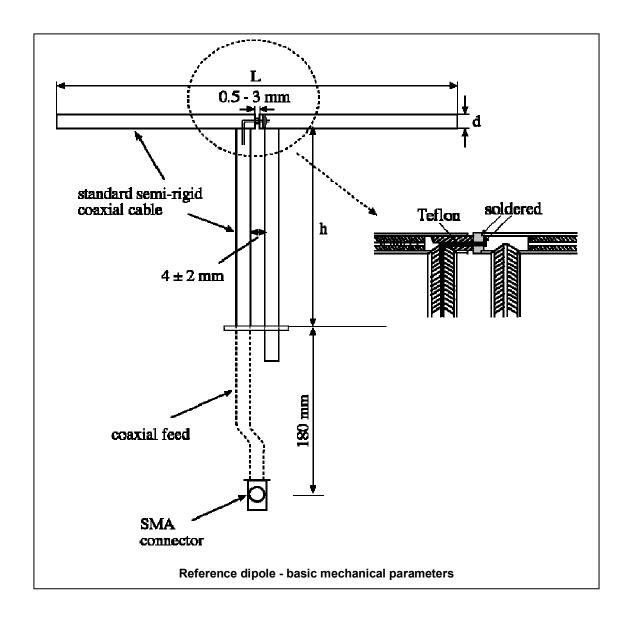
Type:	2450 MHz Validation Dipole
Asset Number:	00025
Serial Number:	150
Place of Validation:	Celltech Labs Inc.
Date of Validation:	June 08, 2007

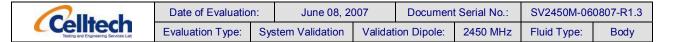
Celltech Labs Inc. certifies that the 2450 MHz System Validation was performed on the date indicated above.

Performed by:	Cheri Frangiadakis

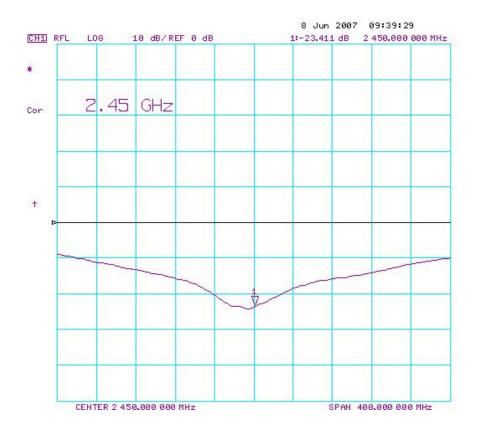
Approved by: Jon Hughes

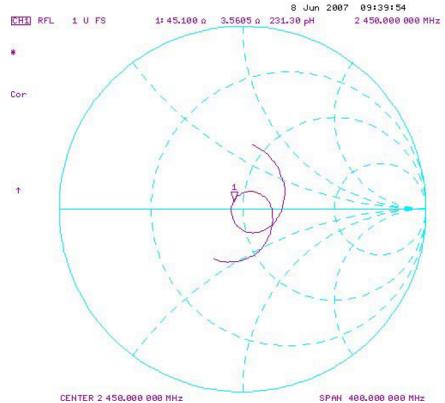
Date of Evaluation:June 08, 2007Document Serial No.:SV2450M-060807-R1.3Evaluation Type:System ValidationValidation Dipole:2450 MHzFluid Type:Body


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 2450 MHz $Re{Z} = 45.100\Omega$


 $\text{Im}\{Z\}=3.5605\Omega$

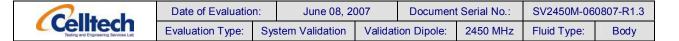

Return Loss at 2450 MHz -23.411dB

2. Validation Dipole VSWR Data

Date of Evaluation:June 08, 2007Document Serial No.:SV2450M-060807-R1.3Evaluation Type:System ValidationValidation Dipole:2450 MHzFluid Type:Body

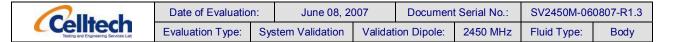
3. Validation Dipole Dimensions

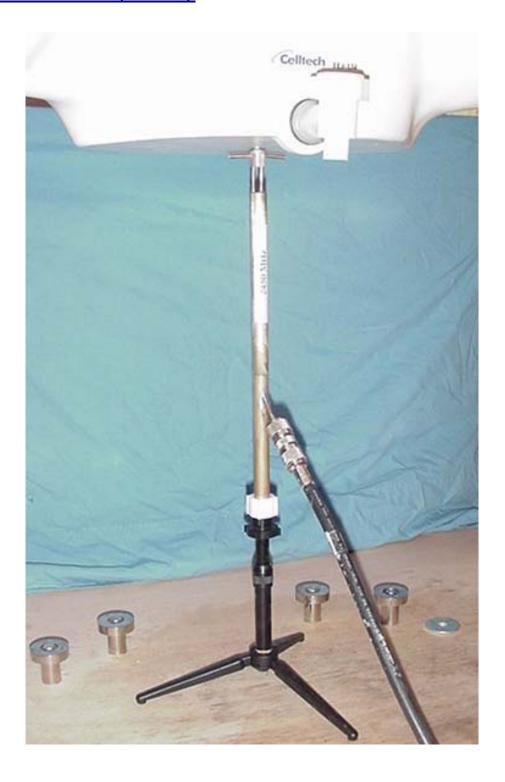
Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6


4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

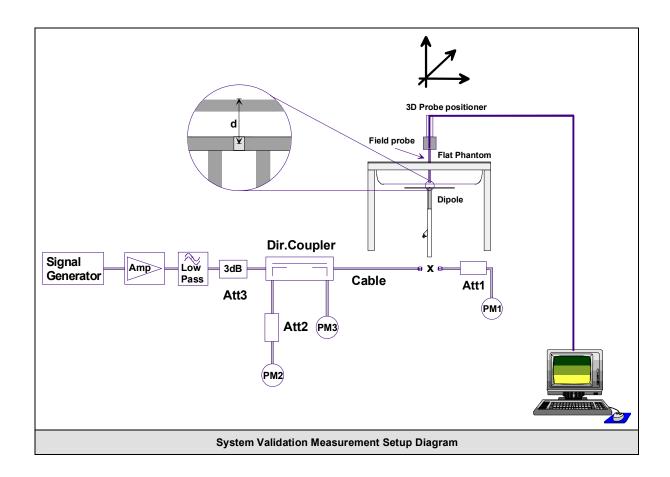

Dimensions: 50 cm (W) x 100 cm (L)

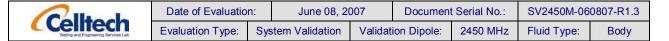


5. 2450 MHz System Validation Setup

6. 2450 MHz Validation Dipole Setup

Date of Evaluation: June 08, 2007 Document Serial No.: SV2450M-060807-R1.3 2450 MHz Body


Evaluation Type: System Validation Validation Dipole:


Fluid Type:

7. SAR Measurement

Measurements were made at the planar section of the SAM phantom using a dosimetric E-field probe EX3DV4 (S/N: 3600, conversion factor 6.31). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Measurement Conditions

The SAM phantom was filled with 2450 MHz Body tissue simulant.

Relative Permittivity: 50.1 (-4.9% deviation from target)

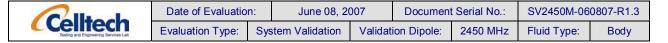
Conductivity: 1.99 mho/m (+2.1% deviation from target)
Fluid Temperature: 21.5 °C (Start of Test) / 21.2 °C (End of Test)

Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 22.7 °C
Barometric Pressure: 101.1 kPa
Humidity: 31 %

The 2450 MHz Body tissue simulant consisted of the following ingredients:


Ingredient	Percentage by weight		
Water	69.98%		
Glycol Monobutyl	30.00%		
Salt	C).02%	
IEEE Target Dielectric Parameters:	ε _r = 52.7 (+/-5%)	σ = 1.95 S/m (+/-5%)	

9. System Validation SAR Results

SAR @ 0.25W Input averaged over 1g (W/kg)				SAR @ 1W Input averaged over 1g (W/kg)			
SPEAG	Target	Measured	Deviation	SPEAG	Target	Measured	Deviation
12.8	+/- 10%	13.4	+4.7%	51.2	+/- 10%	53.6	+4.7%
SAR @ 0.2	25W Input av	veraged over	10g (W/kg)	SAR @ 1W Input averaged over 10g (W/kg)			
SPEAG	Target	Measured	Deviation	SPEAG Target		Measured	Deviation
5.93	+/- 10%	6.03	+1.7%	23.7	+/- 10%	24.1	+1.7%

Dipole	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

System Validation - 2450 MHz Dipole - June 8, 2007

DUT: Dipole 2450 MHz; Asset: 00025; Serial: 150

Ambient Temp: 22.7°C; Fluid Temp: 21.5°C; Barometric Pressure: 101.1 kPa; Humidity: 31%

Communication System: CW

Forward Conducted Power: 250 mW Frequency: 2450 MHz; Duty Cycle: 1:1

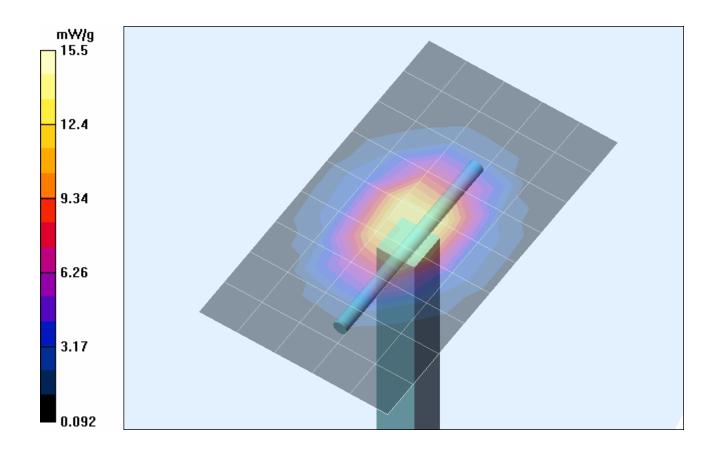
Medium: M2450 Medium parameters used: f = 2450 MHz; σ = 1.99 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³

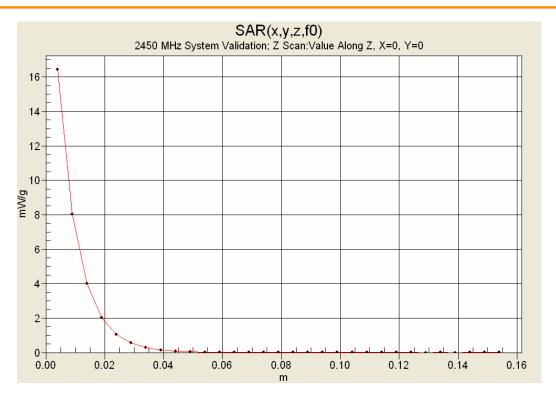
- Probe: EX3DV4 SN3600; ConvF(6.31, 6.31, 6.31); Calibrated: 24/01/2007
- Sensor-Surface: 2 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

2450 MHz System Validation/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 13.1 mW/g


2450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.9 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.03 mW/g

Maximum value of SAR (measured) = 15.5 mW/g

10. Measured Fluid Dielectric Parameters

System Validation - 2450 MHz (Body)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Fri 08/Jun/2007

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon

FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test e Epsilon of UIM

Test_s Sigma of UIM

******	*****	******	*******	*****
Freq	FCC_eB	FCC_sB	Test_e	Test_s
2.3500	52.83	1.85	50.39	1.89
2.3600	52.82	1.86	50.32	1.90
2.3700	52.81	1.87	50.28	1.91
2.3800	52.79	1.88	50.28	1.93
2.3900	52.78	1.89	50.31	1.94
2.4000	52.77	1.90	50.26	1.95
2.4100	52.75	1.91	50.24	1.96
2.4200	52.74	1.92	50.21	1.96
2.4300	52.73	1.93	50.21	1.98
2.4400	52.71	1.94	50.13	1.99
2.4500	52.70	1.95	50.09	1.99
2.4600	52.69	1.96	50.01	2.03
2.4700	52.67	1.98	50.10	2.03
2.4800	52.66	1.99	50.12	2.05
2.4900	52.65	2.01	50.09	2.07
2.5000	52.64	2.02	50.08	2.07
2.5100	52.62	2.04	50.03	2.08
2.5200	52.61	2.05	50.02	2.09
2.5300	52.60	2.06	49.93	2.10
2.5400	52.59	2.08	49.87	2.11
2.5500	52.57	2.09	49.78	2.13

Date of Evaluation:June 08, 2007Document Serial No.:SV2450M-060807-R1.3Evaluation Type:System ValidationValidation Dipole:2450 MHzFluid Type:Body

11. Measurement Uncertainties

UI	CERTAINT	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (2450 MHz)	5.9	Normal	1	1	5.9	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0	Rectangular	1.732050808	1	0.0	∞
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured) 5 Norm			1	0.6	3.0	∞
Combined Standard Uncertainty 9.81						
Expanded Uncertainty (k=2)						
Note(s) 1. Measurement Uncertainty Table in accordance with IEEE 1528-2003 and IEC 62209-1:2005.						

12. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	21Jun06	21Jun07
SPEAG EX3DV4 E-Field Probe	00213	3600	24Jan07	24Jan08
2450 MHz Validation Dipole	00025	150	08Jun07	08Jun08
SPEAG SAM Phantom V4.0C	00154	1033	N/A	N/A
ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	26Mar07	26Mar08
Gigatronics 80701A Power Sensor	00014	1833699	22Jan07	22Jan08
Gigatronics 80701A Power Sensor	00109	1834366	26Mar07	26Mar08
HP 8753ET Network Analyzer	00134	US39170292	20Apr07	20Apr08
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

2450 MHz SYSTEM VALIDATION

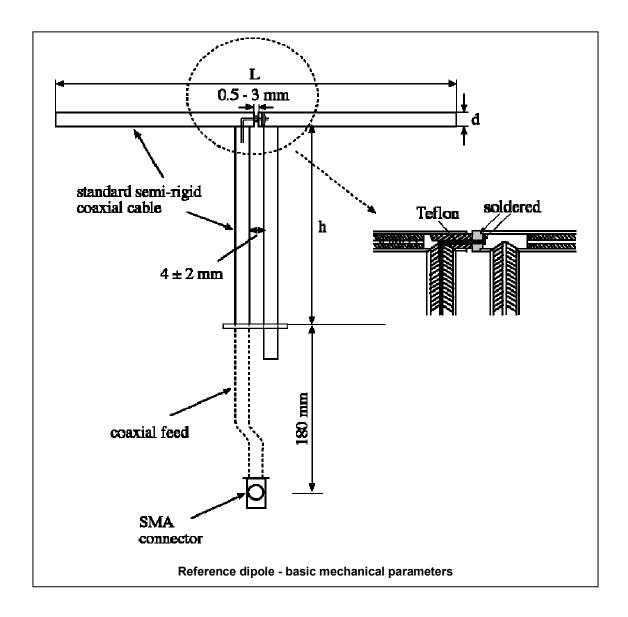
Type:	2450 MHz Validation Dipole
Asset Number:	00025
Serial Number:	150
Place of Validation:	Celltech Labs Inc.
Date of Validation:	July 16, 2007

Celltech Labs Inc. certifies that the 2450 MHz System Validation was performed on the date indicated above.

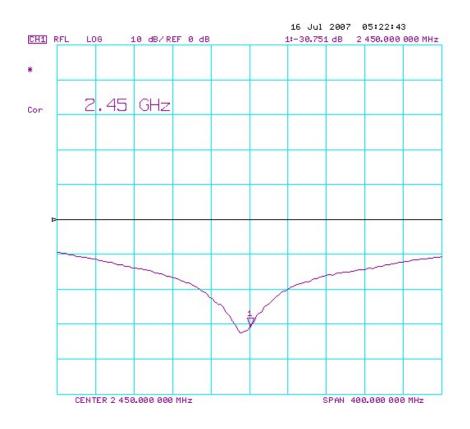
Performed by:	Cheri Frangiadakis	

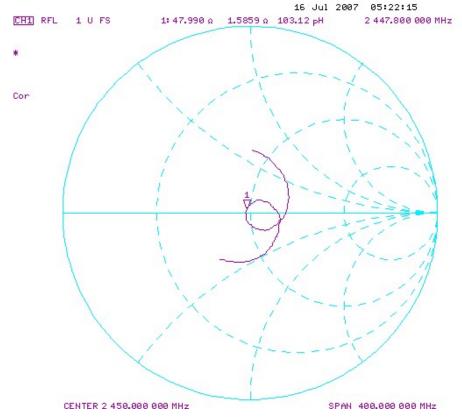
Approved by: Sean Johnston

Date of Evaluation:July 16, 2007Document Serial No.:SV2450B-071607-R1.0Evaluation Type:System ValidationValidation Dipole:2450 MHzFluid Type:Brain


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 2450 MHz $Re{Z} = 47.990\Omega$


 $Im{Z} = 1.5859\Omega$

Return Loss at 2450 MHz -30.751dB

2. Validation Dipole VSWR Data

Date of Evaluatio	n:	July 16, 20	07	Document Serial No.:		SV2450B-071607-R1.0	
Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	2450 MHz	Fluid Type:	Brain

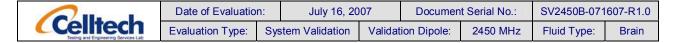
3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

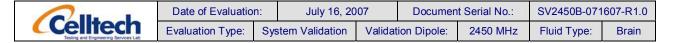
The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters


Dimensions: 50 cm (W) x 100 cm (L)

5. 2450 MHz System Validation Setup

6. 2450 MHz Validation Dipole Setup


Date of Evaluation:July 16, 2007Document Serial No.:SV2450B-071607-R1.0Evaluation Type:System ValidationValidation Dipole:2450 MHzFluid Type:Brain

7. SAR Measurement

Measurements were made at the planar section of the SAM phantom using a dosimetric E-field probe EX3DV4 (S/N: 3600, conversion factor 6.37). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Measurement Conditions

The SAM phantom was filled with 2450 MHz Brain tissue simulant.

Relative Permittivity: 38.0 (-3.0% deviation from target)

Conductivity: 1.84 mho/m (+2.3% deviation from target)
Fluid Temperature: 23.6°C (Start of Test) / 23.5 °C (End of Test)

Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 24.5 °C
Barometric Pressure: 101.8 kPa
Humidity: 33 %

The 2450 MHz Brain tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight				
Water	52.00%				
Glycol Monobutyl	48.00%				
IEEE Target Dielectric Parameters:	ε _r = 39.2 (+/-5%)	σ = 1.80 S/m (+/-5%)			

9. System Validation SAR Results

SAR @ 0.25W Input averaged over 1g (W/kg)			SAR @ 1W Input averaged over 1g (W/kg)						
IEEE/IEC	Target	Measured	Dev	viation	IEE	IEEE/IEC Target Measured D			Deviation
13.1	+/- 10%	14.2	+3	8.4% 52.4 +/- 10%		56.8	+8.4%		
SAR @ 0.2	25W Input av	veraged over	10g (\	W/kg)	SAR @ 1W Input averaged over 10g (W/I			g (W/kg)	
IEEE/IEC	Target	Measured	Dev	viation	IEE	E/IEC	Target	Measured	Deviation
6.00	+/- 10%	6.51	+8	8.5%	24.	0	+/- 10%	26.0	+8.5%
	Frequency (MHz)	1 g SAl	R	10 g	SAR	sur	cal SAR at face (above ed-point)	Local SAR at surface (y - 2 cm offset from feed-point) ^a	
	300	3.0		2	0 4.4		2.1		
	450	4.9	1.9 3		.3	7.2		3.2	
	835	9.5		6	.2	4.1		4.9	
	900	10.8		6	.9	16.4		5.4	
	1450	29.0		16	.0	50.2		6.5	
	1800	38.1		19	.8 69		69.5	6.8	
	1900	39.7		20	.5		72.1	6.6	
	2000	41.1		21	.1		74.6	6.5	
	2450	52.4		24	ŀ.O		104.2	7.7	
	3000	63.8		25.7 140.2 9.5					
Numerical reference SAR values for reference dipole and flat phantom normalized to 1 W (IEEE 1528-2003; IEC 62209-1:2005)									

System Validation - 2450 MHz Dipole - HSL - July 16, 2007

DUT: Dipole 2450 MHz; Asset: 00025; Serial: 150; Validation: 07/16/2007

Ambient Temp: 24.5°C; Fluid Temp: 23.6°C; Barometric Pressure: 101.8 kPa; Humidity: 33%

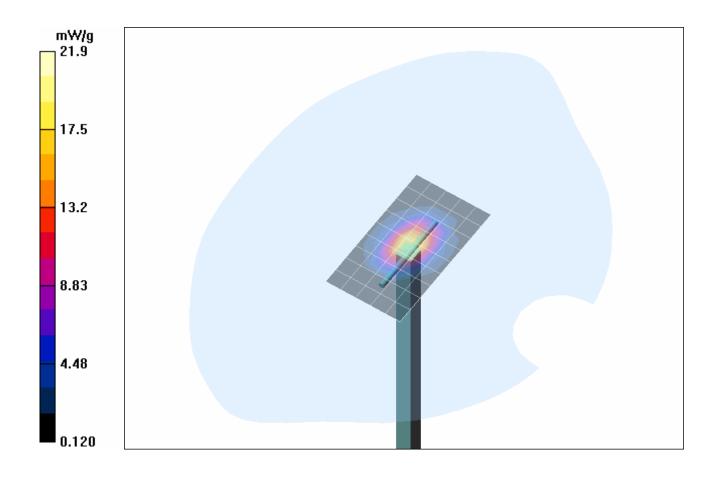
Communication System: CW Forward Conducted Power: 250 mW Frequency: 2450 MHz; Duty Cycle: 1:1

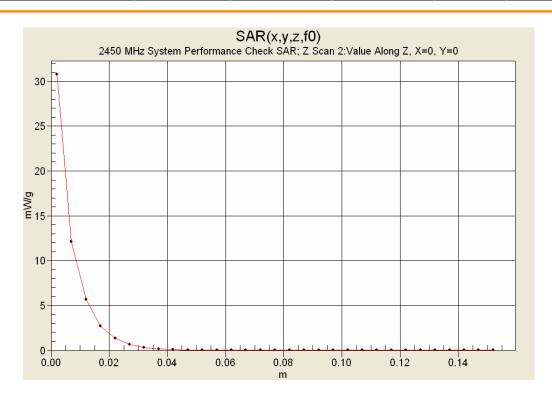
Medium: HSL2450 Medium parameters used: f = 2450 MHz; σ = 1.84 mho/m; ϵ_r = 38.0; ρ = 1000 kg/m³

- Probe: EX3DV4 SN3600; ConvF(6.37, 6.37, 6.37); Calibrated: 24/01/2007
- Sensor-Surface: 2 mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 13/03/2007
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

2450 MHz System Validation/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 17.7 mW/g


2450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 111.1 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.51 mW/g Maximum value of SAR (measured) = 21.9 mW/g

10. Measured Fluid Dielectric Parameters

System Validation - 2450 MHz (Brain)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Mon 16/Jul/2007

Frequency (GHz)

FCC_eH FCC OÉT 65 Supplement C (June 2001) Limits for Head Epsilon

FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq				Test_s 1.72
				1.73
		_		1.74
2.3800	39.32	1.74	38.20	1.76
2.3900	39.31	1.75	38.14	1.76
2.4000	39.29	1.76	38.15	1.78
2.4100	39.27	1.76	38.18	1.79
2.4200	39.25	1.77	38.08	1.80
2.4300	39.24	1.78	38.08	1.81
2.4400	39.22	1.79	37.99	1.83
2.4500	39.20	1.80	37.95	1.84
2.4600	39.19	1.81	37.95	1.85
2.4700	39.17	1.82	37.86	1.87
2.4800	39.16	1.83	37.84	1.88
2.4900	39.15	1.84	37.81	1.89
2.5000	39.14	1.85	37.78	1.91
2.5100	39.12	1.87	37.76	1.92
2.5200	39.11	1.88	37.70	1.92
2.5300	39.10	1.89	37.68	1.94
2.5400	39.09	1.90	37.65	1.95
2.5500	39.07	1.91	37.60	1.97
	Freq 2.3500 2.3600 2.3700 2.3800 2.3900 2.4000 2.4100 2.4200 2.4300 2.4400 2.4500 2.4600 2.4700 2.4800 2.4900 2.5000 2.5100 2.5200 2.5300 2.5400	Freq	2.3500 39.38 1.71 2.3600 39.36 1.72 2.3700 39.34 1.73 2.3800 39.32 1.74 2.3900 39.31 1.75 2.4000 39.29 1.76 2.4100 39.27 1.76 2.4200 39.25 1.77 2.4300 39.24 1.78 2.4400 39.22 1.79 2.4500 39.10 1.80 2.4700 39.19 1.81 2.4700 39.17 1.82 2.4800 39.16 1.83 2.4900 39.15 1.84 2.5000 39.14 1.85 2.5100 39.12 1.87 2.5200 39.11 1.88 2.5300 39.10 1.89 2.5400 39.09 1.90	Freq 2.3500 39.38 1.71 38.30 2.3600 39.36 1.72 38.30 2.3700 39.34 1.73 38.22 2.3800 39.34 1.74 38.20 2.3900 39.31 1.75 38.14 2.4000 39.29 1.76 38.15 2.4100 39.27 1.76 38.18 2.4200 39.25 1.77 38.08 2.4300 39.24 1.78 38.08 2.4400 39.22 1.79 37.99 2.4500 39.10 1.80 37.95 2.4700 39.17 1.82 37.86 2.4800 39.16 1.83 37.84 2.4900 39.15 1.84 37.81 2.5000 39.14 1.85 37.78 2.5100 39.12 1.87 37.76 2.5200 39.11 1.88 37.70 2.5300 39.10 1.89 37.68 2.5400 39.10 1.89 37.68 2.5400 39.10 1.89 37.68

11. Measurement Uncertainties

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION							
Error Description	Error Description Uncertainty Value ±% Probability Distribution Divisor ci 1g		Uncertainty Value ±% (1g)	V _i or V _{eff}			
Measurement System							
Probe calibration (2450 MHz)	5.9	Normal	1	1	5.9	∞	
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞	
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞	
Spatial resolution	0	Rectangular			0.0	∞	
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞	
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞	
Detection limit	1	Rectangular	1.732050808	1	0.6	∞	
Readout electronics	0.3	Normal	1	1	0.3	∞	
Response time	0	Rectangular	1.732050808	1	0.0	∞	
Integration time	0	Rectangular	1.732050808	1	0.0	∞	
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞	
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞	
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞	
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞	
Dipole							
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞	
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞	
Phantom and Setup							
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞	
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞	
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	∞	
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞	
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	∞	
Combined Standard Uncertainty 9.81							
Expanded Uncertainty (k=2) 19.61							
Note(s) 1. Measurement Uncertainty Table in accordance with IEEE 1528-2003 and IEC 62209-1:2005.							

12. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE3	00018	370	13Mar07	13Mar08
SPEAG EX3DV4 E-Field Probe	00213	3600	24Jan07	24Jan08
2450 MHz Validation Dipole	00025	150	16Jul07	16Jul08
SPEAG SAM Phantom V4.0C	00154	1033	N/A	N/A
ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	26Mar07	26Mar08
Gigatronics 80701A Power Sensor	00014	1833699	22Jan07	22Jan08
Gigatronics 80701A Power Sensor	00109	1834366	26Mar07	26Mar08
HP 8753ET Network Analyzer	00134	US39170292	20Apr07	20Apr08
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR