

PAC Products Limited

Application
For Certification
PAC Electronic Fence

FCC ID: QGS6252009

June, 2002

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. No quotations from reports or use of Intertek Testing Services name is permitted except as expressly authorized by Intertek Testing Services in writing. The report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. The NVLAP logo is applicable for testing to IEC/CISPR 22:1993 and FCC-47 CFR part 15 only.

ITS Intertek Testing Services

TABLE OF CONTENTS

1.0	General Description.....	1
1.1	Related Submittal(s) Grants	1
1.2	Product Description	1
1.3	Test Methodology	1
1.4	Test Facility	1
2.0	System Test Configuration.....	2
2.1	Justification.....	2
2.2	EUT Exercising Software	2
2.3	Special Accessories.....	2
2.4	Equipment Modification	2
2.5	Support Equipment List and Description.....	2
2.6	Test Configuration Block Diagram.....	3
3.0	Test Results.....	4
3.1	Radiated Emissions, FCC 15.209	5
3.2	Conducted Emissions, FCC 15.207	10
3.3	Test Procedure	13
3.4	Field Strength Calculation	14
4.0	Test Equipment.....	15
EXHIBIT I		
	Test Set Up Photographs.....	16
EXHIBIT II		
	FCC ID Label Location.....	21
EXHIBIT III		
	External Photographs	22
EXHIBIT IV		
	Internal Photographs	24
EXHIBIT V		
	Electrical Schematics and Block Diagram	27
EXHIBIT VI		
	User Manual and Operational Description.....	28

1.0 GENERAL DESCRIPTION

1.1 Related Submittals Grants

This is single application of the *PAC Electronic Fence* for Certification under Part 15.209
There are no other simultaneous applications.

1.2 Product Description

The *PAC Electronic Fence* is an induction loop fence transmitter FC3 that connects directly to an loop-wire antenna to provide a low frequency signal that activate a dog containment collar unit.

PAC Electronic Fence Antenna

The *PAC Electronic Fence* antenna is a loop-wire antenna (1.5mm² multi-cored cable PVC 7/0.53 BS 6491X, or equivalent) into a loop of 1500 yards – 15 to 20 ohms max.

1.3 Test Methodology

Emission measurements were performed according to the procedures specified in **ANSI C63.4 (1992)**. All measurements were performed in 3m full size semi-anechoic chamber, and for each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The test site facility used to collect the radiated and conducted measurement data is located at 7250 Hudson Blvd., Oakdale, Minnesota. This test facility has been fully described in a report dated on May 2000 submitted to your office. Please reference the Registration number: 90706, dated May 19,2000.

2.0 SYSTEM TEST CONFIGURATION

2.1 Justification

N/A

2.2 EUT Exercising Software

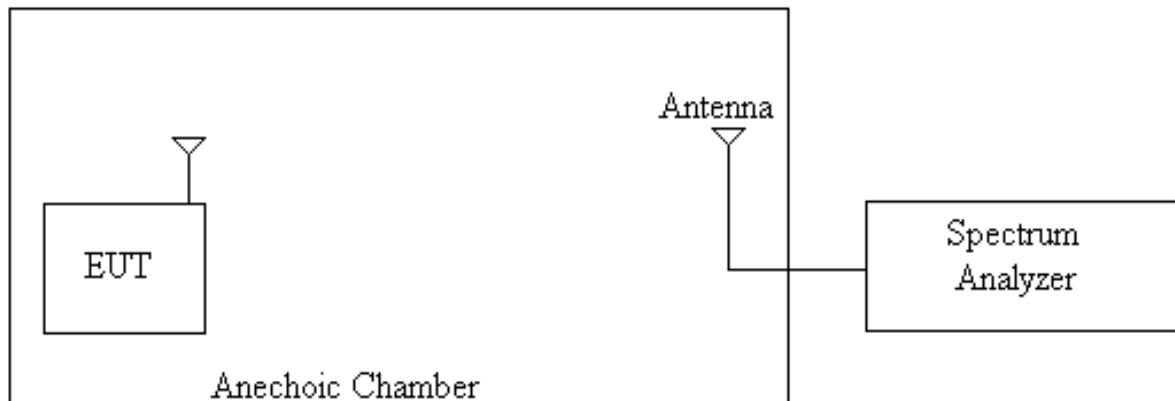
N/A

2.3 Special Accessories

There are no special accessories necessary for compliance of these products.

2.4 Equipment Modification

No modifications were installed during the testing.


2.5 Support Equipment List and Description

N/A

2.6 Test Setup and Test Configuration Block Diagrams

The EUT was setup as tabletop equipment, the EUT transmitting antenna (loop-wire) was connected to the transmitter. The EUT was powered at 120VAC/60Hz through AD41-1200300DU AC Adapter 120VAC/12VDC. The transmitter output power was adjusted to the maximum.

Field Strength Measurements

3.0 EMISSION RESULTS

Data is included for the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs, data tables and graphical representations of the emissions are included.

The EUT is intended for operation under the requirements of Part 15 Subpart C. Specific test requirements include the following:

47 CFR 15.209
47 CFR 15.207

Radiated Emissions
Conducted Emissions

3.1 Radiated Emissions, FCC 15.209

The Radiated Emissions testing was performed in frequency range from 9kHz to 1GHz. The transmitter output power was adjusted to the maximum.

Table # 3-1-1 and Graphs ## 3-1-1, 3-1-2, 3-1-3, and 3-1-4 show the Radiated Emissions at frequency range from 9kHz to 30MHz.

Table # 3-1-2 and Graph # 3-1-5 show the Radiated Emissions at frequency range from 30MHz to 1GHz.

ITS Intertek Testing Services

Radiated Emissions from 9kHz to 30MHz

Date: 06-10-2002

Company: PAC Products Limited
Model: PAC Electronic Fence
Test Engineer: Norman Shpilsher
Special Info:
Standard: FCC Part 15.209
Note:
 Measurement distance 3m.
 Distance Factor 80dB from 9kHz to 490kHz, and
 40dB from 490kHz to 30MHz.
 The table shows the worst case radiated emissions.
 Measurements were taken using a Peak detector with RBW 10kHz
 from 110 to 490kHz and CISPR Quasi-Peak detector with
 RBW 100Hz (below 150kHz) and 10kHz (above 150kHz).

Table # 3-1-1

Frequency MHz	Reading dB μ V	Ant. CF dB(1/m)	Net at 3m dB μ V/m	Distance Factor dB	(*)15.209 Limit dB μ V/m	Limit at 3m dB μ V/m	Margin dB
0.016	37.9	75.1	112.9	80.0	43.7	123.7	-10.8
0.026	30.6	70.5	101.0	80.0	39.4	119.4	-18.3
0.031	30.1	68.9	99.0	80.0	37.7	117.7	-18.6
0.043	27.2	66.2	93.4	80.0	34.9	114.9	-21.6
0.047	25.7	65.1	90.9	80.0	34.1	114.1	-23.3
0.051	19.6	64.3	83.9	80.0	33.4	113.4	-29.5
0.060	20.0	63.4	83.4	80.0	32.1	112.1	-28.8
0.063	19.3	62.9	82.2	80.0	31.7	111.7	-29.5
0.078	15.0	60.6	75.6	80.0	29.8	109.8	-34.2
0.104	9.9	58.1	67.9	80.0	27.3	107.3	-39.3
0.117	17.2	57.4	74.5	80.0	26.3	106.3	-31.7
0.135	29.8	56.3	86.1	80.0	25.0	105.0	-18.9
0.179	36.3	53.8	90.1	80.0	22.6	102.6	-12.4
1.030	16.9	38.6	55.5	40.0	27.3	67.3	-11.9

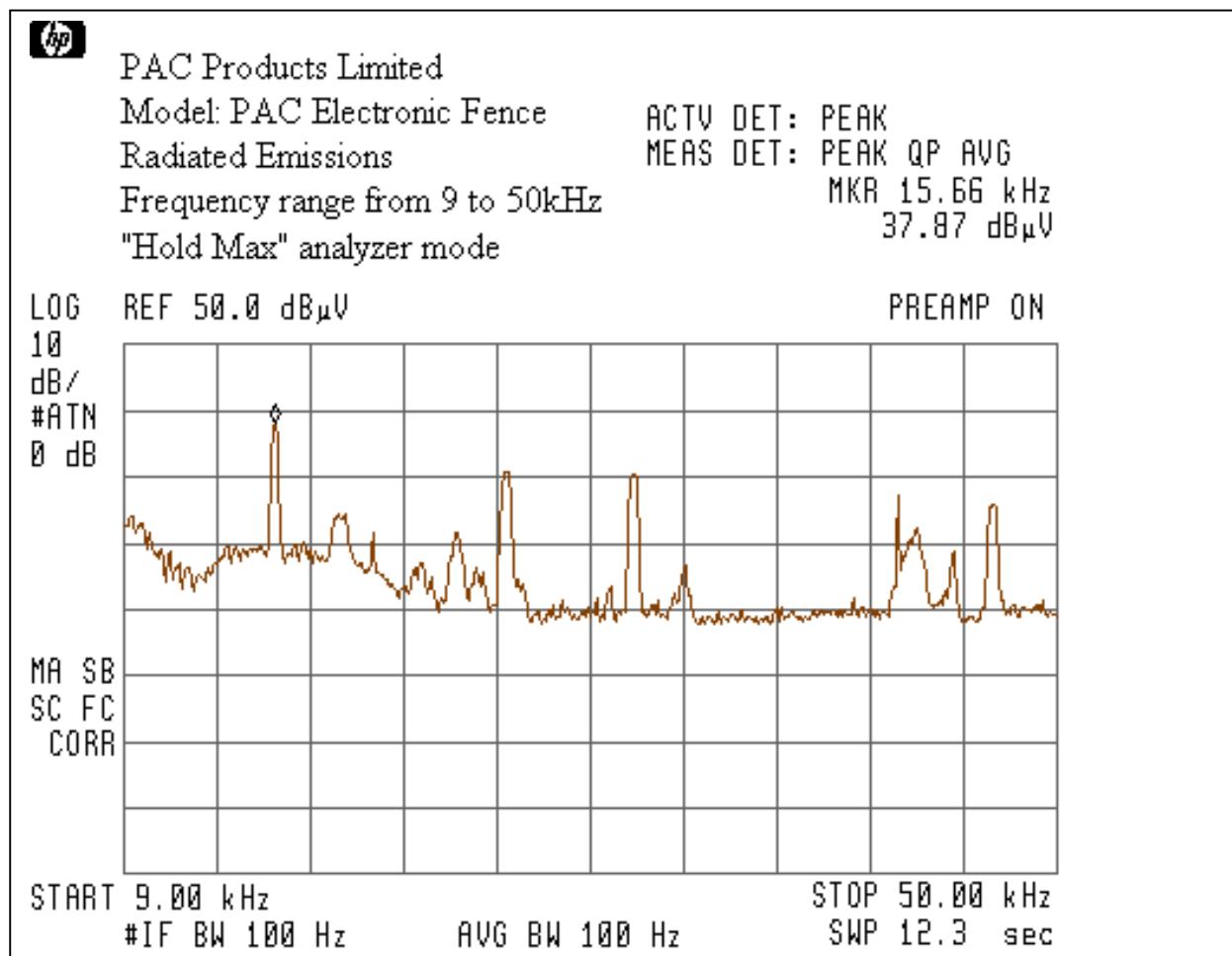
Comments:

(*) FCC 15.209 limits given with Average detector at frequencies from 9 to 90kHz and from 110 to 490kHz, at other frequencies the limits given with CISPR Quasi-Peak detector

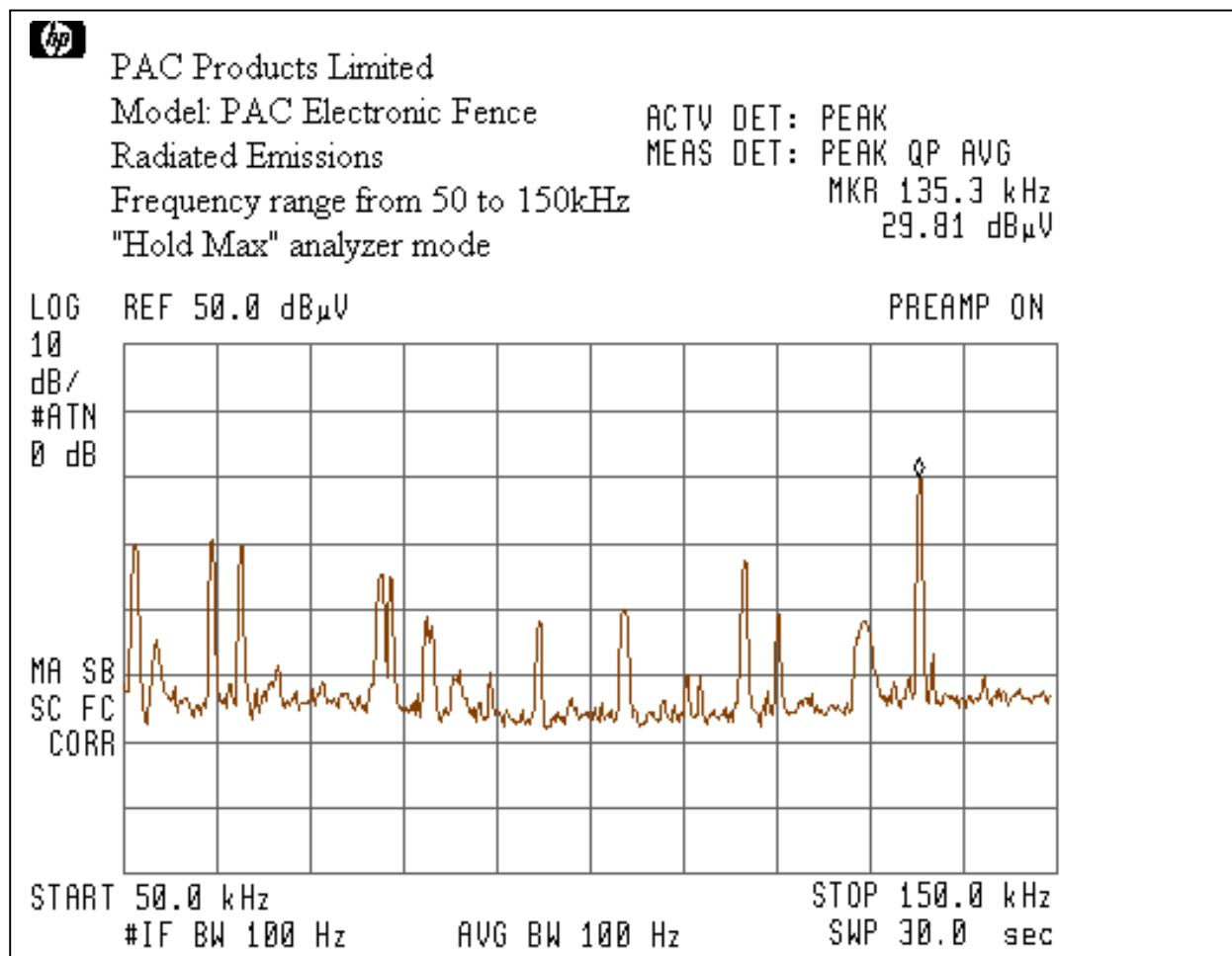
ITS Intertek Testing Services

TILE Instrument Control System EMI Measurement Software

Radiated Emissions from 30MHz to 1GHz


Date: 06-10-2002

Company: PAC Products Limited
Model: PAC Electronic Fence
Test Engineer: Norman Shpilsher
Special Info:
Standard: FCC Part 15.209
Test Site: 3m Anechoic Chamber, 3m measurement distance
Note: The table shows the worst case radiated emissions
All measurements were taken using a Peak detector


Table # 3-1-2

Frequency	Ant Polarity	Reading dB _u V	Total CF dB(1/m)	QP at 3m dB _u V/m	QP Limit dB _u V/m	Margin dB
47.415 MHz	V	15.9	11.0	26.8	40.0	-13.2
127.12 MHz	V	12.6	13.6	26.2	43.5	-17.3
987.06 MHz	H	13.8	26.2	40.1	54.0	-13.9

Graph # 3-1-1

Graph # 3-1-2

3.2 Conducted Emissions, FCC 15.207

The Conducted Emissions testing was performed in frequency range from 450kHz to 30MHz. The transmitter output power was adjusted to the maximum and the collar unit was charging to produce the maximum emissions.

Table # 3-2-1 and Graph # 3-2-1 show the Conducted Emissions.

ITS Intertek Testing Services

TILE Instrument Control System EMI Measurement Software

Conducted Emissions

Date:

06-10-2002

Company:

PAC Products Limited

Model:

PAC Electronic Fence

Test Engineer:

Norman Shpilsher

Special Config. Info:

FCC Part 15.207

Standard:

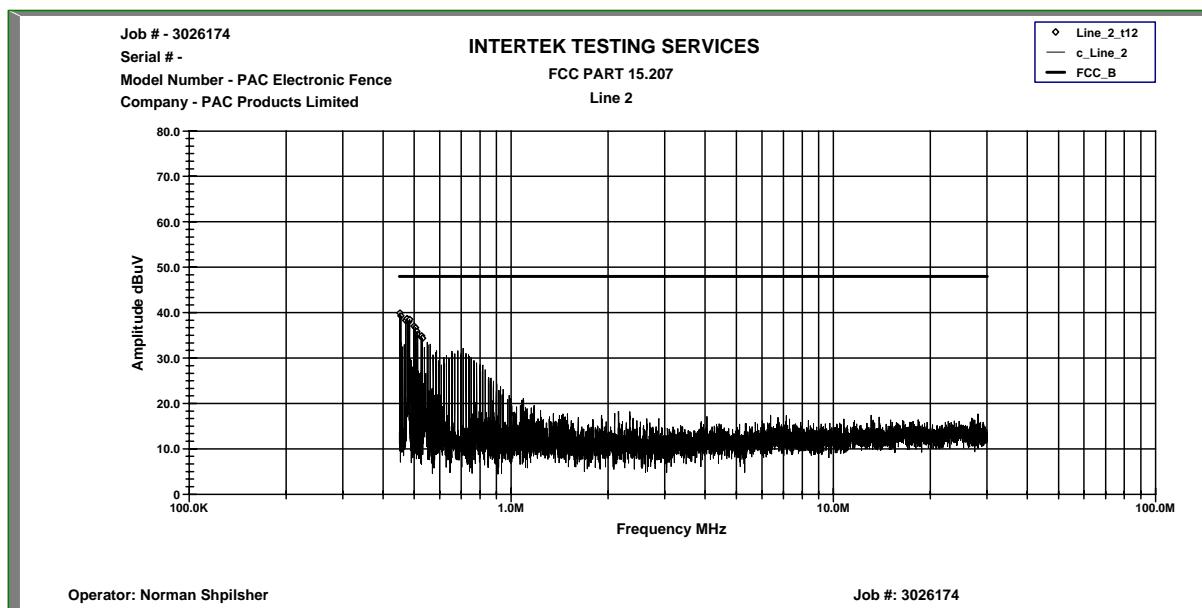
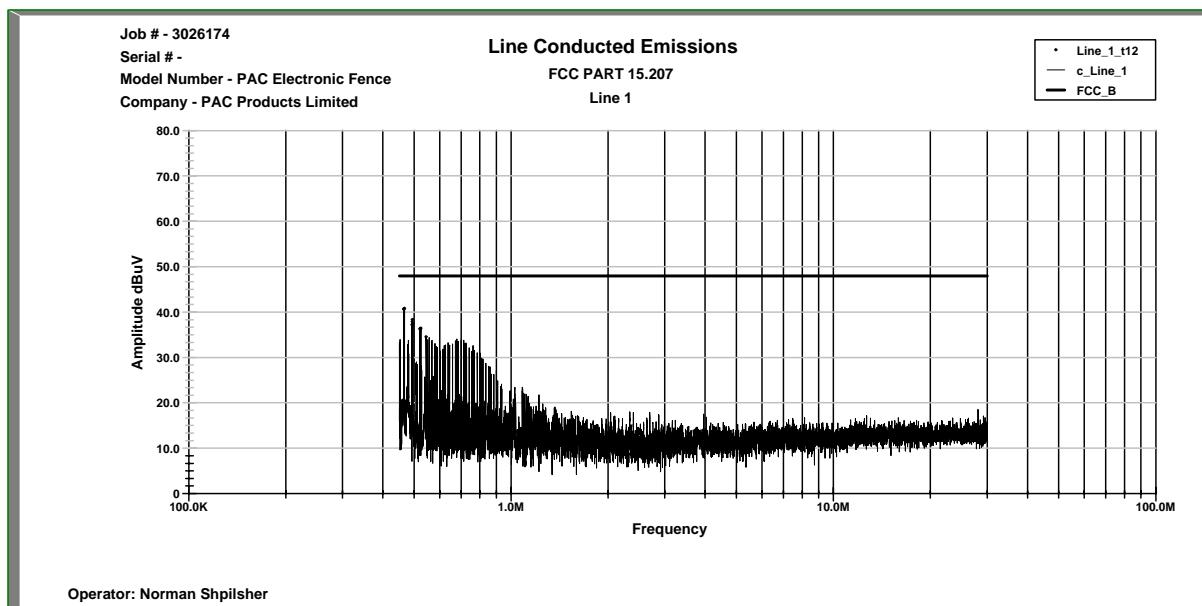
The table shows the worst case conducted emissions

Note:

All measurements were taken using a CISPR Quasi-peak detector

Table # 3-2-1

Line 1



Frequency MHz	QP dB _u V	AVG dB _u V	QP Limit dB _u V	Margin dB
457.37 KHz	33.37	9.09	48.0	-14.6
458.45 KHz	33.21	8.81	48.0	-14.8
459.11 KHz	33.2	9.09	48.0	-14.8
484.87 KHz	31.24	10.97	48.0	-16.7
485.03 KHz	31.25	10.9	48.0	-16.7
490.08 KHz	30.87	8.59	48.0	-17.1
492.06 KHz	30.71	8.37	48.0	-17.3
515.58 KHz	28.64	7.9	48.0	-19.3
517.53 KHz	28.47	8.11	48.0	-19.5
517.79 KHz	28.49	8	48.0	-19.5
518.23 KHz	28.44	8.16	48.0	-19.5
537.16 KHz	27.33	13.37	48.0	-20.6

Line 2

Frequency MHz	QP dB _u V	AVG dB _u V	QP Limit dB _u V	Margin dB
450.49 KHz	32.48	7.76	48.0	-15.5
452.43 KHz	32.24	8.22	48.0	-15.7
463.59 KHz	31.76	8.2	48.0	-16.2
470.35 KHz	31.3	8.67	48.0	-16.7
477.47 KHz	30.89	17.54	48.0	-17.1
477.93 KHz	30.95	17.98	48.0	-17.0
495.72 KHz	29.09	6.8	48.0	-18.9
495.88 KHz	29.15	7.81	48.0	-18.8
502.47 KHz	28.53	7.14	48.0	-19.4
504.7 KHz	28.47	7.34	48.0	-19.5
524.22 KHz	26.86	6.93	48.0	-21.1
528.95 KHz	26.58	7.47	48.0	-21.4

ITS Intertek Testing Services

Graph # 3-2-1

3.3 Test Procedure

Field Strength Measurements

The EUT was placed on a non-conductive table 0.8m above the ground plane inside the Anechoic Chamber. The table was centered on a motorized turntable, which allows 360-degree rotation. The measurement antenna was positioned at 3m distance. The loop antenna was used for measurements in frequency range below 30MHz. The Bicono-Log antenna was used in frequency range from 30MHz to 1GHz. The radiated emissions below 30MHz were maximized by configuring the EUT and by rotating the EUT; the center of the loop was 1m above the ground. The radiated emissions above 30MHz were maximized by configuring the EUT, by rotating the EUT, by changing antenna polarization, and by changing antenna height from 1 to 4m. Method of the direct Field Strength Calculation is shown in Section 3.4.

Conducted Emissions Measurements

For conducted emissions testing, the equipment is moved to an insulating platform over the ground plane, and the EUT is powered from a LISN. Both sides of the AC line are measured and the results are compared to the applicable limits. Measurements are taken using CISPR quasi-peak and average detectors when the peak readings approach or exceed the average limit. Only quasi-peak readings are taken when the EUT's emissions meet the average limit as measured with the quasi-peak detector.

3.4 Field Strength Calculation

Calculation of the field strength limits at 15.66kHz:

Limit at 300m= 20log (2400/F(kHz))

Limit at 300m= 20log (2400/15.66)

Limit at 300m= 20 log (153.26) = 43.71dB μ V/m

Limit at 3m= 43.71 dB μ V/m + Distance Factor = 43.71 dB μ V/m + 80 dB = 123.71 dB μ V/m

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured emissions reading on the EMI Receiver.

The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where: FS = Field Strength in dB(μ V/m)

RA = Receiver Amplitude in dB(μ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(m⁻¹)

AG = Amplifier Gain in dBi

Assume a receiver reading of 48.1 dB(μ V) is obtained. The antenna factor of 7.4 dB(m⁻¹) and cable factor of 1.6 dB is added and amplifier gain of 16.0 dBi is subtracted giving field strength of 41.1 dB(μ V/m).

RA = 48.1 dB(μ V)

AF = 7.4 dB(m⁻¹)

CF = 1.6 dB

AG = 16.0 dBi

FS = RF + AF + CF - AG

FS = 48.1 + 7.4 + 1.6 - 16.0

FS = 41.1 dB(μ V/m)

In the tables the Cable correction factors are included to the Antenna Factors.

Tested by:

Norman Shpilsher
EMC Project Engineer
Intertek Testing Services NA, Inc.

Signature

Norman Shpilsher

Signature

Date: June 11, 2002

ITS Intertek Testing Services

4.0 TEST EQUIPMENT

Receivers/Spectrum Analyzers

DESCRIPTION	SERIAL NO.	LAST CAL DATE	CAL DUE	TICK IF USED
HP85462A Receiver RF Section	3325A00106	07/01	07/02	X
HP85460A RF Filter Section	3330A00109	07/01	07/02	X
Advantest Spectrum Analyzer R3271A	55050084	06/02	06/03	
HP 83017A Microwave Amplifier	3123A00475	09/01	09/02	

Antennas

DESCRIPTION	SERIAL NO.	LAST CAL DATE	CAL DUE	TICK IF USED
Schaffner-Chase Bicono-Log Antenna	2468	11/01	11/02	X
A.H. Systems SAS-200/562B Loop antenna	215	11/01	11/02	X
EMCO Horn antenna 3115	9507-4513	09/01	09/02	
EMCO Horn antenna 3115	6579	12/01	12/02	
EMCO Horn antenna 3116	9904-2423	10/01	10/02	

Artificial Mains Networks/Absorbing Clamps

DESCRIPTION	SERIAL NO.	LAST CAL DATE	CAL DUE	TICK IF USED
FCC LISN-2	316	01/02	01/03	X
FCC-LISN-50-25-2	2014	04/02	04/03	

EXHIBIT I

TEST SET UP PHOTOS

EXHIBIT II

FCC ID LABEL LOCATION

(See Attachments)

EXHIBIT III

EXTERNAL PHOTOS

EXHIBIT IV

INTERNAL PHOTOS

EXHIBIT V

ELECTRICAL SCHEMATICS AND BLOCK DIAGRAM

(See Attachments)

EXHIBIT VI

USER MANUAL AND OPERATIONAL DESCRIPTION

(See Attachments)