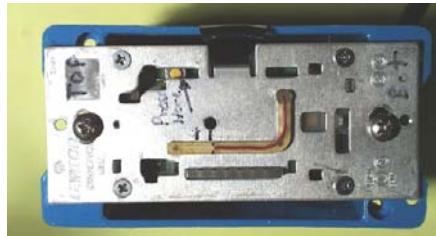


**AHD**

92723 Mich. Hwy-152  
Sister Lakes, MI 49047


---

**EMC Test Report**

**#0700794**

**Issued 3/26/07**

**Regarding the FCC 15.231 Testing OF**



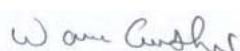
**IN WALL RELAY  
908.42MHz TRANSCEIVER MODEL RZS15**

Judgment: FCC Part 2.1031, Part 15 Subpart C (15.249) – Compliant

Prepared for:

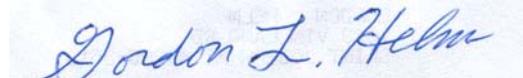
LEVITON MANUFACTURING, Inc.  
59-25 Little Neck Pkwy  
Little Neck, NY 11362

Test Date(s):


February 20-23, 2007

Report prepared by:




Gordon Helm, NCE

Report reviewed by:



Warren Guthrie, RF Engineer

Data recorded by:



Gordon Helm, NCE

## Table of Contents

|                                                                   |    |
|-------------------------------------------------------------------|----|
| Statements Concerning this Report.....                            | 3  |
| Manufacturer/Applicant [2.1033(b1)] .....                         | 4  |
| Measurement/Test Site Facility & Equipment.....                   | 4  |
| Test Site1 [2.948, 2.1033(b6)] .....                              | 4  |
| Measurement Equipment Used [2.947(d), 15.31(b)] .....             | 4  |
| Test Site2 [2.948, 2.1033(b6)] .....                              | 5  |
| Tested Configuration /Setup: [2.1033(b8)] .....                   | 6  |
| Support Equipment & Cabling .....                                 | 6  |
| Setup Diagram .....                                               | 6  |
| Setup Photographs [ANSI C63.4.2.1033(B8)].....                    | 7  |
| EUT Pictures.....                                                 | 7  |
| Summary of Results: .....                                         | 14 |
| Changes made to achieve compliance.....                           | 14 |
| Standards Applied to Test: [2.1033(b6)].....                      | 15 |
| Test Methodology: [2.1033(b6)].....                               | 15 |
| FORMULAS AND SAMPLE CALCULATIONS:.....                            | 17 |
| Test Data [2.1033(b6)].....                                       | 18 |
| Relative Emission Level vs. Supply Voltage [15.31(e)] .....       | 18 |
| Modulation Characteristics .....                                  | 19 |
| Occupied Bandwidth (15.249 and RSS210).....                       | 19 |
| Radiated Field Strength Measurements: [15.209, 15.249(a,d)] ..... | 20 |
| Out of Band Emissions [15.249(d)].....                            | 23 |
| Line Conducted Measurements: [15.207(a)] .....                    | 25 |
| AHD Accreditation .....                                           | 27 |
| NARTE Seal.....                                                   | 29 |

## **Statements Concerning this Report**

NVLAP Accreditation: NVLAP Lab Code 200129-0

The scope of AHD accreditation is the conducted emissions, radiated emissions test methods of:

IEC/CISPR 22: Limits and methods measurement of radio disturbance characteristics of information technology equipment.

FCC Method – 47 CFT Part 15:

AS/NZS 3548: Electromagnetic Interference – Limits and Methods of Measurement of Information Technology Equipment.

IEC61000-4-2 and Amend.1: ElectroStatic Discharge Immunity

IEC61000-4-5 · Surge Immunity

## Test Data:

This test report contains data covered by the NVLAP accreditation

## Subcontracted Testing:

This report contains data recorded at the University of Michigan Radiation Laboratory. The University of Michigan test facility is located at 8501 Beck Road, Belleville, Michigan 48111. This test facility has been fully described and accepted by the FCC and Industry Canada. This facility was utilized to measure emissions occurring at frequencies greater than 6GHz.

## Test Traceability:

The calibration of all measuring and test equipment and the measured data using this equipment are traceable to the National Institute for Standards and Technology (NIST).

### Limitations on results:

The test results contained in this report relate only to the Item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require an evaluation to verify continued compliance.

## Limitations on copying:

This report shall not be reproduced, except in full, without the written approval of AHD.

## Limitations of the report:

This report shall not be used to claim product endorsement by NVLAP, FCC, or any agency of the US Government.

**Statement of Test Results Uncertainty:** Following the guidelines of NAMAS publication

NIS81 and NIST Technical Note 1297, the Measurement Uncertainty at a 95% confidence level is determined to be:  $\pm 1.4$  dB

## Retention of Records:

- 1) For equipment verified to comply with FCC regulations, the manufacturer is obliged to retain this report with the product records for two years following the manufacture of the equipment that was tested.

**Manufacturer/Applicant [2.1033(b1)]**

The manufacturer and applicant:

LEVITON MANUFACTURING, Inc.  
59-25 Little Neck Pkwy  
Little Neck, NY 11362

**Measurement/Test Site Facility & Equipment****Test Site1 [2.948, 2.1033(b6)]****SITE 1.**

The AHD test facility is centered on 9 acres of rural property near Sister Lakes, Michigan. The mailing address is 92723 MI Hwy-152, Sister Lakes, Michigan 49047. This test facility is NVLAP accredited (LabCode 200129-0). It has been fully described in a report filed with the FCC (No.90413) and Industry Canada (file:IC3161).

**Measurement Equipment Used [2.947(d), 15.31(b)]****SITE 1.**

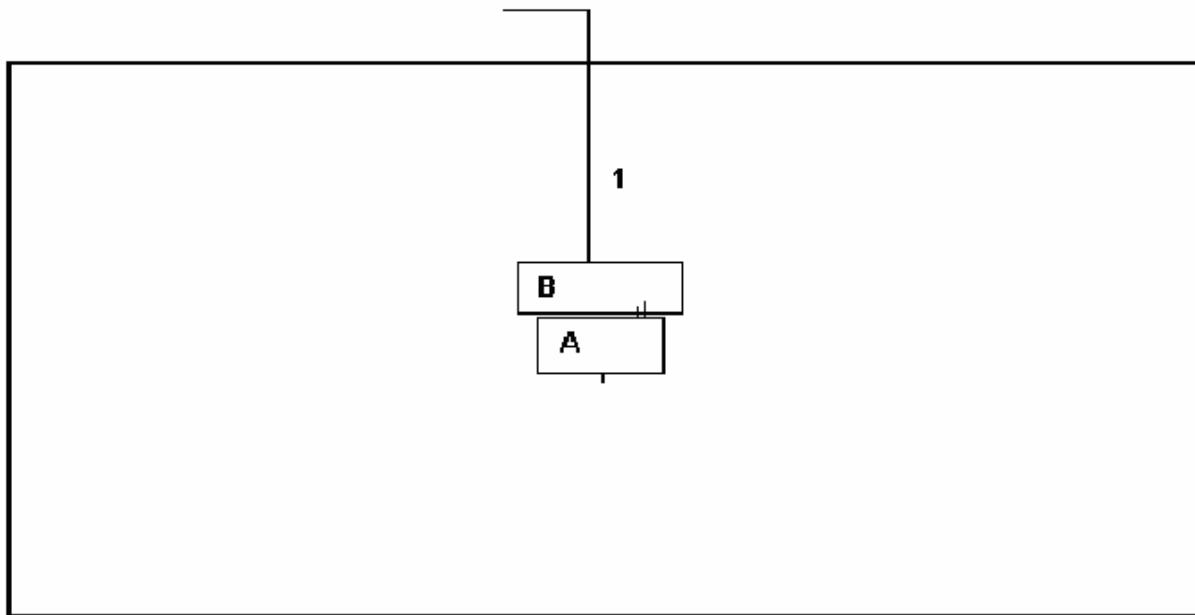
Measurement Equipment Used

| Equipment                        | Model            | S/N        | Last Cal   | Date      | Interval |
|----------------------------------|------------------|------------|------------|-----------|----------|
| Calibration                      |                  |            |            |           |          |
| HP EMI Receiver system           | HP 8546A         |            |            |           |          |
| RF Filter Section                | HP-85460A        | 3448A00283 | 12-June-06 | 12 months |          |
| RF Receiver Section              | HP-85462A        | 3625A00342 | 12-June-06 | 12 months |          |
| EMCO BiconiLog Antenna           | 3142             | 1077       | 01-Sept-06 | 12 months |          |
| Solar LISN                       | 8012-50-R-24-BNC | 962137     | 01-Sept-06 | 12 months |          |
| Solar LISN                       | 8012-50-R-24-BNC | 962138     | 01-Sept-06 | 12 months |          |
| (LCI) Double shielded 50ohm Coax | RG58/U           | 920809     | 23-Feb-07  | 12 months |          |
| (3-m) LMR-400 Ultra Flex         | LMR400           | 9812-11    | 07-Nov-06  | 6 months  |          |
| (3-m) CS-3227 RG8                | CS-3227          | C060914    | 07-Nov-06  | 6 months  |          |
| (10-m) Amelco 50ohm Coax         | RG213U           | 9903-10ab  | 07-Nov-06  | 6 months  |          |

**Test Site2 [2.948, 2.1033(b6)]****Site 2:**

The University of Michigan test facility is located at 8501 Beck Road, Belleville, Michigan, 48111. This test facility has been fully described and accepted by the FCC and Industry Canada. This facility was utilized to measure emissions occurring at frequencies greater than 2.9 GHz.

**Measurement Equipment Used [2.947(d), 15.31(b)]**


| Equipment<br>Calibration            | Model         | S/N        | Last Cal | Date                                         | Interval  |
|-------------------------------------|---------------|------------|----------|----------------------------------------------|-----------|
| C-Band Std. Gain Horn               | UM NRL design |            |          | calibration by design & physical inspection. |           |
| XN-Band Std. Gain Horn              | UM NRL design |            |          | calibration by design & physical inspection. |           |
| X-Band Std. Gain Horn               | SA 12-8.2     | 730        |          | calibration by design & physical inspection. |           |
| K-band horn (18-26.5 GHz) FXR, Inc. | K638KF        |            |          | calibration by design & physical inspection. |           |
| Avantek RF amplifier                | AFT-12665     |            |          | Jul-06                                       | 12 months |
| 3ft Low Loss coax                   | RG142         | -          |          | with Avantek amp                             |           |
| Spectrum Analyzer 26GHz             | HP 8593E      | 3412A01131 | Jul-06   |                                              | 12 months |

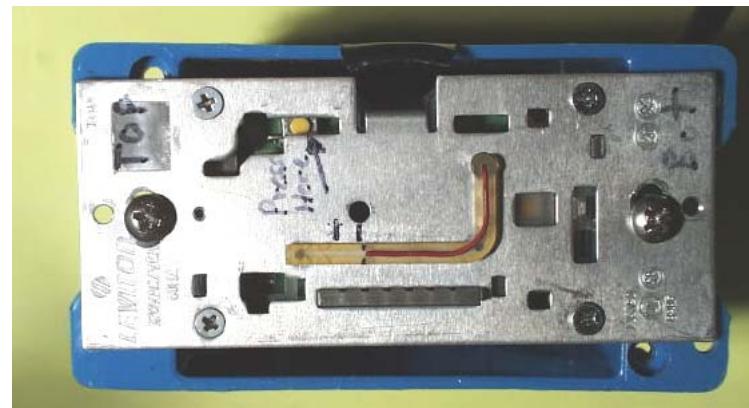
**Measurement Environment**

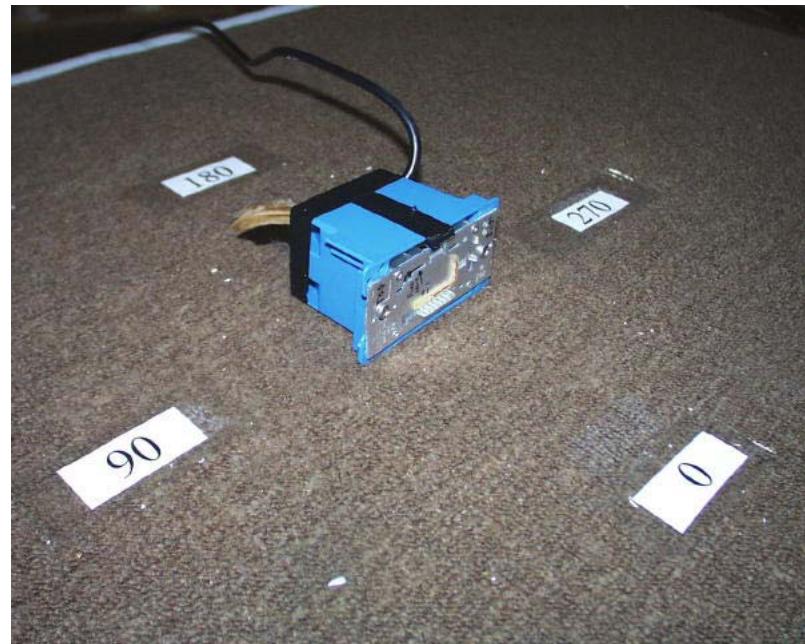
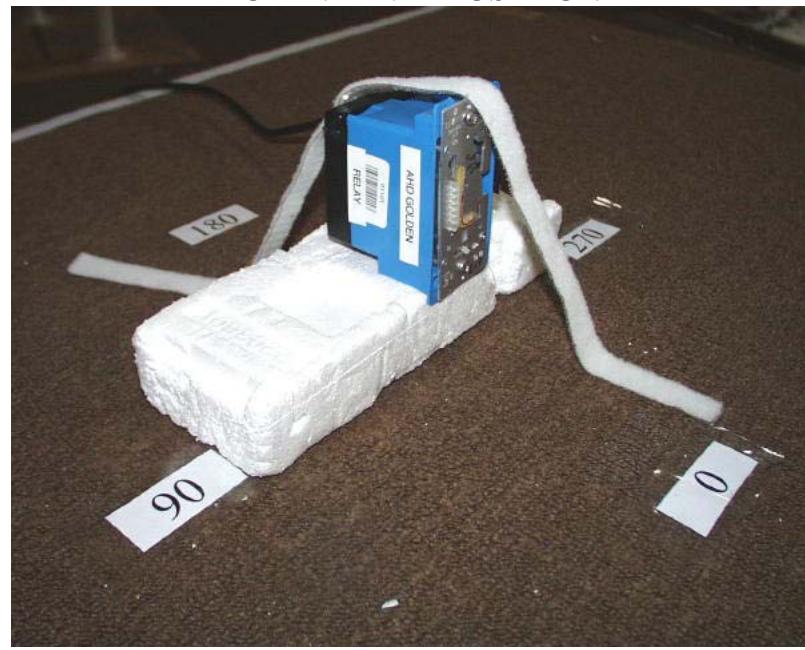
The tests were performed with the equipment under test, and measurement equipment inside the all-weather enclosure. Ambient temperature was 22deg.C, the relative humidity 30%.

**Tested Configuration /Setup: [2.1033(b8)]****Support Equipment & Cabling**

| Setup Diagram Legend | Description           | Model           | Serial No. / Part No. | EMC Consideration  |
|----------------------|-----------------------|-----------------|-----------------------|--------------------|
| A                    | [EUT] In Wall Relay   | [Leviton] RZS15 | preproduction         | FCC ID: QGH-RZSD1  |
| B                    | Electrical Box/Socket |                 |                       |                    |
| A                    | Wire Antenna          |                 |                       | L shaped: 34mm     |
| 1                    | AC Mains cable        | -               |                       | 1 meter Unshielded |

**Setup Diagram**


setup\_1a1d2



**BASIC EUT SETUP**  
(Legend designation is above)

## Setup Photographs [ANSI C63.4.2.1033(B8)]

### EUT Pictures

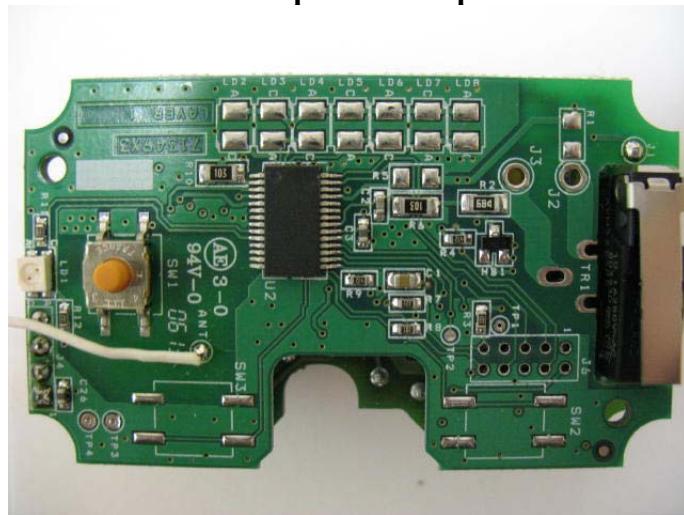
|                                     |         |
|-------------------------------------|---------|
| EUT EXT TOP                         | Page 8  |
| EUT PRETEST FOR EMISSION SPECTRUM   | Page 8  |
| EUT IN "SIDE" POSITION              | Page 9  |
| EUT IN "END" POSITION               | Page 9  |
| EUT LINE CONDUCTED SETUP - FRONT    | Page 10 |
| EUT LINE CONDUCTED SETUP - REAR     | Page 10 |
| EUT U of M SETUP                    | Page 11 |
| EUT RZS15 Top PCB Component Side    | Page 12 |
| EUT RZS15 Top PCB Foil Side         | Page 12 |
| EUT RZS15 Bottom PCB Component Side | Page 13 |
| EUT RZS15 Bottom PCB Foil Side      | Page 13 |

**EUT EXT TOP****EUT PRETEST FOR EMISSION SPECTRUM**

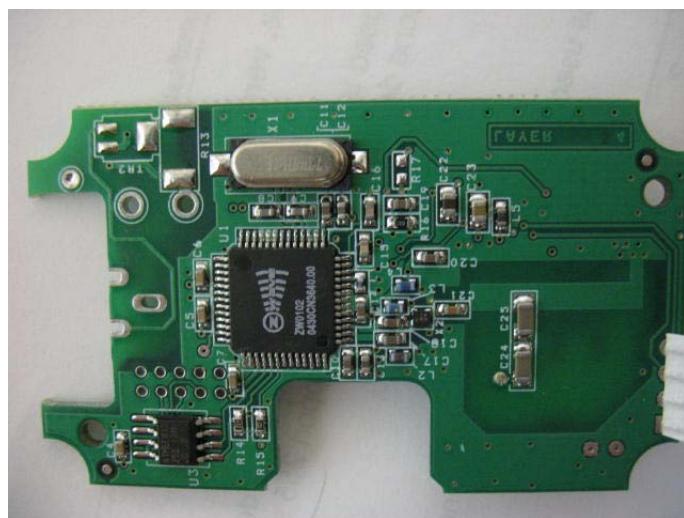
**EUT IN “SIDE” POSITION****EUT IN “END” POSITION**

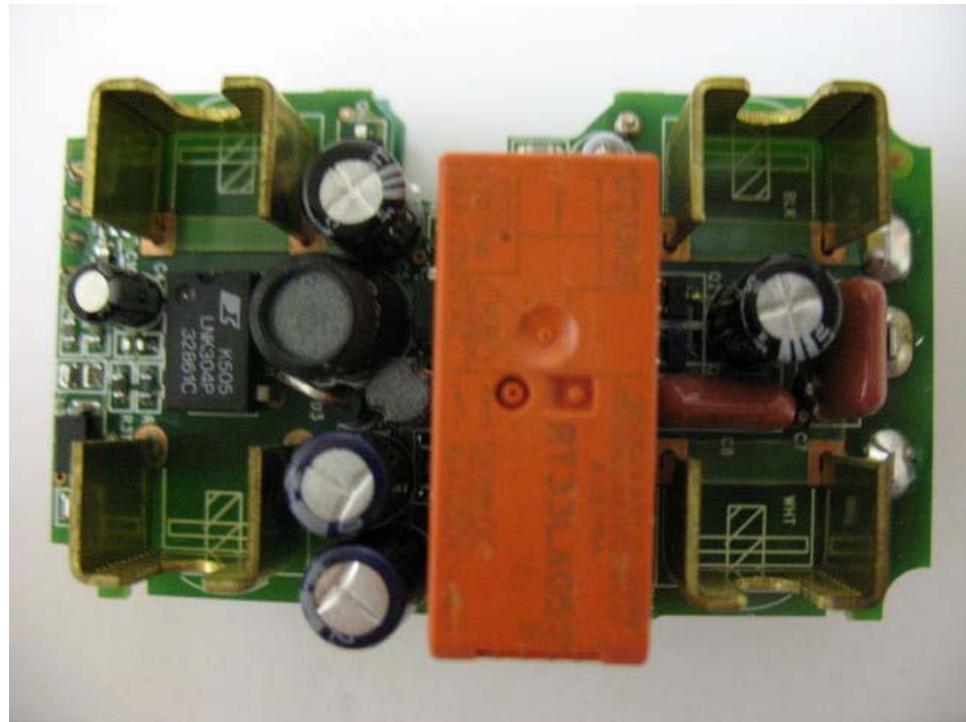
**EUT LINE CONDUCTED SETUP FRONT**




**EUT LINE CONDUCTED SETUP REAR**




**U of M SETUP**




EUT RZS15 Top PCB Component Side



## **EUT RZS15 Top PCB Foil Side**



**EUT RZS15 Bottom PCB Component Side****EUT RZS15 Bottom PCB Foil Side**

## Summary of Results:

1. This test series evaluated the Equipment Under Test to FCC Part 15, SubPart C.
2. The system tested is compliant to the requirement of CFR 47, FCC Part 15, SubPart C for operation in the 902-928MHz frequency band, ( Part 15.249 ).
3. The equipment under test was received on January 20, 2007 and this test series commenced on January 20, 2007.
4. The unit operates only at the frequency 908.42MHz.
5. The Occupied Band width of the fundamental, using the 99% method with a 100Hz RBW, measured 368KHz.
6. The field strength level of the fundamental was measured with a Quasi-Peak detection and observed to be **0.2dB** below the quasi-peak limit of 94dBuV/m (50,000uV/m). The EUT was positioned on the 'end' and the receive antenna oriented in the vertical polarization. This measurement falls within the uncertainty of the site.
7. The evaluation of the field strength levels of the transmitter harmonics showed the emission nearest the limit occurred at 2725MHz. This signal was measured to be **2.0dB** below the average limit of 54dBuV/m (500uV/m). The EUT was configured in the 'end' position, and the receive antenna oriented in the horizontal polarization.
8. The field strength level of the Local Oscillator was measured to be 3.5dB below the quasi-peak limit of 46dBuV/m (200uV/m). The EUT was positioned on the 'flat' and the receive antenna oriented in the horizontal polarization.
9. The evaluation of the field strength levels of the Local Oscillator harmonics showed the measurable emission nearest the limit occurred at 3633MHz. This emission was measured to be 13.5dB below the average limit of 54dBuV/m (500uV/m). The EUT was configured in the 'end' position, and the receive antenna oriented in the horizontal polarization.
10. Spurious emissions, not harmonics of transmitter or local oscillator, were initially determined in a shielded enclosure. At the open area test site the spurious emission level nearest the limit occurred at 42.07MHz. This emission was measured to be 29.5dBuV/m Quasi-Peak which is 10.4dB below the limit of 40dBuV/m. The EUT was in the vertical polarization.
11. The line conducted emission level nearest the limit occurred at 14.573MHz. This emission was measured to be 17.46dB below the Average limit of 50.00dBuV when measuring neutral to ground.

## Changes made to achieve compliance

None.

## Standards Applied to Test: [2.1033(b6)]

ANSI C63.4 - 2001

CFR47 FCC Part 2;, Part 15, SubPart C, 15.249 Intentional Radiator; SubPart B, Digital Device  
AHD test procedures TP0101-01, TP0102-01

## Test Methodology: [2.1033(b6)]

The setup pictures in this report indicate the configuration of testing for this product.

The product was evaluated for emissions in both transmit and receive modes. The transmitted power output is set in firmware and the user does not have access to this location. The receiver uses a local oscillator 200KHz below the received signal.

In transmit mode, the EUT was setup up to transmit continuously with an FSK modulation. The measurements of the fundamental and its harmonics were recorded with Peak detection. The measurements of the fundamental frequencies were compared to the appropriate Quasi-Peak and average limits of section 15.249.

The system was placed at the center of the table 80cm above the ground plane pursuant to ANSI C63.4 for stand-alone equipment.

## Variance From Test Procedure:

1. Unit was set to continuously transmit a manufacturer's provided representative waveform to facilitate efficient capture of the waveform. The normal mode of communication of a user's remote control functions were not evaluated.

**Radiated**

The system was placed upon a 1 x 1.5 meter non-metallic table 80cm above the open field site ground plane in the prescribed setup per ANSI C63.4.

The table sits upon a remote controlled turntable. The receiving antenna, located at the appropriate standards distance of 3 or 10 meters from the table center, is also remote controlled.

The principle settings of the EMI Receiver for radiated testing include:

IF Bandwidth: 120KHz for frequencies less than 1GHz.

1 MHz for frequencies greater than 1GHz.

Detector Function: Peak Mode for transmitter fundamental and harmonics.

Quasi-Peak for other emissions less than 1GHz.

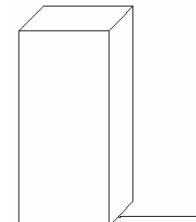
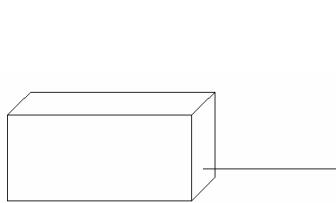
Average for other emissions greater than 1GHz.

At frequencies up to 1000MHz a BiconiLog broadband antenna was used for measurements.

At frequencies above 1000MHz a double-ridge Horn broadband antenna was used for measurements.

During the transmitter evaluation the EUT was transmitting continuously.

The turntable was rotated 360 degrees and the receiving antenna height varied from 1 to 4 meters to search out the highest emissions.



The final measurements were made with the EUT placed in one of two positions (designated as side, and end). Measurements were recorded in each of these two positions and with the measuring antenna in vertical and horizontal positions.

The unit was evaluated up to the tenth harmonic of the transmit fundamental, and up to 5000MHz for other spurious signals.

The test positions of EUT are:

Side

End



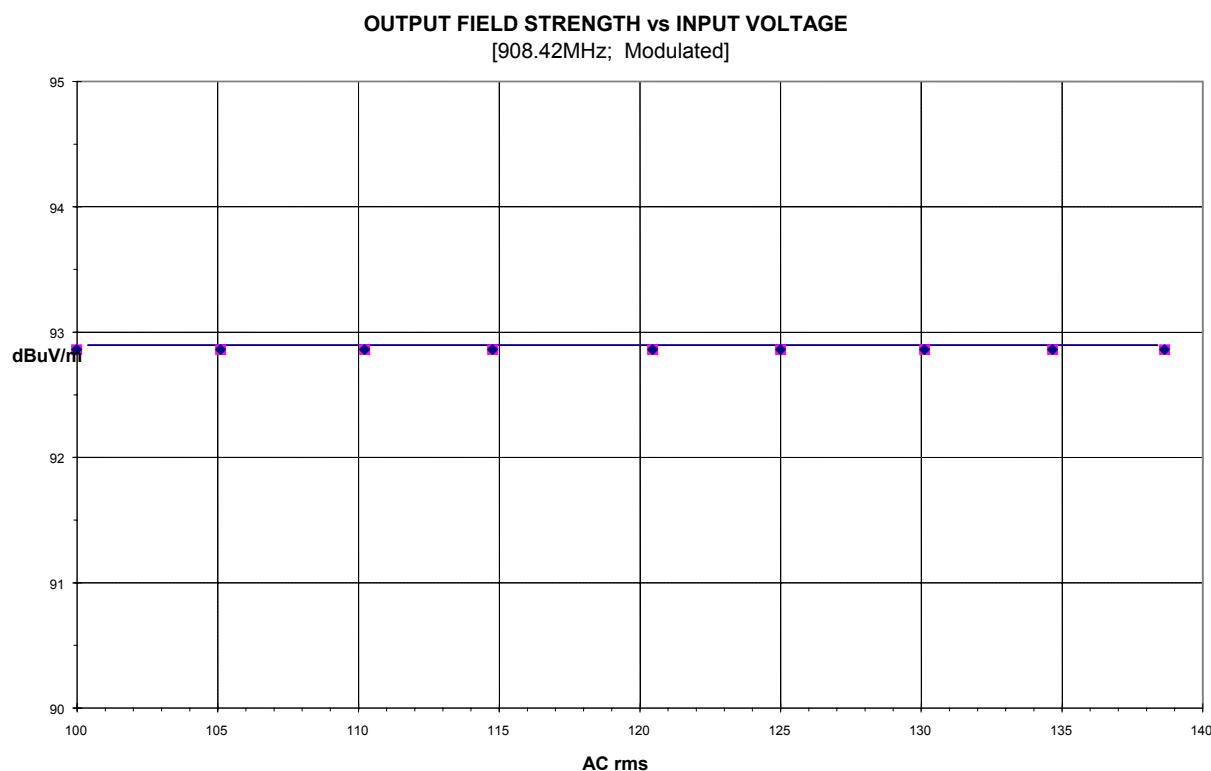
**FORMULAS AND SAMPLE CALCULATIONS:**

THE HP8546A EMI Receiver has stored in memory the antenna and coax correction factors used in this test. The resultant Field Strength (FS) in dBuV/m presented by the HP8546A is the summation in decibels (dB) of the Received Level (RF), the Antenna Correction Factor (AF), and the Cable Loss Factor (CF).

Formula 1:  $FS(\text{dBuV/m}) = RF(\text{dBuV}) + AF(\text{dB/m}) + CF(\text{dB})$

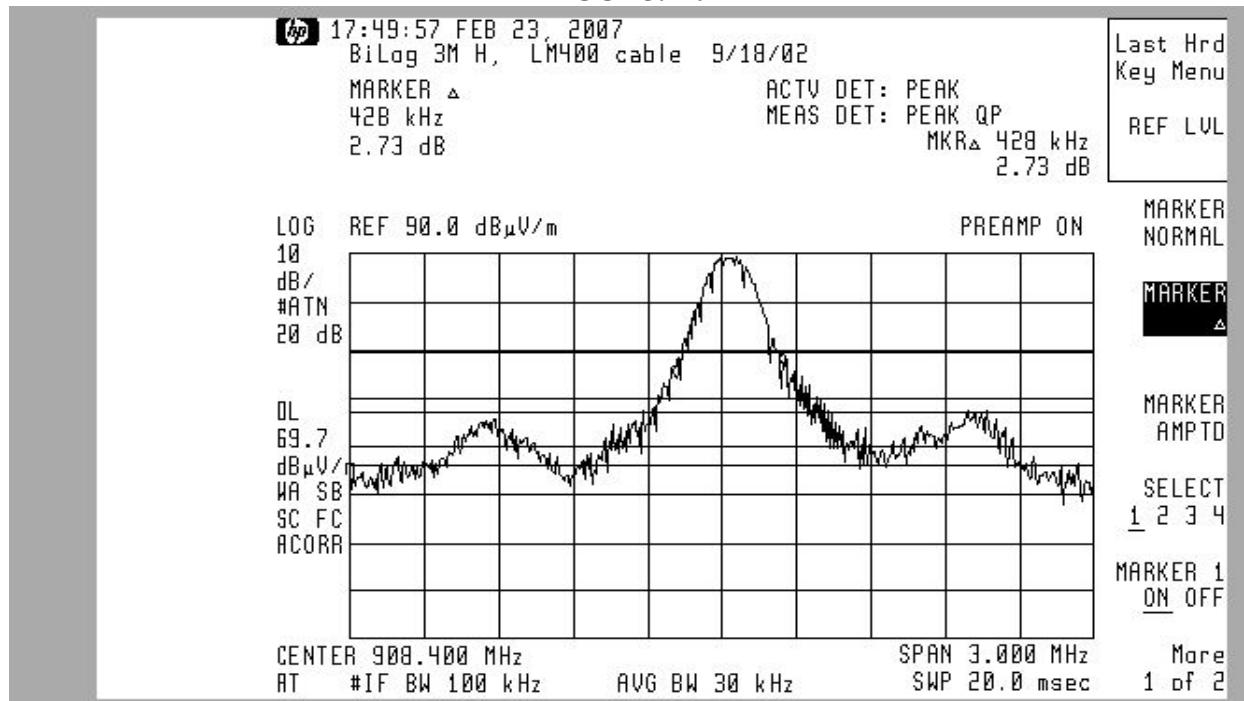
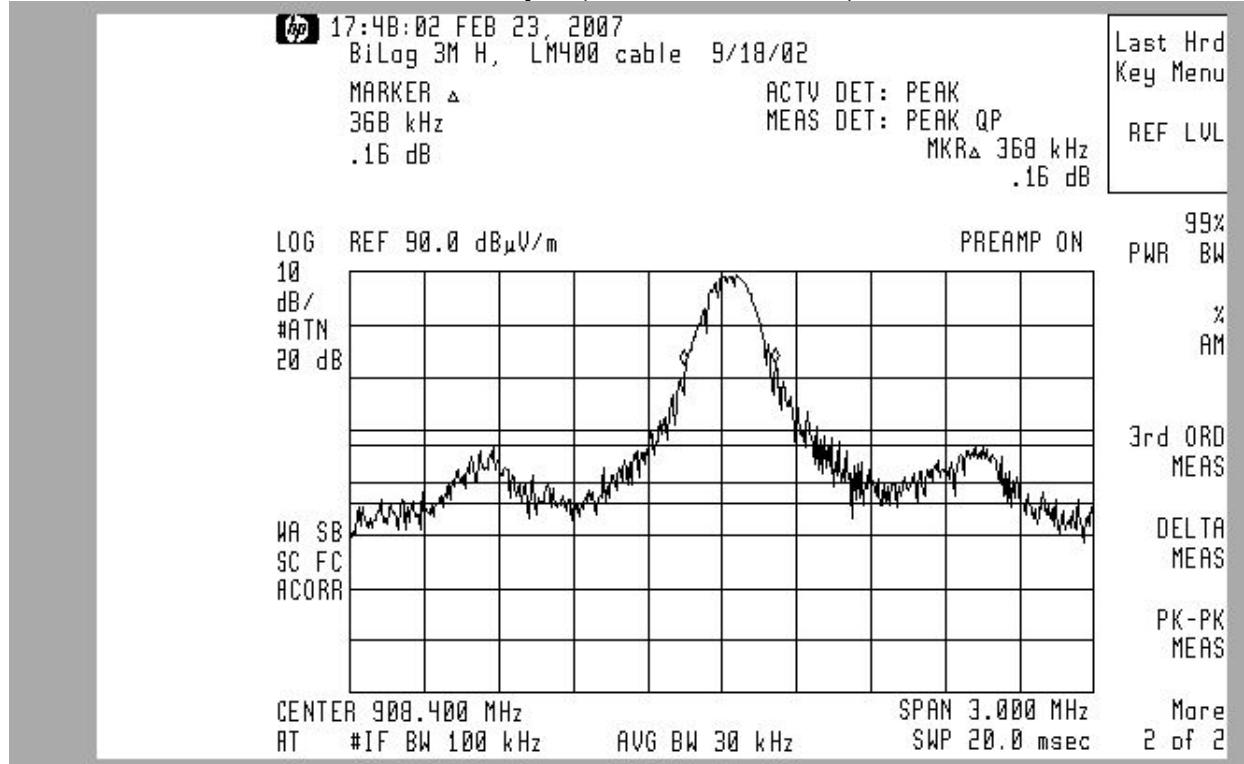
With the EUT in transmitting mode only the resultant Field Strength measurement is recorded using the peak hold detector of the HP8546A.

Where it was necessary to move the EUT to 1 meter distance to take measurements a 'dB' factor which adjusts for this distance variance is used before comparing the emission level to the FCC limits. This factor is determined by the following formula.


Formula 3:  $\text{Distance factor(dB)} = 20 * \text{Log}(3\text{meter}/1\text{meter}) = 20 * \text{Log}(3) = 9.54\text{dB.}$

## Test Data [2.1033(b6)]

### Relative Emission Level vs. Supply Voltage [15.31(e)]



The relative emission level as the supply voltage varied is presented in the charts below. The ac mains level, input to the EUT, was adjusted from 100vac to 138vac.

| TX OUTPUT vs Voltage LEVEL<br>908.42MHz |                        |
|-----------------------------------------|------------------------|
| Volt In<br>AC rms                       | TX OutPut<br>Pk dBuV/m |
| 100                                     | 93.8                   |
| 105                                     | 93.8                   |
| 110                                     | 93.8                   |
| 115                                     | 93.8                   |
| 120                                     | 93.8                   |
| 125                                     | 93.8                   |
| 130                                     | 93.8                   |
| 135                                     | 93.8                   |
| 138                                     | 93.8                   |



**Modulation Characteristics**The transmitter is FSK modulated using  $\pm 22\text{KHz}$  frequency shifting.**Occupied Bandwidth (15.249 and RSS210)**

An RBW of 100KHz is selected.

**FCC 15.249****IC 99% per (IC RSS-210 issue 6)**

| Fundamental<br>(MHz) | RBW<br>(kHz) | Measured<br>20dB Bandwidth |          |
|----------------------|--------------|----------------------------|----------|
| 908.42               | 100          | 428kHz                     | FCC 20dB |
|                      | 100          | 368kHz                     | IC 99%   |

**Radiated Field Strength Measurements: [15.209, 15.249(a,d)]****Field Strength Measurements of Fundamental & LO: [15.249(a,d), 15.209]****MEASUREMENT PROCEDURE:**

1. The EUT was setup to one of the two positions.
2. The receive antenna is positioned vertical or horizontal polarity.
3. Steps 1-2 were repeated to cover all positions.

The FCC field strength limit of the fundamental is 50milliVolt/m at a measurement distance of 3 meters. This number is equivalent to 94dBuV/m.

Calculation:  $50\text{mV/m} = 50,000\text{uV/m} \quad 20*\text{Log}(50,000\text{uV/m})=94\text{dBuV/m}$

The FCC field strength limit of the harmonics is 500microVolt/m at a measurement distance of 3 meters. This number is equivalent to 54dBuV/m.

Calculation:  $20*\text{Log}(500\text{uV/m})=54\text{dBuV/m}$

**Transmit Mode. Fundamental**

| Frequency<br>MHz | Corrected<br>Quasi Peak<br>Measurement<br>dBuV/m | Included<br>Cable+Antenna<br>Factors<br>dB+dB/m | Turntable<br>Azimuth<br>deg | Antenna<br>Height<br>Mtr | FCC<br>Limit<br>dBuV/m | Margin<br>dB | EUT<br>position<br>End | Ant.<br>Pol.<br>V |
|------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------|--------------------------|------------------------|--------------|------------------------|-------------------|
| 908.4            | 93.8                                             | 26.93                                           | 220                         | 1.1                      | 94                     | 0.2          |                        |                   |

## Transmit Mode. Harmonics

| Frequency<br>MHz | Corrected<br>AVERAGE<br>Measurement<br>dBuV/m | Included<br>Cable+Antenna<br>Factors<br>dB+dB/m | Turntable<br>Azimuth<br>deg | Antenna<br>Height<br>Mtr | FCC<br>Limit<br>dBuV/m | Margin<br>dB | EUT<br>position | Ant.<br>Pol |
|------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------|--------------------------|------------------------|--------------|-----------------|-------------|
| 1817             | 48.8                                          | 29.31                                           | 180                         | 1.3                      | 54.00                  | <b>5.1</b>   | end             | H           |
| 2725             | 52.0                                          | 31.45                                           | 130                         | 1.3                      | 54.00                  | <b>2.0</b>   | end             | H           |
| 3634             | 40.5                                          | 32.9                                            | *                           | 1.0                      | 54.00                  | <b>13.4</b>  | end             | V           |
| 4542             | 44.3                                          | 33.51                                           | *                           | 1.0                      | 54.00                  | <b>9.6</b>   | end             | V           |
| 5451*            | 44.1                                          | 36.91                                           | *                           | 1.0                      | 54.00                  | <b>9.9</b>   | end             | V           |

\*These levels are at the noise floor of the measurement systems.

The following transmitter harmonic measurements were taken at the UM Radiation Lab facility. The distance between the EUT and Horn antenna is 3 meter. Spectrum analyzer settings for peak measurements are 1MHz RBW, 3MHz VBW.

The term in the column “calculated average level” is determined by  

$$\text{SA Peak Measurement} + \text{Ant Factor} - \text{Amp Factor}$$

The Avg level emissions are compared to the FCC average limits. Compliance is demonstrated.

| Freq<br>MHz | S.A.<br>Avg<br>Measurement<br>dBm | Antenna<br>Correction<br>Factor<br>dB/m | RF<br>Amp<br>Factor<br>dB | Calculated<br>Avg<br>Level<br>dBuV/m | FCC Avg<br>Limit<br>dBuV/m | Margin<br>dB |
|-------------|-----------------------------------|-----------------------------------------|---------------------------|--------------------------------------|----------------------------|--------------|
| 6358        | -72.4*                            | 24.4                                    | 38.0                      | 21.0                                 | 54                         | <b>33</b>    |
| 7266        | -67.8                             | 25.2                                    | 36.8                      | 27.6                                 | 54                         | <b>26.4</b>  |
| 8174        | -69.1                             | 27.0                                    | 36.8                      | 28.1                                 | 54                         | <b>25.9</b>  |
| 9083        | -68.0*                            | 27.5                                    | 36.8                      | 29.7                                 | 54                         | <b>24.3</b>  |

\*These levels are at the noise floor of the measurement systems.

## Receive Mode. Local Oscillator &amp; harmonics

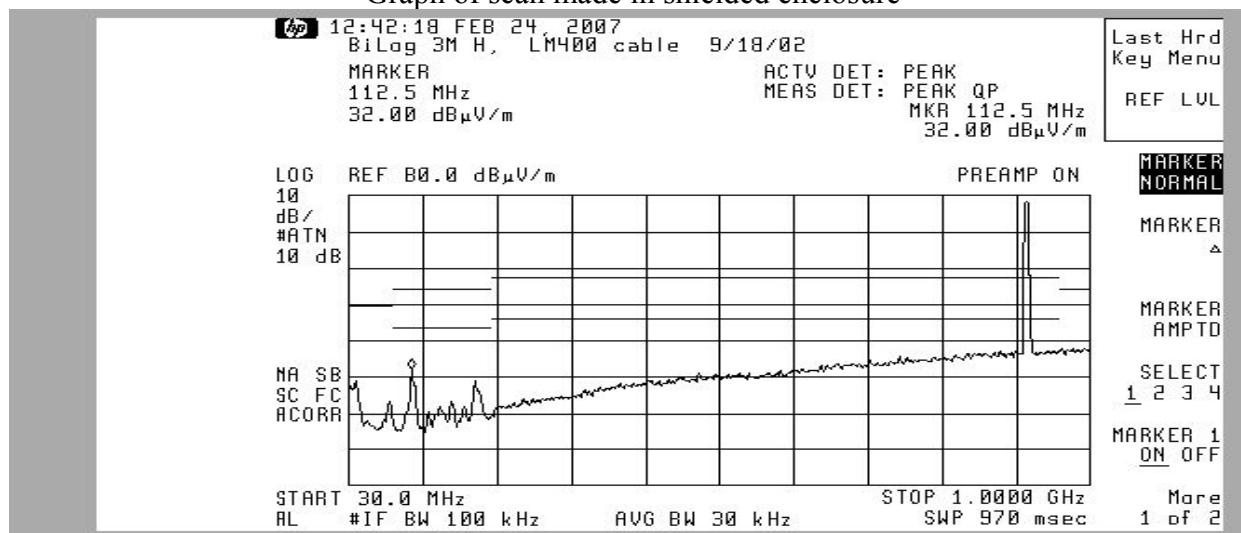
| Frequency<br>MHz | Corrected<br>Quasi-peak<br>Measurement<br>dBuV/m | Included<br>Cable+Antenna<br>Factors<br>dB+dB/m | Turntable<br>Azimuth<br>deg | Antenna<br>Height<br>Mtr | FCC<br>Limit<br>dBuV/m            | <b>Margin</b><br><b>dB</b> | EUT<br>postion | Ant.<br>Pol. |
|------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------|--------------------------|-----------------------------------|----------------------------|----------------|--------------|
| 908.27           | 42.5                                             | 26.93                                           | 170                         | 1.0                      | 46.00                             | <b>3.5</b>                 | Flat           | H            |
| Frequency<br>MHz | Corrected<br>AVERAGE<br>Measurement<br>dBuV/m    | Included<br>Cable+Antenna<br>Factors<br>dB+dB/m | Turntable<br>Azimuth<br>deg | Antenna<br>Height<br>Mtr | FCC<br>Class B<br>Limit<br>dBuV/m | <b>Margin</b><br><b>dB</b> | EUT<br>postion | Ant.<br>Pol. |
| 1816.5           | 35.8                                             | 39.31                                           | 150                         | 1.3                      | 54.00                             | <b>18.2</b>                | end            | H            |
| 2724.9           | 33.8                                             | 31.45                                           | -                           | 1.0                      | 54.00                             | <b>20.2</b>                | end            | H            |
| 3633.9           | 40.4                                             | 32.9                                            | -                           | 1.0                      | 54.00                             | <b>13.5</b>                | end            | H            |
| 4542             | 40.3                                             | 31.45                                           | -                           | 1.0                      | 54.00                             | <b>13.7</b>                | end            | H            |

\*These levels are at the noise floor of the measurement systems.

-Not Azimuth Dependant

**Out of Band Emissions [15.249(d)]**

The emissions outside the 902-928MHz band are to be either 50dB below the level of the fundamental or the limits of section 15.209.


**LIMIT @ 3meter: [15.209(a)]**

|              |         |            |
|--------------|---------|------------|
| 30-88MHz     | 100uV/m | 40dBuV/m   |
| 88-216MHz    | 150uV/m | 43.5dBuV/m |
| 216-960MHz   | 200uV/m | 46dBuV/m   |
| above 960MHz | 500uV/m | 54dBuV/m   |

A scan of the EUT was made in a shielded room to study the emission profile. These scans indicate there are low level spurious emissions from the unit other than the fundamental and its associated harmonics. These suspect signals were measured at the 3-meter open area test site.

**Spurious Emissions: [15.249d]**

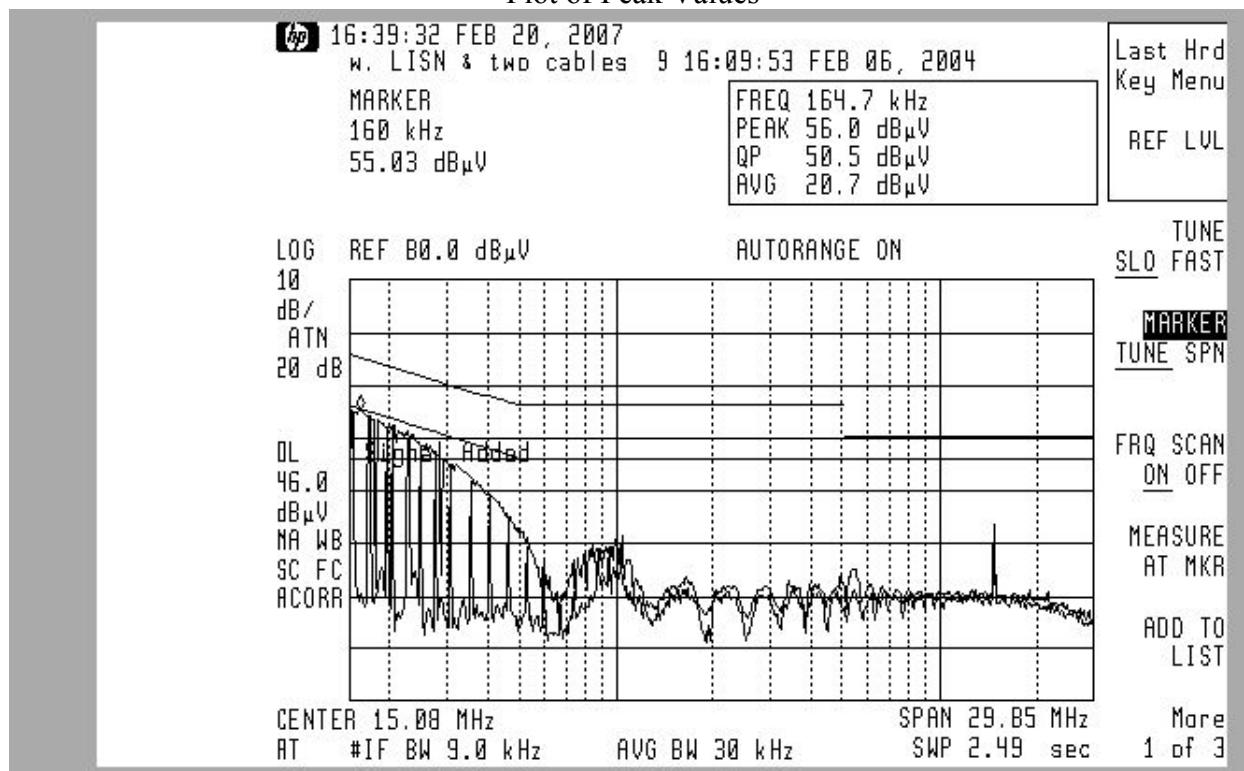
Graph of scan made in shielded enclosure

**Tabulated Quasi-Peak Measurements.**

| Frequency | Corrected<br>Quasi Peak<br>Measurement | Included<br>Cable+Antenna<br>Factors | Turntable<br>Azimuth | Antenna<br>Height | Polarity | FCC<br>Class B<br>Limit | Margin      |
|-----------|----------------------------------------|--------------------------------------|----------------------|-------------------|----------|-------------------------|-------------|
| MHz       | dBuV/m                                 | dB+dB/m                              | deg                  | Mtr               |          | dBuV/m                  | dB          |
| 29.959    | 26.53                                  | 19.19                                | *                    | 1                 | H        | 40.00                   | <b>13.4</b> |
| 84.676    | 15.17                                  | 7.59                                 | *                    | 1                 | H        | 40.00                   | <b>24.8</b> |
| 38.881    | 20.75                                  | 14.38                                | *                    | 1                 | H        | 40.00                   | <b>19.2</b> |
| 111.833   | 14.71                                  | 8.91                                 | *                    | 1                 | H        | 43.50                   | <b>28.7</b> |
| 164.121   | 14.89                                  | 9.59                                 | *                    | 1                 | H        | 43.50                   | <b>28.6</b> |
| 195.391   | 15.99                                  | 11.02                                | *                    | 1                 | H        | 43.50                   | <b>27.5</b> |
| 195.551   | 16.67                                  | 11.03                                | *                    | 1                 | V        | 43.50                   | <b>26.8</b> |
| 164.578   | 16.5                                   | 9.58                                 | *                    | 1                 | V        | 43.50                   | <b>27.0</b> |
| 113.416   | 20.29                                  | 8.81                                 | *                    | 1                 | V        | 43.50                   | <b>23.2</b> |
| 86.518    | 19.71                                  | 7.76                                 | *                    | 1                 | V        | 40.00                   | <b>20.2</b> |
| 42.074    | 29.52                                  | 12.92                                | 240                  | 1                 | V        | 40.00                   | <b>10.4</b> |
| 29.834    | 28.29                                  | 19.26                                | *                    | 1                 | V        | 40.00                   | <b>11.7</b> |

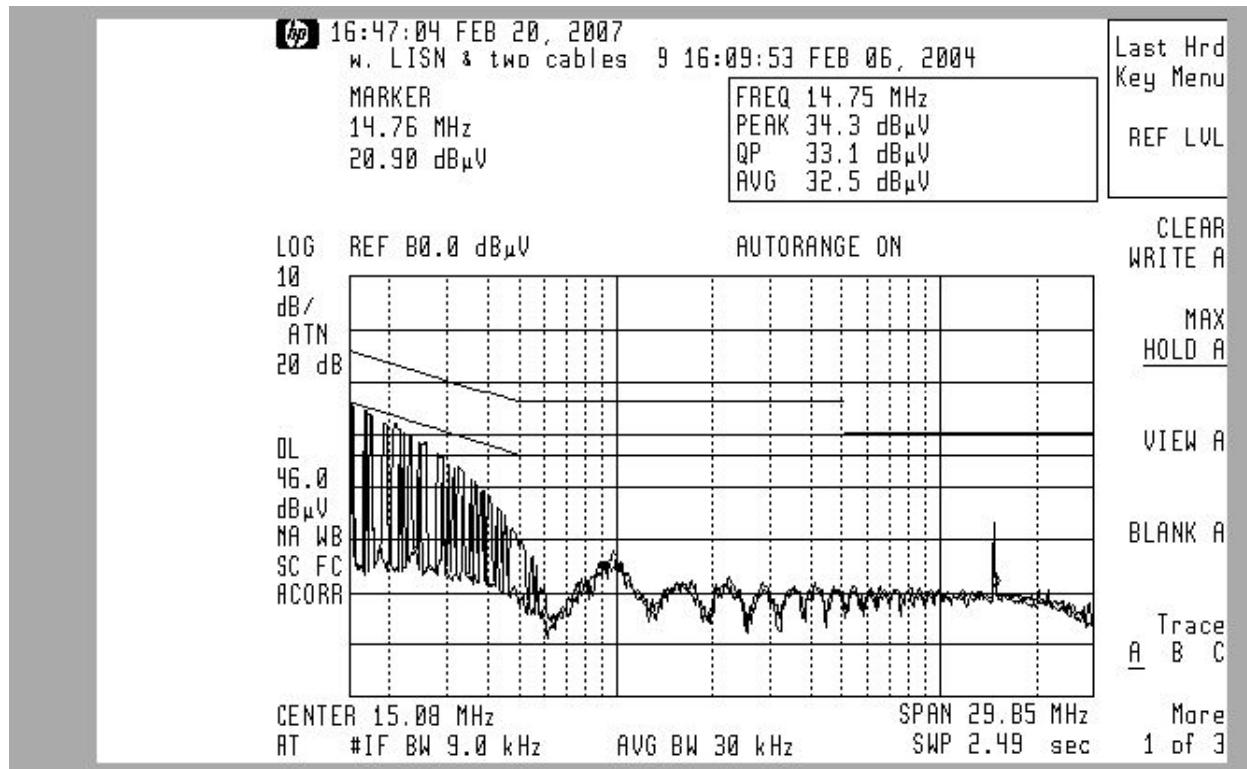
\* Not azimuth dependant

The frequencies for measurements were determined by the suspect list generated from the shielded room prescan of 30MHz through 1GHz.


All other spurious emission are greater than 30dB below limits.

**Line Conducted Measurements: [15.207(a)]****Line Conducted**

NEUTRAL to Ground Measurement.


Class B

Plot of Peak Values



Tabulated Quasi-Peak/Average Measurements.

| Frequency | dBuV Reading |       | FCC / EN55022<br>dBuV Class B Limit |       | dB Margin |       |
|-----------|--------------|-------|-------------------------------------|-------|-----------|-------|
|           | MHz          | QP    | Avg                                 | QP    | Avg       | QP    |
| 0.165     | 50.52        | 20.73 | 65.26                               | 55.26 | 14.74     | 34.53 |
| 0.971     | 24.63        | 16.27 | 56.00                               | 46.00 | 31.37     | 29.73 |
| 1.688     | 18.33        | 13.64 | 56.00                               | 46.00 | 37.67     | 32.36 |
| 2.206     | 18.4         | 14.18 | 56.00                               | 46.00 | 37.60     | 31.82 |
| 2.878     | 18.27        | 14.16 | 56.00                               | 46.00 | 37.73     | 31.84 |
| 14.753    | 33.07        | 32.54 | 60.00                               | 50.00 | 26.93     | 17.46 |

PHASE to Ground Measurement  
Class B  
Plot of Peak Values

## Tabulated Quasi-Peak/Average Measurements.

| Frequency<br>MHz | dBµV Reading |       | FCC / EN55022<br>dBµV Class B Limit |       | dB Margin |       |
|------------------|--------------|-------|-------------------------------------|-------|-----------|-------|
|                  | QP           | Avg   | QP                                  | Avg   | QP        | Avg   |
| 0.171            | 50.03        | 21.61 | 64.91                               | 54.91 | 14.88     | 33.30 |
| 0.993            | 25.37        | 20.1  | 56.00                               | 46.00 | 30.63     | 25.90 |
| 1.648            | 19.15        | 14.96 | 56.00                               | 46.00 | 36.85     | 31.04 |
| 2.251            | 18.82        | 14.68 | 56.00                               | 46.00 | 37.18     | 31.32 |
| 2.998            | 19.18        | 14.24 | 56.00                               | 46.00 | 36.82     | 31.76 |
| 14.754           | 32.81        | 32.31 | 60.00                               | 50.00 | 27.19     | 17.69 |

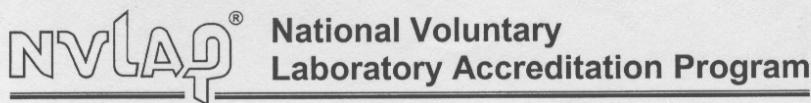
**AHD Accreditation**

United States Department of Commerce  
National Institute of Standards and Technology

**Certificate of Accreditation to ISO/IEC 17025:1999**

NVLAP LAB CODE: 200129-0

**AHD (Amber Helm Development, L.C.)**  
Dowagiac, MI


is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in  
NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999.  
Accreditation is granted for specific services, listed on the Scope of Accreditation, for:

**ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS**

---

2006-07-01 through 2007-06-30  
Effective dates

*Dale J. Bruce*  
For the National Institute of Standards and Technology



## SCOPE OF ACCREDITATION TO ISO/IEC 17025:1999

### AHD (Amber Helm Development, L.C.)

92723 Michigan Highway 152  
Dowagiac, MI 49047-8824  
Mr. Gordon Helm  
Phone: 269-429-8352 Fax: 269-429-9016  
E-Mail: [ghelm@ahde.com](mailto:ghelm@ahde.com)  
URL: <http://www.ahde.com>

**ELECTROMAGNETIC COMPATIBILITY  
AND TELECOMMUNICATIONS**

**NVLAP LAB CODE 200129-0**

### *NVLAP Code Designation / Description*

#### **Emissions Test Methods:**

- 12/CIS22 IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
- 12/CIS22a IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996)
- 12/FCC15b ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators (Limited to 1 GHZ)
- 12/T51 AS/NZS CISPR 22 (2002) and AS/NZS 3548 (1997): Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment

#### **Immunity Test Methods:**

- 12/I01 IEC 61000-4-2, Ed. 1.2 (2001) + A1, A2; EN 61000-4-2: Electrostatic Discharge Immunity Test
- 12/I04 IEC 61000-4-5, Ed. 1.1 (2001-04); EN 61000-4-5: Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test

2006-07-01 through 2007-06-30

*Effective dates*

Page 1 of 1

*Sally S. Bruce*  
For the National Institute of Standards and Technology

NVLAP-01S (REV. 2005-05-19)

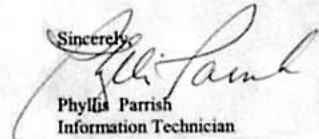
## FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division  
7435 Oakland Mills Road  
Columbia, MD 21046

May 17, 2005

AHD EMC Laboratory  
92723 M-152  
Dowagiac, MI 49047

Registration Number: 90413


Attention: Gordon Helm

Re: Measurement facility located at Sister Lakes  
3 & 10 meter site  
Date of Renewal: May 17, 2005

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website [www.fcc.gov](http://www.fcc.gov) under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,  
  
Phyllis Parrish  
Information Technician

## NARTE Seal

