

# Report on the Exposure Calculation for

## ip.access of the E-Class Access Point, Model: 495X



In accordance with FCC CFR 47 Part 2.1091

Prepared for: ip.access Limited  
Building 2020  
Cambourne Business Park, Cambourne  
Cambridge  
Cambridgeshire  
CB23 6DW  
United Kingdom

Add value.  
Inspire trust.

## COMMERCIAL-IN-CONFIDENCE

Document Number: 75945166-03 | Issue: 01

| RESPONSIBLE FOR      | NAME            | DATE        | SIGNATURE                                                                   |
|----------------------|-----------------|-------------|-----------------------------------------------------------------------------|
| Authorised Signatory | Matthew Russell | 24 May 2019 | A handwritten signature in blue ink that appears to read "Matthew Russell". |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

### ENGINEERING STATEMENT

The calculations shown in this report were made in accordance with the procedures described in FCC CFR 47 Part 2.1091.

| RESPONSIBLE FOR | NAME       | DATE        | SIGNATURE                                                              |
|-----------------|------------|-------------|------------------------------------------------------------------------|
| Calculation     | Pete Dorey | 24 May 2019 | A handwritten signature in blue ink that appears to read "Pete Dorey". |

### EXECUTIVE SUMMARY

The calculation of exposure for this product was found to be compliant at 20 cm with CFR 47 Part 2.1091.

### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2019 TÜV SÜD.

TÜV SÜD  
is a trading name of TÜV SÜD Ltd  
Registered in Scotland at East Kilbride,  
Glasgow G75 0QF, United Kingdom  
Registered number: SC215164

TÜV SÜD Ltd is a  
TÜV SÜD Group Company

Phone: +44 (0) 1489 558100  
Fax: +44 (0) 1489 558101  
[www.tuv-sud.co.uk](http://www.tuv-sud.co.uk)

TÜV SÜD  
Octagon House  
Concorde Way  
Fareham  
Hampshire PO15 5RL  
United Kingdom



## Contents

|                |                                           |          |
|----------------|-------------------------------------------|----------|
| <b>1</b>       | <b>Report Summary</b>                     | <b>2</b> |
| 1.1            | Report Modification Record                | 2        |
| 1.2            | Introduction                              | 2        |
| 1.3            | Brief Summary of Results                  | 3        |
| 1.4            | Product Information                       | 3        |
| <b>2</b>       | <b>Assessment Details</b>                 | <b>5</b> |
| 2.1            | Assessment Method                         | 5        |
| 2.2            | Individual Antenna Port Exposure Results  | 5        |
| 2.3            | Combined Antenna Port RF Exposure Results | 6        |
| 2.4            | Far Field Region Boundary Results         | 6        |
| 2.5            | Uncertainty                               | 6        |
| <b>Annex A</b> | Regional Requirements                     | <b>7</b> |



## 1 Report Summary

### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue |
|-------|-----------------------|---------------|
| 1     | First Issue           | 24 May 2019   |

**Table 1**

### 1.2 Introduction

|                          |                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective                | To perform electromagnetic field exposure assessment to determine the equipment under test's (EUT's) compliance with the applied specifications.                                                                                                                                                                                                                                                 |
| Applicant                | ip.access                                                                                                                                                                                                                                                                                                                                                                                        |
| Manufacturer             | ip.access                                                                                                                                                                                                                                                                                                                                                                                        |
| Model Number(s)          | E61 Band 48                                                                                                                                                                                                                                                                                                                                                                                      |
| Hardware Version(s)      | Rev A                                                                                                                                                                                                                                                                                                                                                                                            |
| Software Version(s)      | 5978                                                                                                                                                                                                                                                                                                                                                                                             |
| Specification/Issue/Date | <ul style="list-style-type: none"><li>FCC 47 CFR Part 2.1091: 2018</li></ul>                                                                                                                                                                                                                                                                                                                     |
| Order Number             | PO41448                                                                                                                                                                                                                                                                                                                                                                                          |
| Date                     | 14 February 2019                                                                                                                                                                                                                                                                                                                                                                                 |
| Related Document(s)      | <ul style="list-style-type: none"><li>FCC 47 CFR Part 1.1310: 2018</li><li>OET65:97 Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields</li><li>IEEE C95.3:2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz–300 GHz</li></ul> |



### 1.3 Brief Summary of Results

The wireless device described within this report was compliant with the restrictions related to human exposure to electromagnetic fields for both general public and worker/occupational exposures.

The calculations shown in this report were made in accordance with the procedures specified in the applied test specification(s).

#### 1.3.1 Configuration 1 – LTE Band 48

| Regional Requirement | RF Exposure Level at compliance boundary of 0.2 m |       |               |       |               |       |              |       |
|----------------------|---------------------------------------------------|-------|---------------|-------|---------------|-------|--------------|-------|
|                      | S Power Density (W/m <sup>2</sup> )               |       | E Field (V/m) |       | H Field (A/m) |       | B Field (µT) |       |
|                      | Result                                            | Limit | Result        | Limit | Result        | Limit | Result       | Limit |
| FCC                  | 0.59                                              | 50.00 | 14.86         | N/A   | 0.0394        | N/A   | 0.0495       | N/A   |

**Table 2 – Worker/Occupational Exposure Results**

The calculations show that the EUT complies with the worker/occupational exposure levels described in the listed specifications in Annex A at the point of investigation, 0.2 m.

| Regional Requirement | RF Exposure Level at compliance boundary of 0.2 m |       |               |       |               |       |              |       |
|----------------------|---------------------------------------------------|-------|---------------|-------|---------------|-------|--------------|-------|
|                      | S Power Density (W/m <sup>2</sup> )               |       | E Field (V/m) |       | H Field (A/m) |       | B Field (µT) |       |
|                      | Result                                            | Limit | Result        | Limit | Result        | Limit | Result       | Limit |
| FCC                  | 0.59                                              | 10.00 | 14.86         | N/A   | 0.0394        | N/A   | 0.0495       | N/A   |

**Table 3 – General Public Exposure Results**

The calculations show that the EUT complies with the general public exposure levels described in the listed specifications in Annex A at the point of investigation, 0.2 m.

### 1.4 Product Information

#### 1.4.1 Technical Description

Small Cell for LTE Spectrum.

#### 1.4.2 Transmitter Description

The following radio access technologies and frequency bands are supported by the equipment under test.

| Radio Access Technology | Antenna Port | Frequency Band | Minimum Frequency | Output Power | Duty Cycle |
|-------------------------|--------------|----------------|-------------------|--------------|------------|
|                         |              | MHz            | MHz               | dBm          | %          |
| LTE TDD                 | Integral     | 3550-3700      | 3550              | 23.98        | 74.3       |

**Table 4 – Transmitter Description**



#### 1.4.3 Antenna Description

The following antennas are supported by the equipment under test.

| Antenna No | Radio Access Technology | Antenna Model | Gain | Antenna length | Minimum Separation Distance |
|------------|-------------------------|---------------|------|----------------|-----------------------------|
|            |                         |               | dBi  | cm             | cm                          |
| 1          | LTE TDD                 | Integral      | 2    | 3.3            | 20                          |

**Table 5 – Antenna description**

#### 1.4.4 Equipment Configuration

Transmitting.



## 2 Assessment Details

### 2.1 Assessment Method

The assessment method is by calculation of the power density S, electric field strength E, magnetic field strength H or magnetic flux density B.

The calculation uses the spherical model applicable under far field conditions.

$$S = E \times H = \frac{E^2}{\eta} = H^2 \times \eta = \frac{P \times G_i}{4 \times \pi \times r^2}$$

Where:

$\eta$  - Impedance of free space (377 ohm in far field)

P – Transmitter power W

$G_i$  – Antenna gain ratio relative to isotropic

R – Separation distance m

The magnetic flux density is related to the magnetic field strength by a constant:

$$B = \mu_0 \times H$$

Where:

$\mu_0$  – Permeability of free space  $4\pi \times 10^{-7}$  H/m

Where additional calculations are required by the regional specifications these are detailed below.

The far field region boundary depends on the frequency and wavelength and also on the antenna dimension. The boundary of the far field region is calculated below to demonstrate the validity of using the spherical model.

### 2.2 Individual Antenna Port Exposure Results

#### 2.2.1 Calculation of Exposure at Specified Separation Distance

The frequencies shown in the tables below have been chosen based on the lowest possible frequency that the EUT can transmit. A full list of the regional requirements is shown in Annex A.

| Regional Requirement | Antenna Port | RAT     | Frequency (MHz) | RF Exposure Level at compliance boundary of 0.2 m |       |               |       |               |       |              |       |
|----------------------|--------------|---------|-----------------|---------------------------------------------------|-------|---------------|-------|---------------|-------|--------------|-------|
|                      |              |         |                 | S Power Density (W/m <sup>2</sup> )               |       | E Field (V/m) |       | H Field (A/m) |       | B Field (μT) |       |
|                      |              |         |                 | Result                                            | Limit | Result        | Limit | Result        | Limit | Result       | Limit |
| FCC                  | 1            | LTE TDD | 3550            | 0.59                                              | 50.00 | 14.86         | N/A   | 0.0394        | N/A   | 0.0495       | N/A   |

**Table 6 – Worker/Occupational Individual Transmitter Result**

The calculations show that the EUT complies with the worker/occupational exposure levels described in the listed specifications in Annex A at the point of investigation, 0.2 m.



| Regional Requirement | Antenna Port | RAT     | Frequency (MHz) | RF Exposure Level at compliance boundary of 0.2 m |       |               |       |               |       |              |       |
|----------------------|--------------|---------|-----------------|---------------------------------------------------|-------|---------------|-------|---------------|-------|--------------|-------|
|                      |              |         |                 | S Power Density (W/m²)                            |       | E Field (V/m) |       | H Field (A/m) |       | B Field (µT) |       |
|                      |              |         |                 | Result                                            | Limit | Result        | Limit | Result        | Limit | Result       | Limit |
| FCC                  | 1            | LTE TDD | 3550            | 0.59                                              | 10.00 | 14.86         | N/A   | 0.0394        | N/A   | 0.0495       | N/A   |

**Table 7 – General Public Individual Transmitter Result**

The calculations show that the EUT complies with the general public exposure levels described in the listed specifications in Annex A at the point of investigation, 0.2 m.

### 2.3 Combined Antenna Port RF Exposure Results

The product has a single transmitter therefore combined exposure is not applicable.

### 2.4 Far Field Region Boundary Results

The far field region boundary calculation result is shown in Table 8:

| Near Field / Far Field Boundary |                                                         |                                                                  |
|---------------------------------|---------------------------------------------------------|------------------------------------------------------------------|
| RAT Name                        | Reactive Near Field Boundary (Wave Impedance Dependent) | Antennas - on axis Far Field Region (Ref: IEEE C95.3 Annex B.2.) |
|                                 | $\lambda/4$ (m)                                         | $2D^2/\lambda$ (m)                                               |
| LTE TDD                         | 0.0211                                                  | 0.0258                                                           |

**Table 8 – Far Field Boundary**

The table below shows the maximum calculated near field / far field region boundaries. The compliance boundary of 0.2 m is in the far field region and therefore, the approach described in section 2.1 is valid.

| Field Region                 | Reactive Near Field Region                                        | Radiating Near Field Region                    | Far Field Region      |
|------------------------------|-------------------------------------------------------------------|------------------------------------------------|-----------------------|
| Maximum Boundary             | < 0.0211 m                                                        | 0.0211 – 0.0258 m                              | > 0.0258 m            |
| Validity of Regions          | Spherical model potential under-estimate: SAR assessment required | Spherical model over-estimate and conservative | Spherical model valid |
| Compliance Boundary Location | N/A                                                               | N/A                                            | 0.2                   |

**Table 9 – Assessment Method Validity**

### 2.5 Uncertainty

The basic computation formulas presented in section 2.1 are conservative formulas for the estimation of RF field strength or power density. No uncertainty estimations are required when using these formulas but there is clear guidance on where and when these formulas are applicable.

For the estimate of S, E or H to be conservative, the transmitter power P and antenna gain  $G_i$  values shall be the upper bounds of uncertainty therefore maximum values are used.

The spherical formula is valid under far field conditions which are established in section 2.4.



## ANNEX A

### REGIONAL REQUIREMENTS



| Frequency Range (MHz) | Power Density (mW/cm <sup>2</sup> ) <sup>Note 1</sup> | Electric Field Strength (V/m) | Magnetic Field Strength (A/m) |
|-----------------------|-------------------------------------------------------|-------------------------------|-------------------------------|
| 0 - 0.3               | -                                                     | -                             | -                             |
| 0.3 - 3               | 100                                                   | 614                           | 1.63                          |
| 3 - 30                | 900/f <sup>2</sup>                                    | 1842/f                        | 4.89/f                        |
| 30 - 300              | 1                                                     | 61.4                          | 0.163                         |
| 300 - 1500            | f/300                                                 | -                             | -                             |
| 1500 - 100000         | 5                                                     | -                             | -                             |

**Table A.1 – CFR 47 Pt1.1310 (2018) Worker/Occupational Limits**

| Frequency Range (MHz) | Power Density (mW/cm <sup>2</sup> ) <sup>Note 1</sup> | Electric Field Strength (V/m) | Magnetic Field Strength (A/m) |
|-----------------------|-------------------------------------------------------|-------------------------------|-------------------------------|
| 0 - 0.3               | -                                                     | -                             | -                             |
| 0.3 - 3               | 100                                                   | 614                           | 1.63                          |
| 3 - 30                | 180/f <sup>2</sup>                                    | 824/f                         | 2.19/f                        |
| 30 - 300              | 0.2                                                   | 27.5                          | 0.073                         |
| 300 - 1500            | f/1500                                                | -                             | -                             |
| 1500 - 100000         | 1                                                     | -                             | -                             |

**Table A.2 – CFR 47 Pt1.1310 (2018) General Public Limits**

Note 1: The calculations and limits presented in this report for power density are in units of W/m<sup>2</sup>. The conversion factor is; 1 mW/cm<sup>2</sup> = 10 W/m<sup>2</sup>.