

FCC 47 CFR PART 90

TEST REPORT

For

Applicant : Tongdaxin Electronics Co., Ltd

Address : Tongdaxin Ind. Bldg, Houting, Donghai, Quanzhou, Fujian, China

Product Name : Two Way Radio

Model Name : TD-Q5

Brand Name : TDXone

FCC ID : QGDTD-Q5

Report No. : DPH120924F01

Date of Issue : October 15, 2012

Issued by : Shenzhen Top-cert Service Co., Ltd.

Address : Room 506, Hongyu Commercial Building, Gushu 2nd Road, Baoan District, Shenzhen, China

Tel : 0755-61196328

Fax : 0755-61196328

E-mail : service@top-cert.com

Web : www.top-cert.com

The report consists 45 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by Top-cert. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

CONTENTS

1. Test Result Certification	4
2. Technical Information	5
2.1 EUT Description	5
2.2 Objective	6
2.3 Test Standards and Results	6
2.4 Environmental Conditions	6
3. Details of Test.....	7
3.1 Identification of the Responsible Testing Laboratory	7
3.2 Identification of the Responsible Testing Location	7
3.3 List of Test Equipments	8
3.4 Environmental Conditions	9
3.5 Configuration of Tested System	9
3.6 Equipment Used in Tested System	9
4. Test Methodology.....	10
4.1 General Test Procedures	10
4.2 Description of Test Modes.....	10
4.3 FCC Part 15.205 Restricted Bands of Operations	11
5. FCC Part 90 Requirements	12
5.1 Power and Antenna High Limits	12
5.2 Modulation Characteristic.....	14
5.3 Occupied Bandwidth	17
5.4 Emission Mask	19
5.5 Frequency Stability vs. Temperature	25
5.6 Frequency Stability vs. Voltage	26
5.7 Transmitter Frequency Behavior	27
5.8 Line Conducted Emission Test.....	29
5.9 Radiated Emission	33

Annex A	37
Photographs of the Test Setup	37
Annex B	39
Photographs of the EUT	39

Revision History		
Issue	Date	Reason for Revision
1.0	October 01, 2012	First edition
2.0	October 15, 2012	Second edition

1. Test Result Certification

Equipment Under Test:	Two Way Radio
Brand Name:	TDXone
Model Number:	TD-Q5
Series Model Name:	N/A
Difference description:	N/A
FCC ID:	QGDTD-Q5
Applicant:	Tongdaxin Electronics Co., Ltd
	Tongdaxin Ind. Bldg, Houting, Donghai, Quanzhou, Fujian, China
Manufacturer:	Tongdaxin Electronics Co., Ltd
	Tongdaxin Ind. Bldg, Houting, Donghai, Quanzhou, Fujian, China
Test Standard	FCC 47 CFR Part 90
File Number:	DPH120924F01
Date of test:	August 21, 2012 ~ October 15, 2012
Deviation:	None
Condition of Test Sample:	Normal
Test Result:	PASS

We, Top-cert, hereby certify that the test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4:2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 90.

The test results of this report relate only to the tested sample identified in this report.

Tested by (+ signature):

Rex Luo

Rex Luo

Test Engineer

Approved by (+ signature):

Joe Jia

Joe Jia

Manager

2. Technical Information

Note: the following data is based on the information by the applicant.

2.1 EUT Description

Product Name:	Two Way Radio
Brand Name:	TDXone
Model Number:	TD-Q5
Power Supply:	DC 12.5V by AC/DC Adapter DC 7.4V by battery
Frequency Range:	136.000 MHz-174.000 MHz
Channel Number:	128 Channels
Channel Spacing:	12.5 KHz
Modulation Technique:	FM
Antenna Type:	External
Temperature Range:	-10°C-50°C

Note:

1. *This submittal(s) (test report) is intended for FCC ID: QGDTD-Q5 filing to comply with the FCC Part 90, Subpart I Rules.*
2. *Please refer to Appendix B for the photographs of the EUT. For more details, please refer to the User's manual of the EUT.*

2.2 Objective

The tests documented in this report were performed in accordance with ANSI C63.4 (2009) and FCC CFR 47 Rules Part 90 Subpart I.

No.	Identity	Document Title
1	47 CFR Part 2 (10-1-05 Edition)	Radio Frequency Devices
2	47 CFR Part 90 (10-1-09 Edition)	Private Land Mobile Radio Services

2.3 Test Standards and Results

Test items and the results are as bellow:

No	Test Type	Para. Number	Limit	Result
1	Power and Antenna High Limits	2.1046; 90.205	Refer to 90.205	PASS
2	Modulation Characteristic	2.1047; 90.207	Refer to 90.207	PASS
3	Occupied Bandwidth	2.1049; 90.209	Refer to 90.209	PASS
4	Emission Mask	2.1053; 90.210	Refer to 90.210	PASS
5	Frequency Stability vs. Temperature	2.1055; 90.213	Refer to 90.213	PASS
6	Frequency Stability vs. Voltage	2.1055; 90.213	Refer to 90.213	PASS
7	Transmitter Frequency Behavior	90.214	Refer to 90.214	PASS
8	Lined conducted emission	15.207	Refer to 15.207	PASS
9	Radiated Emission	15.109	Refer to 15.109	PASS

2.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60%
- Atmospheric pressure: 86-106 k Pa

3. Details of Test

3.1 Identification of the Responsible Testing Laboratory

Company:	Shenzhen Top-cert Service Co., Ltd.
Address:	Room 506, Hongyu Commercial Building, Gushu 2nd Road, Baoan District, Shenzhen, China

3.2 Identification of the Responsible Testing Location

Test Site:	Most Technology Service Co., Ltd.
Location:	No.5, Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan, Shenzhen, Guangdong, China
Description:	<p>There is one 3m semi-anechoic an area test sites and two line conducted labs for final test. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2009 and CISPR 16 requirements.</p> <p>The FCC Registration Number is 490827.</p>
Site Filing:	The site description is on file with the Federal Communications Commission, 7435 Oakland Mills Road, Columbia, MD 21046.
Instrument Tolerance:	All measuring equipment is in accord with ANSI C63.4:2009 and CISPR 16 requirements that meet industry regulatory agency and accreditation agency requirement.
Ground Plane:	Two conductive reference ground planes were used during the Line Conducted Emission, one in vertical and the other in horizontal. The dimensions of these ground planes are as below. The vertical ground plane was placed distancing 40 cm to the rear of the wooden test table on where the EUT and the support equipment were placed during test. The horizontal ground plane projected 50 cm beyond the footprint of the EUT system and distanced 80 cm to the wooden test table. For Radiated Emission Test, one horizontal conductive ground plane extended at least 1m beyond the periphery of the EUT and the largest measuring antenna, and covered the entire area between the EUT and the antenna.

3.3 List of Test Equipments

No.	Equipment	Manufacturer	Model No.	S/N	Calibration date	Calibration due date
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2012/4/22	2013/4/21
2	Modulation Analyzer	HP	8920B	3104A03367	2012/4/22	2013/4/21
3	Bi-Log Antenna	Sunol	JB3	A121206	2012/3/15	2013/3/14
4	Storage Oscilloscope	Tektronix	TDS3052	B017447	2012/4/22	2013/4/21
5	Test Antenna – Bi-Log	Schwarzbeck	VULB 9163	---	2012/3/15	2013/3/14
6	Horn Antenna	ETS	3115	---	2012/3/15	2013/3/14
7	Test Antenna - Horn	Schwarzbeck	BBHA 9120C	--	2012/3/15	2013/3/14
8	Cable	Resenberger	N/A	NO.1	N/A	N/A
9	Cable	SchwarzBeck	N/A	NO.2	N/A	N/A
10	Cable	SchwarzBeck	N/A	NO.3	N/A	N/A
11	Power Splitter	Weinschel	1506A	NW521	N/A	N/A
12	Spectrum Analyzer	Agilent	4408B	MY41440460	2012/4/22	2013/4/21
13	Coaxial Switch	Anritsu Corp	MP59B	6200283933	N/A	N/A
14	Signal Generator	IFR	2032	203002/100	2012/4/22	2013/4/21
15	Telecommunication Antenna	European Antennas	PSA 75301R/170	0304213	2012/3/15	2013/3/14
16	Temperature Chamber	Guangzhou Gongwen	GDS-250	N/A	N/A	N/A
17	DC Power Supply	Good Will	GPS-3030DD	EF920938	2012/4/22	2013/4/21
	Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2012/4/16	2013/4/15

NOTE: Equipments listed above have been calibrated and are in the period of validation.

3.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60%
- Atmospheric pressure: 86-106 k Pa

3.5 Configuration of Tested System

3.6 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/Type No.	Identifier	Series No.	Note
1	AC Adapter	N/A	N/A	FCC DOC	N/A	EUT

4. Test Methodology

4.1 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirement in Section 13.1.4.1 of ANSI C63.4:2009. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4:2009.

4.2 Description of Test Modes

The EUT has been tested under normal operating condition.

Three channels (The top channel, the middle channel and the bottom channel) are chosen for testing.

4.3 FCC Part 15.205 Restricted Bands of Operations

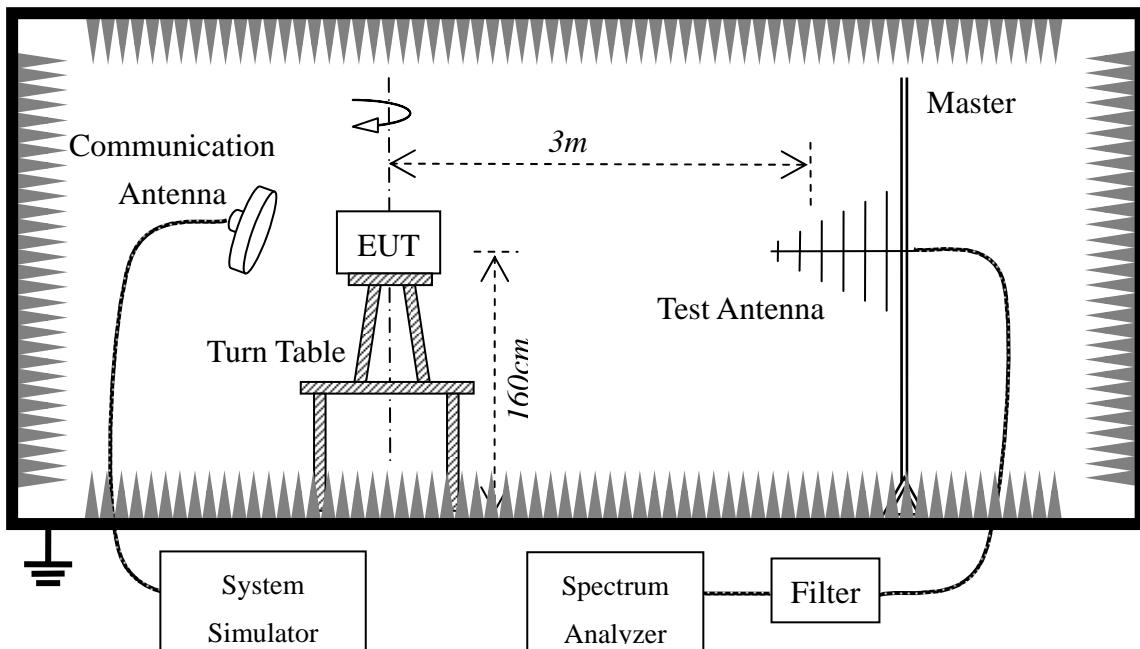
(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.


5. FCC Part 90 Requirements

5.1 Power and Antenna High Limits

LIMIT

According to CFR 47 section 90.205, Maximum ERP is dependent upon the station's antenna HAAT and required service area.

TEST CONFIGURATION

TEST PROCEDURE

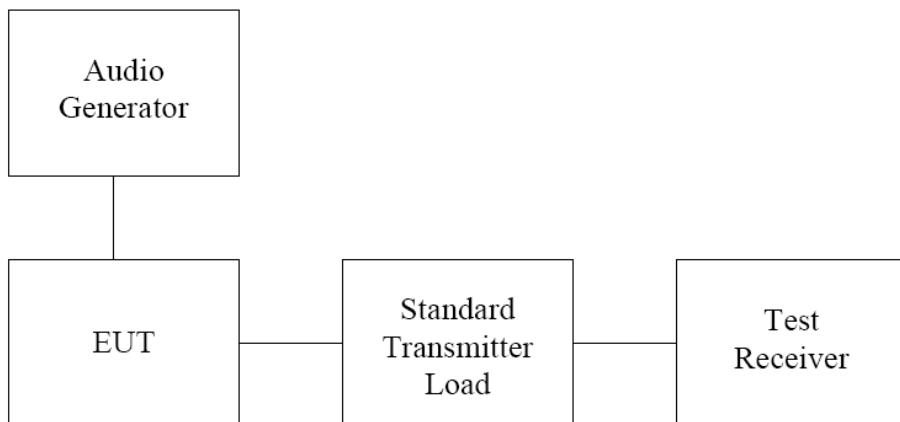
1. The test is performed in a full-Anechoic Chamber, the air loss of the site and the factors of the test system are using the substitution method.
2. The test antenna shall be located 3m from the EUT to correspond to the transmitter.
3. The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
4. The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
5. The test antenna shall be raised and lowered through the specified range of height until the measuring

receiver detects a maximum signal level.

6. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
7. The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
8. The maximum signal level detected by the measuring receiver shall be noted.
9. The measurement shall be repeated with the test antenna set to horizontal polarization.
10. Replace the antenna with a proper Antenna (substitution antenna).
11. The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
12. The substitution antenna shall be connected to a calibrated signal generator.
13. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
14. The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
15. The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
16. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
17. The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

TEST RESULTS

Channel	Frequency (MHz)	Measured Power	
		dBm	W
Low	136.0125	33.38	2.178
Middle	155.0125	33.61	2.296
High	173.9875	32.89	1.945


5.2 Modulation Characteristic

LIMIT

According to CFR 47 section 2.1047 a, for Voice modulation communication equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000 Hz shall be measured.

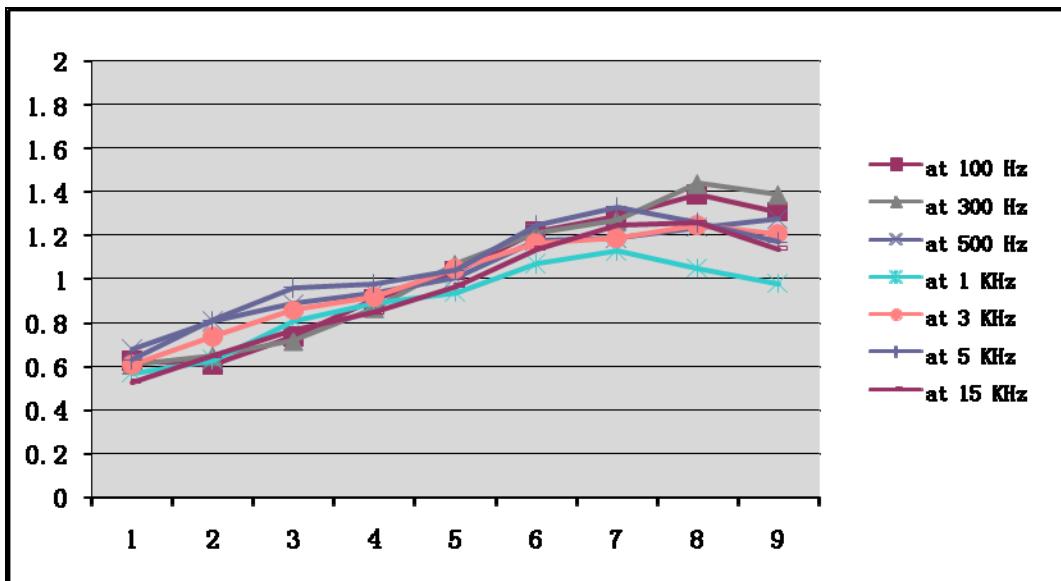
According to CFR 47 section 90.205, Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

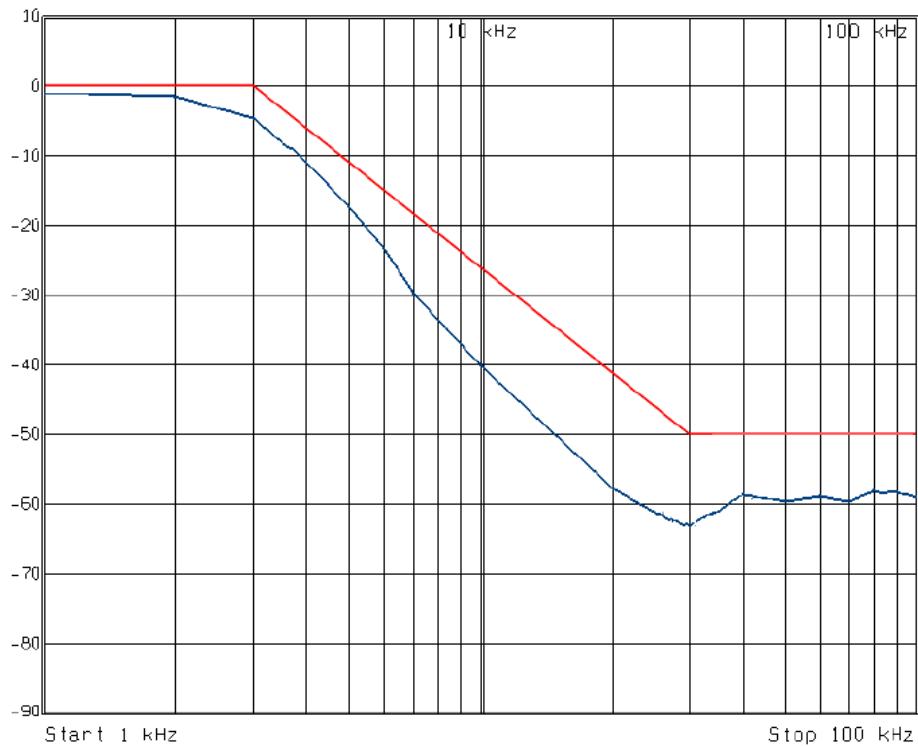
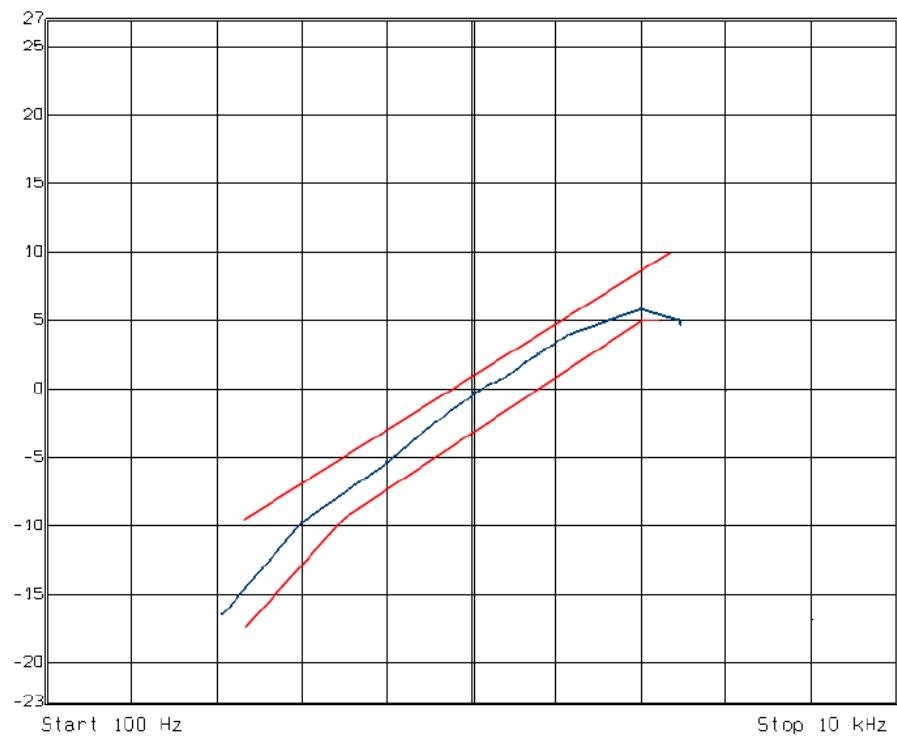
TEST CONFIGURATION

TEST PROCEDURE

Modulation limit:

1. Configure the EUT as shown in test configuration, adjust the audio input for 60% of rated system deviation at 100Hz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
2. Repeat step 1 with input frequency changing to 300, 500, 1000, 3000, 5000 and 15000Hz in sequence.

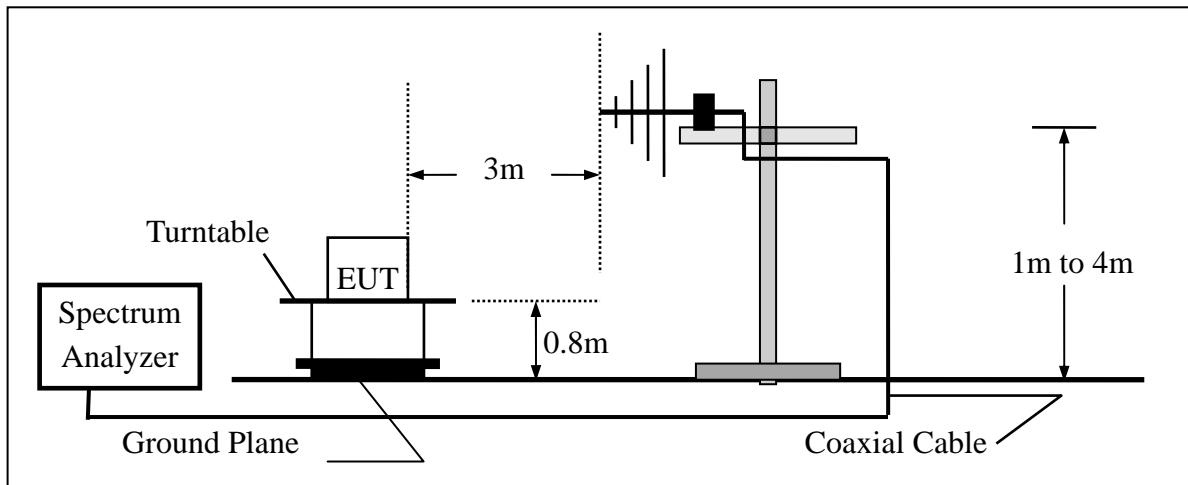

Audio Frequency Response:



1. Configure the EUT as shown in figure 1.
2. Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0dB).
3. Vary the Audio frequency from 100 Hz to 3 KHz and record the frequency deviation.
4. Audio Frequency Response = $20\log_{10}(\text{Deviation of test frequency}/\text{Deviation of 1 KHz reference})$.

TEST RESULTS

Modulation limit:

Modulation Level (dB)	Peak Frequency Deviation						
	at 100 Hz	at 300 Hz	at 500 Hz	at 1 KHz	at 3 KHz	at 5 KHz	at 15 KHz
-20	0.63	0.61	0.68	0.57	0.61	0.63	0.53
-15	0.61	0.65	0.81	0.63	0.74	0.81	0.65
-10	0.74	0.72	0.89	0.81	0.86	0.96	0.77
-5	0.91	0.87	0.94	0.89	0.92	0.98	0.85
0	1.04	1.07	1.01	0.94	1.05	1.04	0.97
+5	1.22	1.21	1.18	1.07	1.17	1.25	1.14
+10	1.29	1.27	1.19	1.13	1.19	1.33	1.25
+15	1.39	1.44	1.24	1.05	1.25	1.26	1.26
+20	1.31	1.39	1.28	0.98	1.21	1.17	1.14

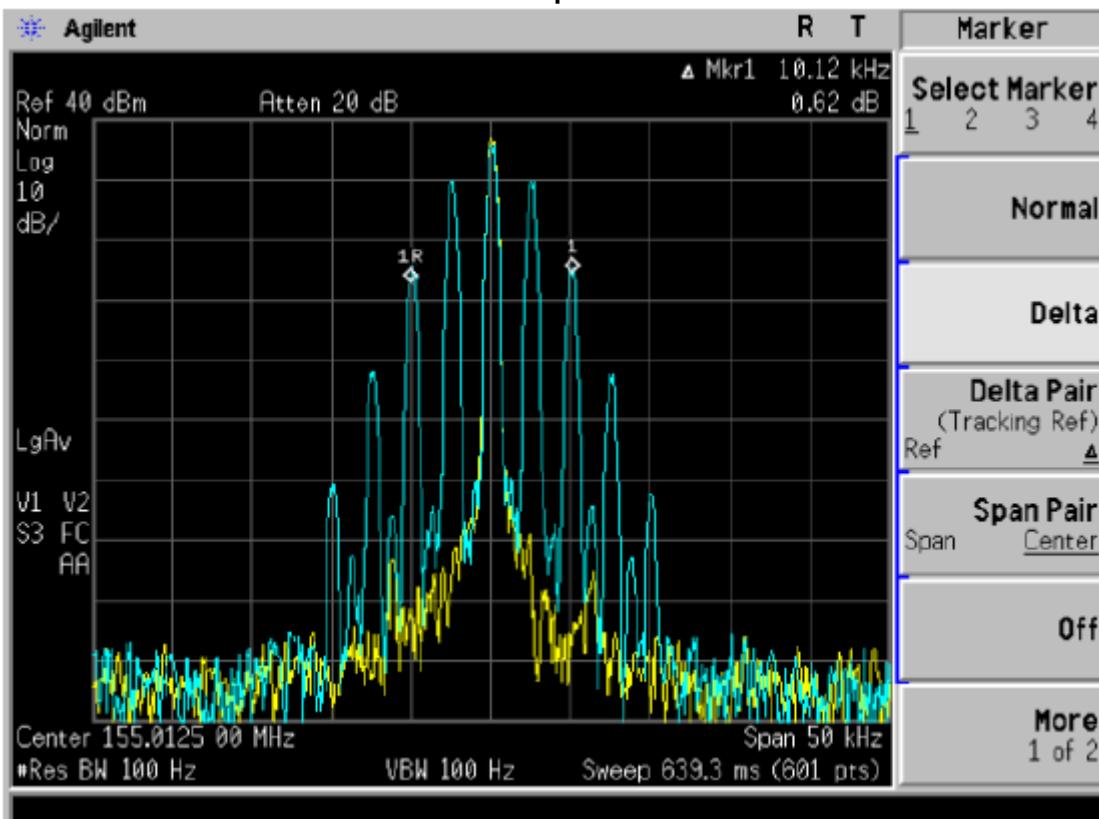

Audio Frequency Response:

5.3 Occupied Bandwidth

LIMIT

According to FCC CFR 47 Part 90 Section 90.209, for other types of emissions, the maximum authorized bandwidth shall be 11.25 KHz for 12.5 KHz.

TEST CONFIGURATION

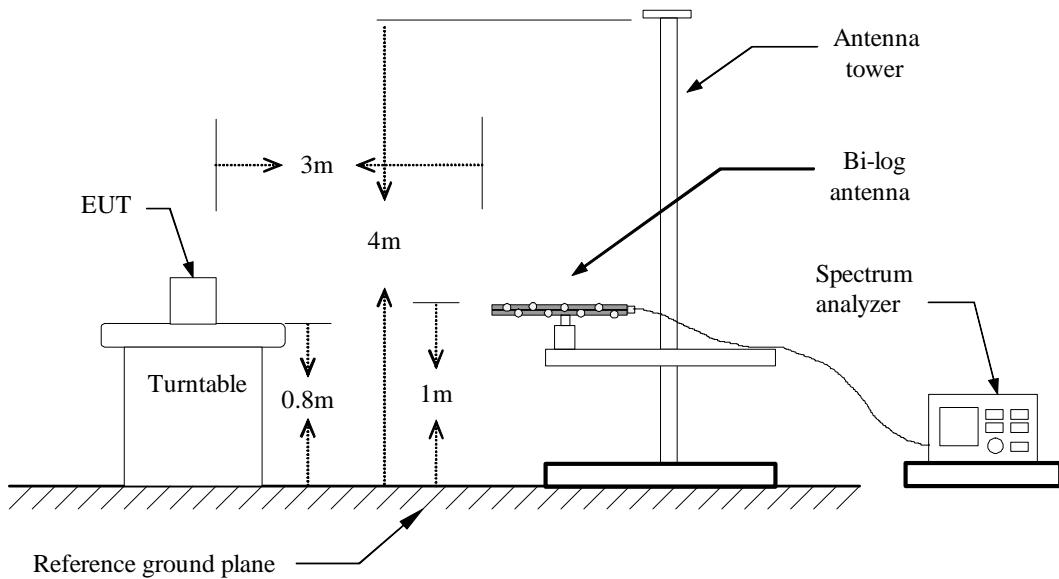

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. Set EUT as normal operation.
3. Set SPA center frequency=fundamental frequency, RBW=VBW=300 Hz, Span=200 KHz.
4. Set SPA max. Hold. Mark peak, -26dB.

TEST RESULTS

Channel	Frequency	Occupied Bandwidth	Limits	Result
Low	136.0125 MHz	10.12 KHz	11.25 KHz	PASS
Middle	155.0125 MHz	10.12 KHz	11.25 KHz	PASS
High	173.9875 MHz	10.11 KHz	11.25 KHz	PASS

Maximum Occupied bandwidth


5.4 Emission Mask

LIMIT

According to CFR 47 section 90.210, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB;
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB;
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least $43 + 10 \log_{10} *$ (mean output power in watts) dB;

TEST CONFIGURATION

TEST PROCEDURE

1. On a test site, the EUT shall be placed on a turntable and in the position closest to the normal use as declared by the user.
2. The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
3. The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
4. The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
5. The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
6. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
7. The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
8. The maximum signal level detected by the measuring receiver shall be noted.
9. The measurement shall be repeated with the test antenna set to horizontal polarization.
10. Replace the antenna with a proper Antenna (substitution antenna).
11. The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
12. The substitution antenna shall be connected to a calibrated signal generator.
13. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
14. The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
15. The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
16. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
17. The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

TEST RESULTS

The Unwanted Radiated Emission

The Low Channel

Frequency (MHz)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
272.03	V	-17.37	8.54	4.63	-21.28	-13	-8.28
Other	V	--	--	--	--	-13	> 10 dB
--	V	--	--	--	--	-13	> 10 dB
--	V	--	--	--	--	-13	> 10 dB
272.03	H	-21.57	8.54	4.63	-25.48	-13	-12.48
Other	H	--	--	--	--	-13	> 10 dB
--	H	--	--	--	--	-13	> 10 dB
--							

Notes:

- (1) "--" in the table above means that the emissions are too small to be measured and are at least 10 dB below the limit.
- (2) Emission Level=S.G. output power(dBm)-Cable loss(db)+Antenna Gain(dBi)

The Middle Channel

Frequency (MHz)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
310.05	V	-18.32	9.15	4.84	-22.63	-13	-9.63
Other	V	--	--	--	--	-13	> 10 dB
--	V	--	--	--	--	-13	> 10 dB
--	V	--	--	--	--	-13	> 10 dB
--	V	--	--	--	--	-13	> 10 dB
--	V	--	--	--	--	-13	> 10 dB
<hr/>							
310.05	H	-20.07	9.15	4.84	-24.38	-13	-11.38
Other	H	--	--	--	--	-13	> 10 dB
--	H	--	--	--	--	-13	> 10 dB
--	H	--	--	--	--	-13	> 10 dB
--	H	--	--	--	--	-13	> 10 dB
--							

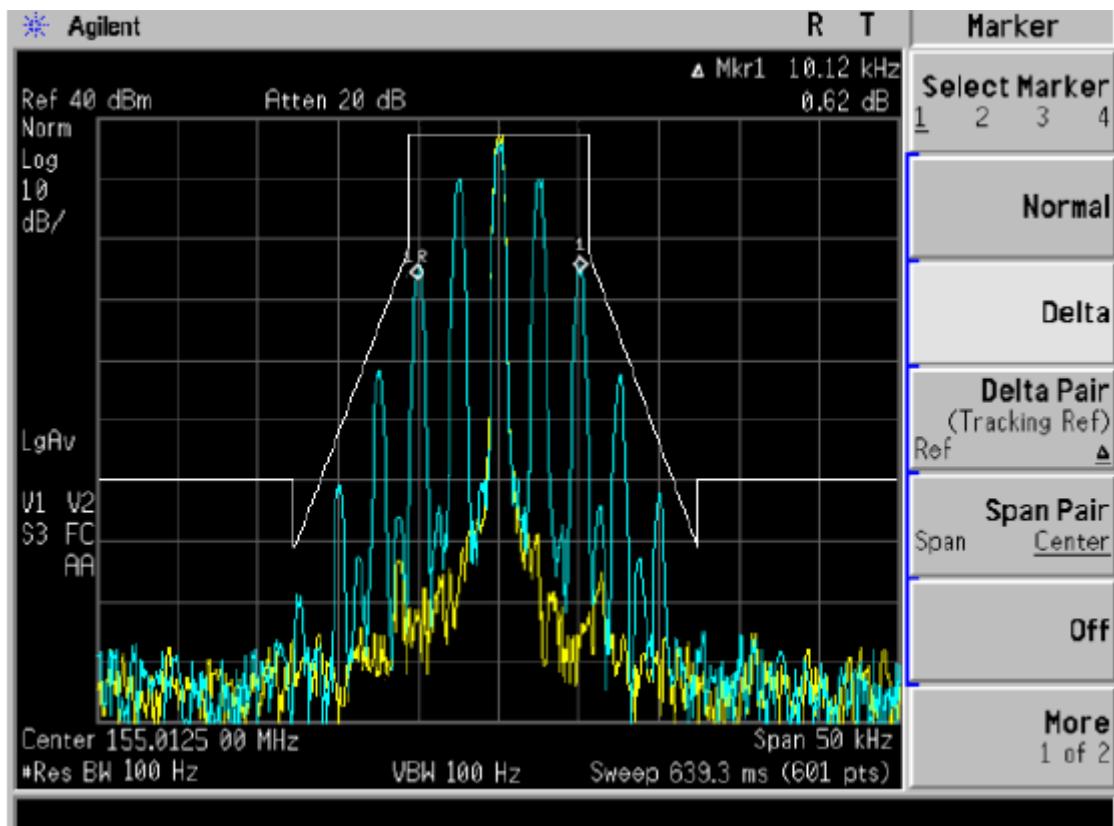
Notes:

- (1) "--" in the table above means that the emissions are too small to be measured and are at least 10 dB below the limit.
- (2) Emission Level=S.G. output power(dBm)-Cable loss(db)+Antenna Gain(dBi)

The High Channel

Frequency (MHz)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
347.95	V	-17.74	10.06	4.92	-22.88	-13	-9.88
Other	V	--	--	--	--	-13	> 10 dB
--	V	--	--	--	--	-13	> 10 dB
--	V	--	--	--	--	-13	> 10 dB
347.95	H	-19.63	10.06	4.92	-24.77	-13	-11.77
Other	H	--	--	--	--	-13	> 10 dB
--	H	--	--	--	--	-13	> 10 dB
--	H	--	--	--	--	-13	> 10 dB
--	H	--	--	--	--	-13	> 10 dB
--							

Notes:


(1) "--" in the table above means that the emissions are too small to be measured and are at least 10 dB below the limit.

(2) Emission Level=S.G. output power(dBm)-Cable loss(db)+Antenna Gain(dBi)

Maximum Transmitter Power (P)	36.16 dBm
Require attenuation	$43 + 10\log_{10} (4.130) = 41.68$ dB
Emission Limits	$P - [43 + 10\log_{10} (0.738)] = -13$ dBm

Emission Mask:

The Middle Channel

5.5 Frequency Stability vs. Temperature

LIMIT

- a). According to FCC Part 2 Section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to $+50^{\circ}\text{C}$ centigrade.
- b). According to FCC Part 2 Section 2.1055(d)(1), vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- c). According to FCC Part 90 Section 90.213, for output power $> 2\text{Wats}$, the limits is 2.5 ppm.

TEST PROCEDURE

The EUT power was supplied by DC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber. The DC leads and the RF output cable, exited the chamber through an opening made for that purpose.

After the temperature stabilized the frequency output was recorded form the counter.

RESULTS

Temperature ($^{\circ}\text{C}$)	Frequency Error (K Hz)	Frequency Error (%)	Frequency Error (ppm)	Limit (ppm)
-30	-7.062	-0.000016	-0.16	± 2.5
-20	-5.156	-0.000012	-0.12	± 2.5
-10	3.525	0.000015	0.15	± 2.5
0	1.309	0.000011	0.11	± 2.5
10	3.580	0.000008	0.08	± 2.5
20	4.561	0.000017	0.17	± 2.5
30	5.090	-0.000011	-0.11	± 2.5
40	-6.650	-0.000015	-0.15	± 2.5
50	-7.150	-0.000019	-0.19	± 2.5

5.6 Frequency Stability vs. Voltage

LIMIT

- a). According to FCC Part 2 Section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to $+50^{\circ}\text{C}$ centigrade.
- b). According to FCC Part 2 Section 2.1055(d)(1), vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- c). According to FCC Part 90 Section 90.213, for output power $> 2\text{Wats}$, the limits is 2.5 ppm.

TEST PROCEDURE

An external variable DC power supply was connected to the EUT.

For hand carried, The DC power equipment primary supply voltage was reduced to the end point as specified by the manufacturer. The output frequency was recorded for highest and lowest voltage.

RESULTS

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)	Limit (%)
6.66	4065	0.000013	0.13	± 2.5
7.4	4550	0.000010	0.10	± 2.5
8.14	5152	0.000017	0.17	± 2.5

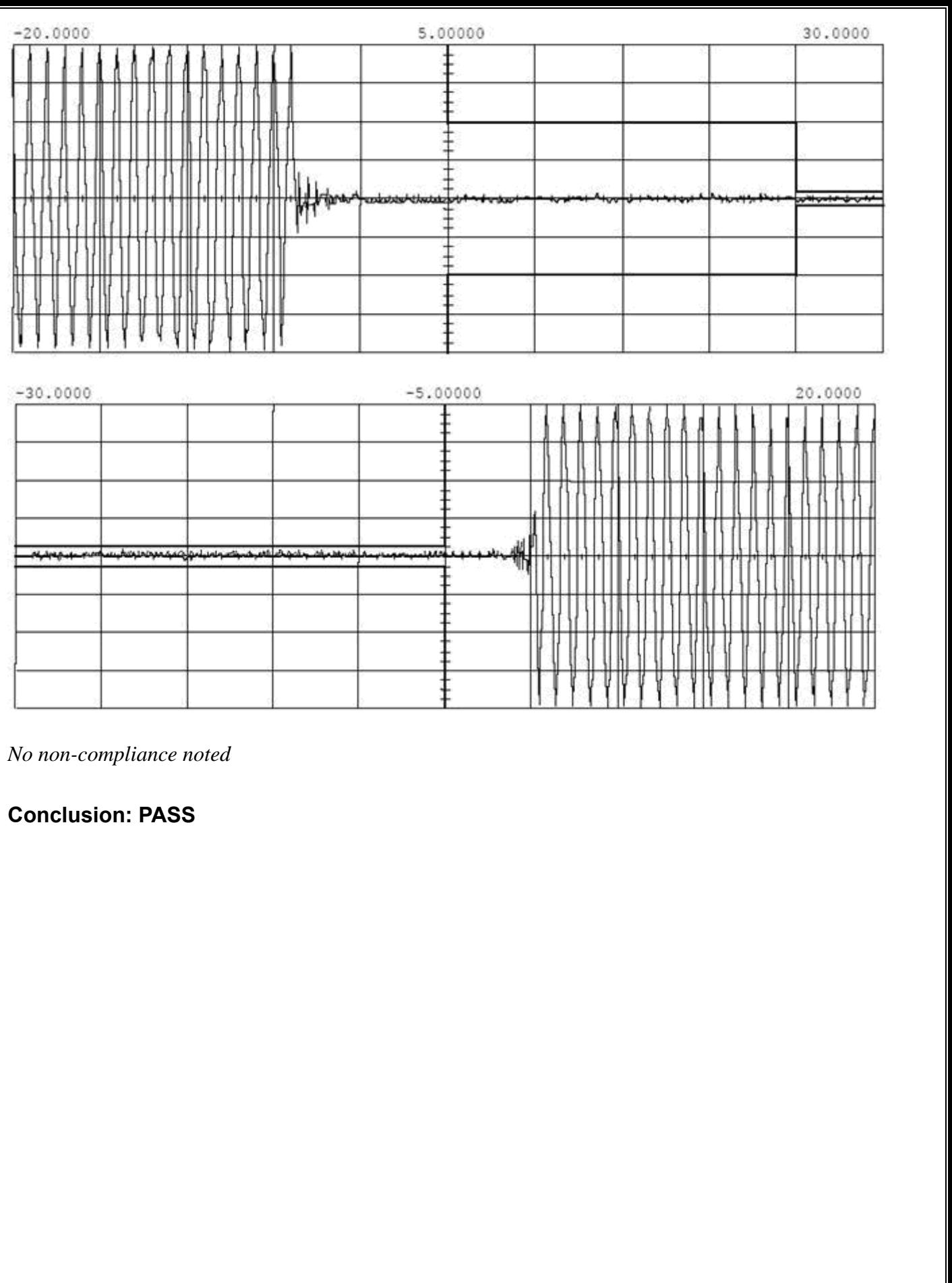
5.7 Transmitter Frequency Behavior

LIMIT

Section 90.214

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1, 2}	Maximum frequency difference ³	All equipment	
		150 to 174 MHz	421 to 512MHz
Transient Frequency Behavior for Equipment Designed to Operate on 25 KHz Channels			
t_1 ⁴	± 25.0 KHz	5.0 ms	10.0 ms
t_2	± 12.5 KHz	20.0 ms	25.0 ms
t_3 ⁴	± 25.0 KHz	5.0 ms	10.0 ms
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 KHz Channels			
t_1 ⁴	± 12.5 KHz	5.0 ms	10.0 ms
t_2	± 6.25 KHz	20.0 ms	25.0 ms
t_3 ⁴	± 12.5 KHz	5.0 ms	10.0 ms
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 KHz Channels			
t_1 ⁴	±6.25 KHz	5.0 ms	10.0 ms
t_2	±3.125 KHz	20.0 ms	25.0 ms
t_3 ⁴	±6.25 KHz	5.0 ms	10.0 ms


1. t_{on} is the instant when a 1 KHz test signal is completely suppressed, including any capture time due to phasing.
 t_1 is the time period immediately following t_{on} .
 t_2 is the time period immediately following t_1 .
 t_3 is the time period from the instant when the transmitter is turned off until t_{off} .
 t_{on} is the instant when the 1 KHz test signal starts to rise.
2. During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.
3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

TEST PROCEDURE

TIA/EIA-603 2.2.19

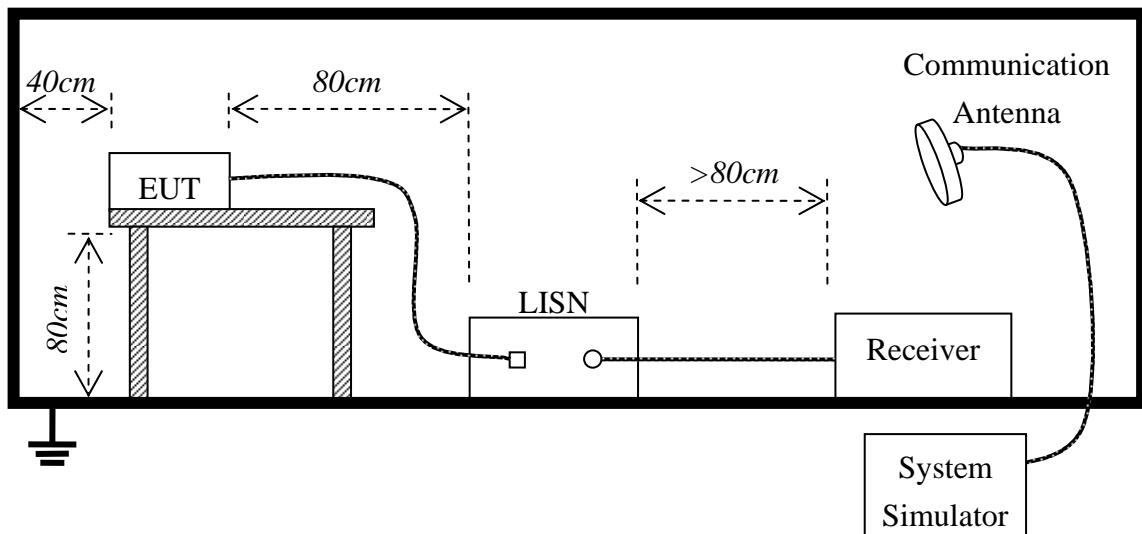
RESULTS

Operation Frequency (MHz)	Channel Separation (kHz)	Transient Period (ms)	Transient Frequency
155.0125	12.5	<5	+/-12.5 kHz
		<20	+/-6.25 kHz
		<5	+/-12.5kHz

No non-compliance noted

Conclusion: PASS

5.8 Line Conducted Emission Test


LIMITS OF LINE CONDUCTED EMISSION TEST

Frequency	Maximum RF Line Voltage	
	Q.P.(dBuV)	Average(dBuV)
150kHz-500kHz	66-56	56-46
500kHz-5MHz	56	46
5MHz-30MHz	60	50

****Note:** 1. the lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

BLOCK DIAGRAM OF TEST SETUP

PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per FCC Part 15 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per FCC Part 15.
- 3) All I/O cables were positioned to simulate typical actual usage as per FCC Part 15.
- 4) The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5) All support equipments received power from a second LISN supplying power of AC 120V/60Hz, if any.
- 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test:

Preliminary Conducted Emission Test				
Frequency Range Investigated		150KHz TO 30 MHz		
Mode of operation	Date	Report No.	Data#	Worst Mode
TX Mode	2012-09-28	DPH120924F01	1_(L, N)	<input checked="" type="checkbox"/>
RX Mode	2012-09-28	DPH120924F01	2_(L, N)	

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

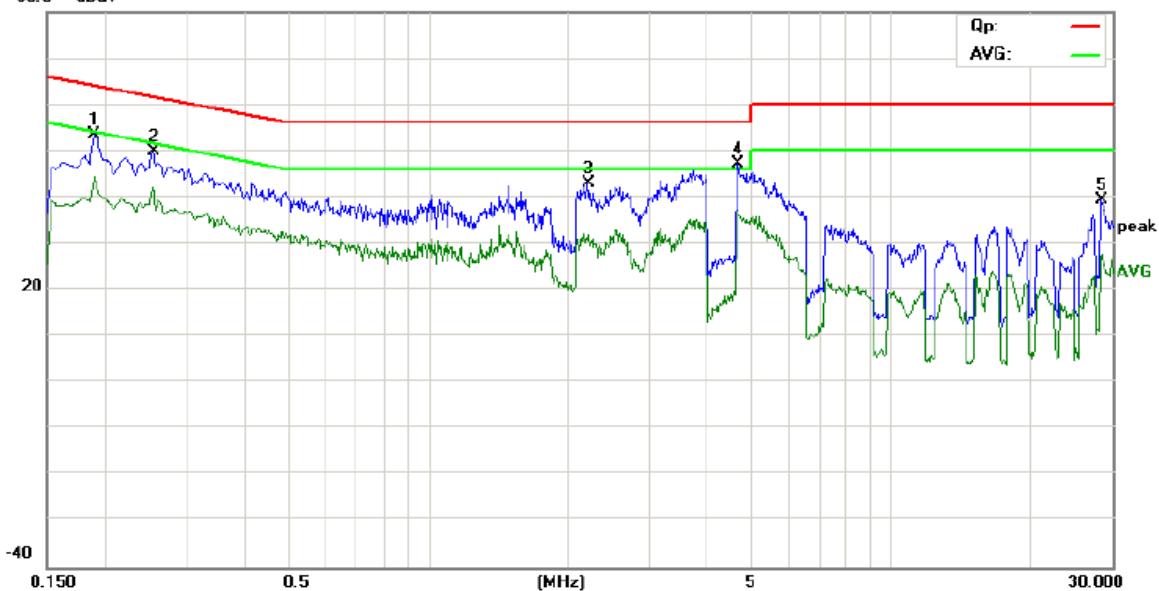
FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

EUT and support equipment was set up on the test bench as per step 9 of the preliminary test.

A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.

The test data of the worst case condition(s) was reported on the Summary Data page.

TEST RESULT OF LINE CONDUCTED EMISSION TEST


Conducted Emission Measurement

File :TD-Q5
80.0 dBuV

Data #5

Date: 2012/09/28

Time: 11:57:34

Site site #1

Phase: **L1**

Temperature: 26

Limit: FCC Part15 B Class B QP

Power: AC 120V/60Hz

Humidity: 60 %

EUT: Two way radio

M/N: TD-Q5

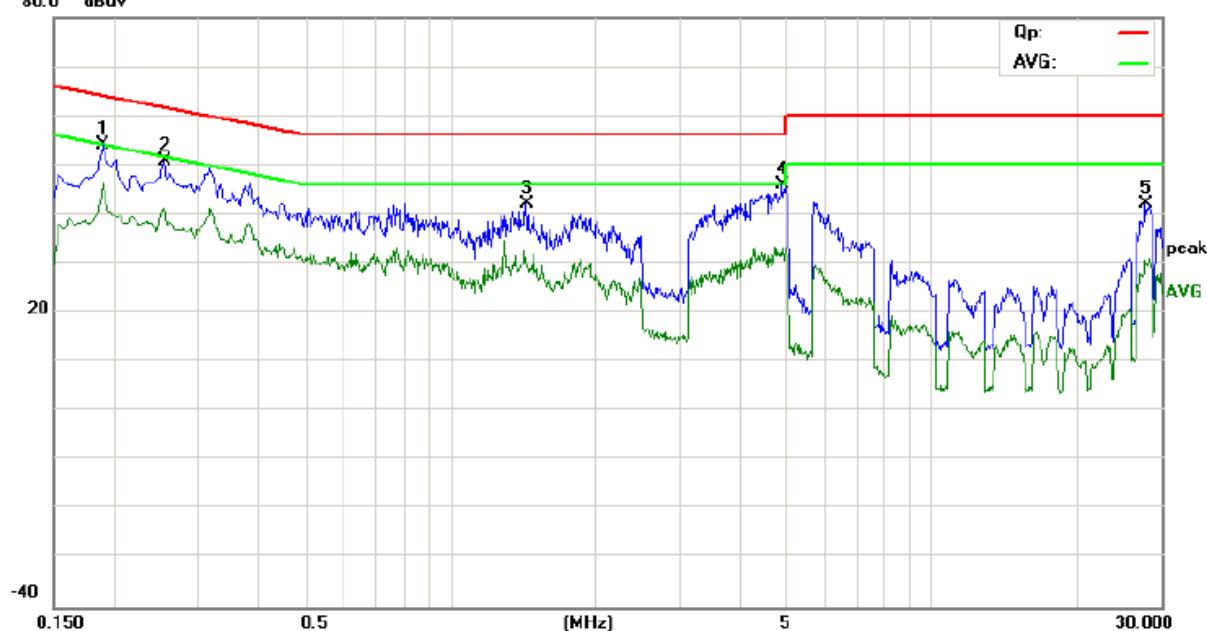
Mode:

Note:

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV	dB			
1		0.1900	42.01	11.40	53.41	64.04	-10.63	peak	
2		0.2540	38.34	11.64	49.98	61.63	-11.65	peak	
3		2.2020	33.69	9.20	42.89	56.00	-13.11	peak	
4	*	4.6420	35.52	11.64	47.16	56.00	-8.84	peak	
5		28.4340	30.37	9.00	39.37	60.00	-20.63	peak	

*:Maximum data x:Over limit !:over margin

Conducted Emission Measurement


File :TD-Q5

Data #:6

Date: 2012/09/28

Time: 12:12:45

80.0 dBuV

Site site #1

Phase: *N*

Temperature: 26

Limit: FCC Part15 B Class B QP

Power: AC 120V/60Hz

Humidity: 60 %

EUT: Two way radio

M/N: TD-Q5

Mode:

Note:

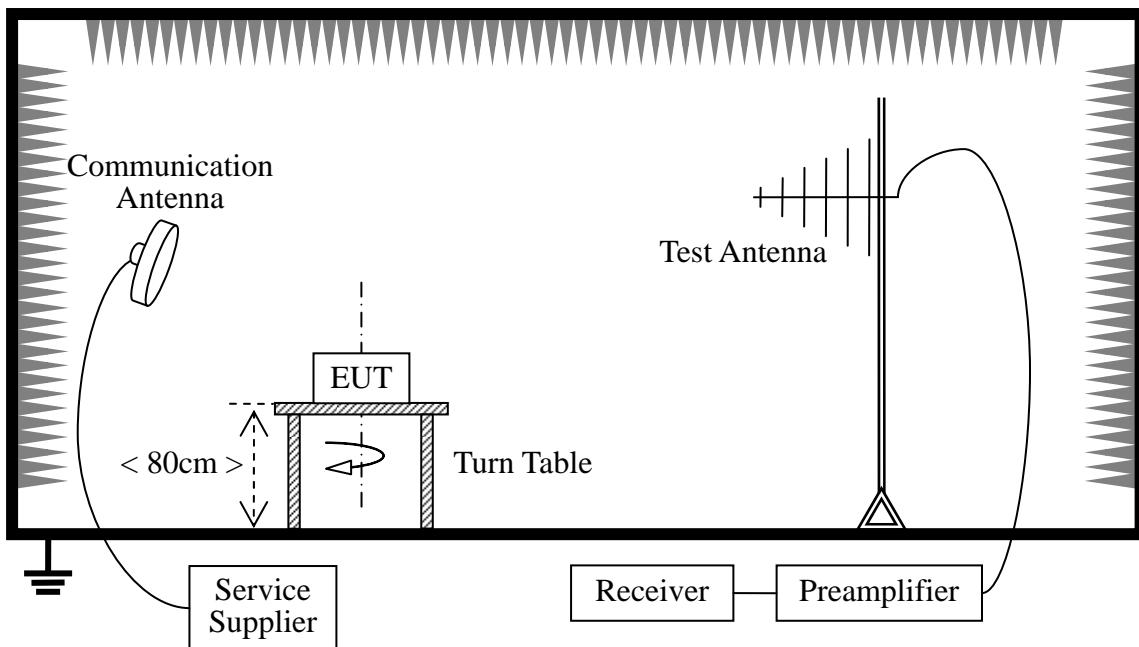
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV	dB			
1		0.1900	42.55	11.40	53.95	64.04	-10.09	peak	
2		0.2540	39.08	11.64	50.72	61.63	-10.91	peak	
3		1.4340	32.61	9.57	42.18	56.00	-13.82	peak	
4	*	4.8820	34.17	11.88	46.05	56.00	-9.95	peak	
5		27.8540	33.09	9.00	42.09	60.00	-17.91	peak	

*:Maximum data x:Over limit !:over margin

5.9 Radiated Emission

LIMITS OF RADIATED DISTURBANCES AT 3M DISTANCES FOR CLASS B

According to FCC section 15.109, except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

NOTE:

1. Field Strength ($\text{dB}\mu\text{V/m}$) = $20 \times \log[\text{Field Strength } (\mu\text{V/m})]$.
2. In the emission tables above, the tighter limit applies at the band edges.

TEST DESCRIPTION

Test Setup:

The EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the EUT is activated and transmitting with the other Bluetooth device (Supply by the Applicant) during the test.

For the Test Antenna:

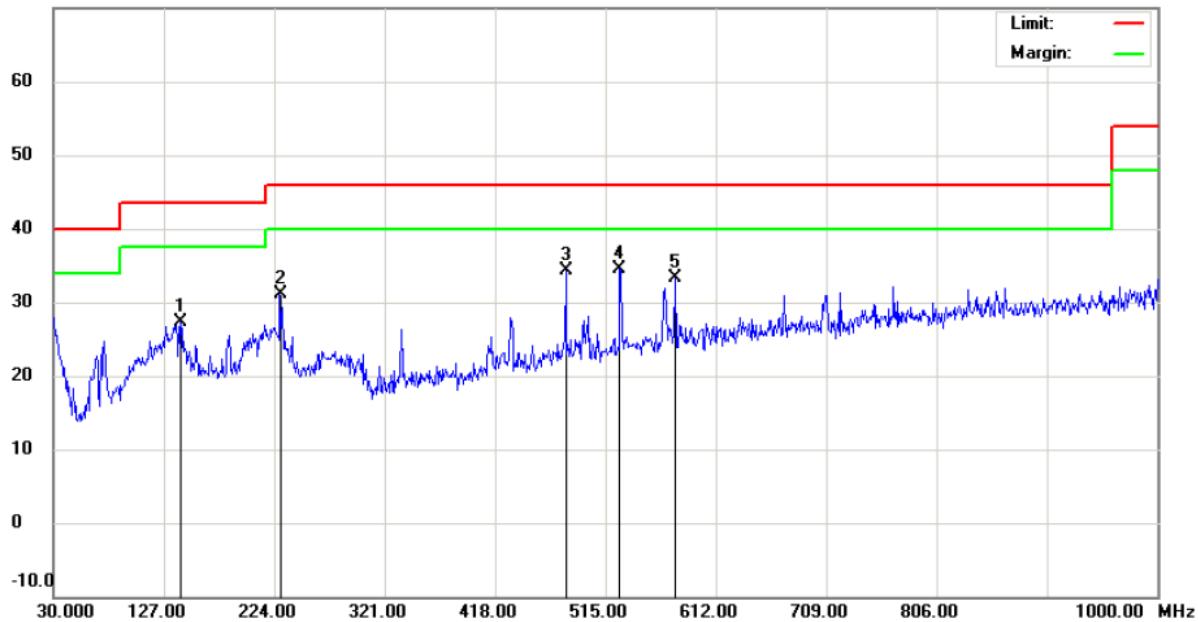
- a) In the frequency range of 9 kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test

Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

Preliminary Radiated Emission Test				
Frequency Range Investigated			30 MHz TO 1000 MHz	
Mode of operation	Date	Report No.	Data#	Worst Mode
TX Mode	2012-09-28	DPH120924F01	RD70_1_(H, V)	<input type="checkbox"/>
RX Mode	2012-09-28	DPH120924F01	RD70_2_(H, V)	<input type="checkbox"/>

TEST RESULT


Radiated Emission Measurement

File :TD-Q5

Data :#7

Date: 2012-9-28

Time: 10:12:58

70.0 dB_{UV}/m

Site site MOST 3M

Polarization: *Vertical*

Temperature: 26

Limit: FCC Part15 B 3M Radiation

Power: AC 120V/60Hz

Humidity: 61 %

EUT: two way radio

Distance:

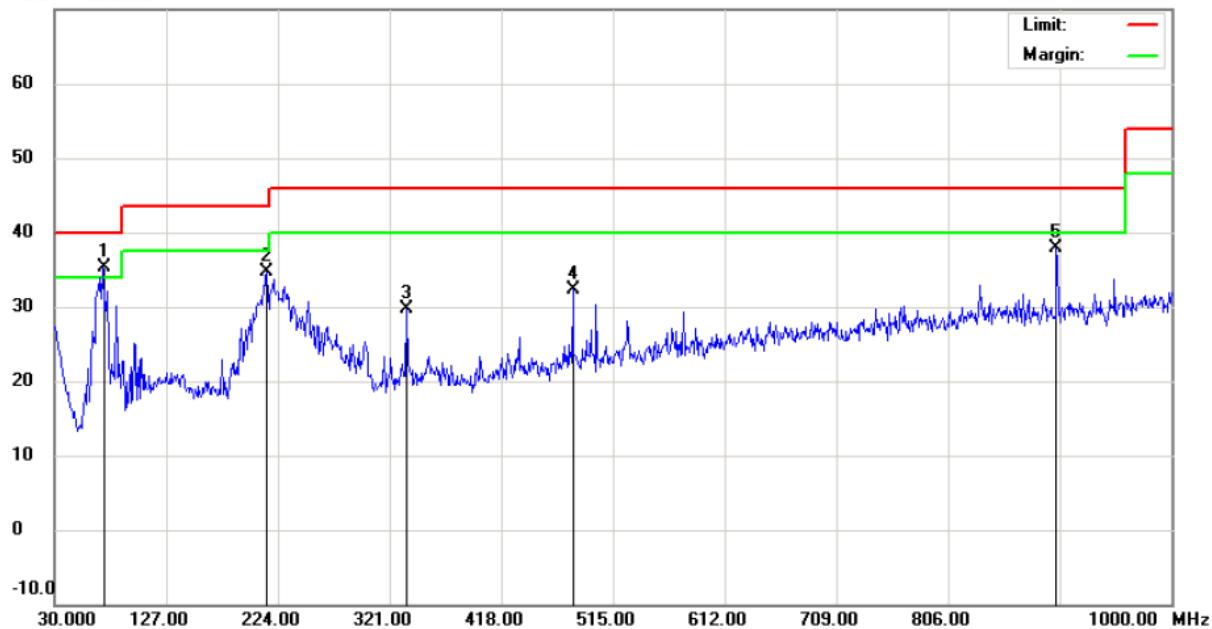
M/N: TD-Q5

Mode: TX

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	Antenna Height	Table Degree	Comment
		MHz	dB _{UV}	dB	dB _{UV} /m	dB _{UV} /m	dB	Detector	cm	degree
1		141.5500	10.29	17.11	27.40	43.50	-16.10	peak		
2		228.8500	14.55	16.48	31.03	46.00	-14.97	peak		
3		480.0800	12.70	21.70	34.40	46.00	-11.60	peak		
4	*	527.6100	12.36	22.08	34.44	46.00	-11.56	peak		
5		576.1100	10.45	22.82	33.27	46.00	-12.73	peak		

*:Maximum data x:Over limit !:over margin


Radiated Emission Measurement

File :TD-Q5

Data :#8

Date: 2012-9-28

Time: 10:04:41

70.0 dB_{UV}/m

Site site MOST 3M

Polarization: *Horizontal*

Temperature: 26

Limit: FCC Part15 B 3M Radiation

Power: AC 120V/60Hz

Humidity: 61 %

EUT: two way radio

Distance:

M/N: TD-Q5

Mode: TX

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	Antenna Height	Table Degree	Comment
		MHz	dB _{UV}	dB	dB _{UV} /m	dB _{UV} /m	dB	Detector	cm	degree
1	*	71.7100	23.64	11.68	35.32	40.00	-4.68	peak		
2		214.3000	18.62	16.08	34.70	43.50	-8.80	peak		
3		335.5500	12.73	17.06	29.79	46.00	-16.21	peak		
4		480.0800	10.57	21.70	32.27	46.00	-13.73	peak		
5		900.0900	10.43	27.40	37.83	46.00	-8.17	peak		

*:Maximum data x:Over limit !:over margin


Annex A

Photographs of the Test Setup

Conducted Emission Setup Photo

Radiated Emission Setup Photo

Annex B

Photographs of the EUT

FRONT VIEW OF SAMPLE

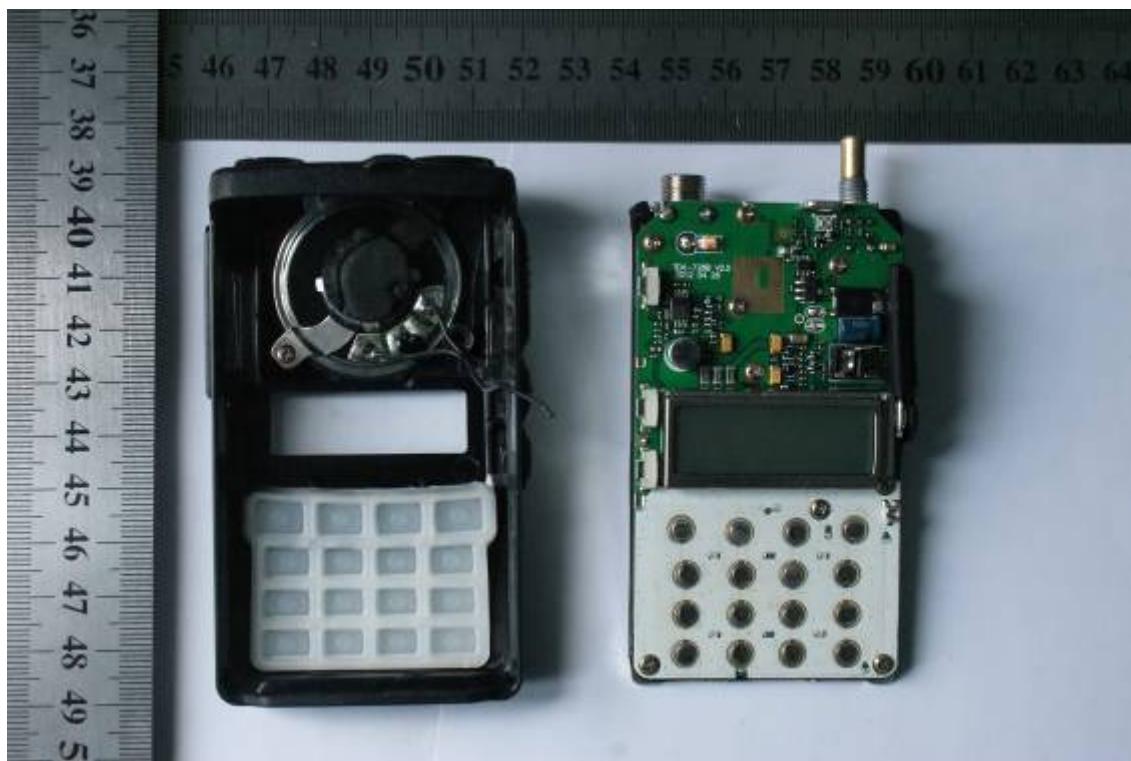
BACK VIEW OF SAMPLE

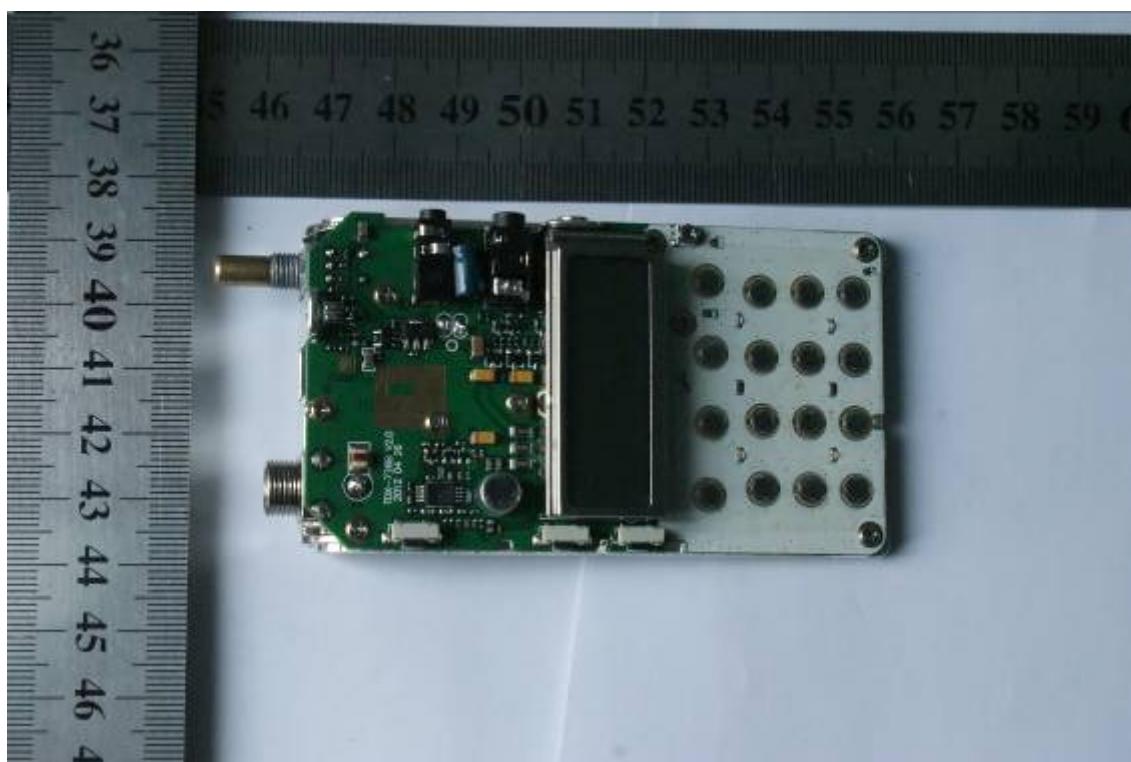
LEFT VIEW OF SAMPLE

RIGHT VIEW OF SAMPLE

UP VIEW OF SAMPLE

DOWN VIEW OF SAMPLE


PHOTO OF THE ENTIRE SAMPLE


INTERNAL PHOTO OF SAMPLE-1


INTERNAL PHOTO OF SAMPLE-2

INTERNAL PHOTO OF SAMPLE-3

INTERNAL PHOTO OF SAMPLE-4

*** End of the Reports***