

SGS KES Co., Ltd. EMC Laboratory

705, Dongchun-Ri Sooji-Eub, Yongin-Shi Kyungki-Do, KOREA
TEL.82-31-263-0409 FAX.82-31-263-0454

FCC Part 15 Report

Manufacture :

TECHVILL CO., LTD.

5F, 433-2, Daeheung-Dong, Mapo-Gu, Seoul,
Korea

Attn : H. Y. Yoo

Dates of Tests : July 11 to August 1 2002

Test Report No. : 2002KESEMC-II-0223.FCC

Test Site : SGS KES Co., Ltd., EMC Site, Korea

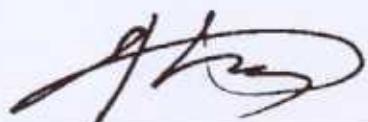
TYPE of EUT
MODEL No.

**TFT LCD TV
TV-W0700**

TECHVILL CO., LTD.

5F, 433-2, Daeheung-Dong, Mapo-Gu, Seoul,
Korea

H.Y. Yoo


Tel./Fax. : 82-2-718-8466/82-2-718-8889

CONTACT PERSON

FCC Rule Part(s) : Part 2 & Part 15 Sub Part C
Classification : FCC Class B Device

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-1992.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Kew - Seung, Lim
EMC Lab. Manager
©2002 SGS KES Co., Ltd. EMC Laboratory

FCC Part 15

TABLE OF CONTENTS

SCOPE	3
INTRODUCTION (SITE DESCRIPTION)	4
PRODUCT INFORMATION	5
DESCRIPTION OF TEST (CONDUCTED)	6
DESCRIPTION OF TEST (RADIATED)	7
SUPPORT EQUIPMENT USED	8
TEST SET UP	9
TEST DATA OF CONDUCTED EMISSION	10
TEST DATA OF RADIATED EMISSION	11
PLOTS OF EMISSIONS	12
SAMPLE CALCULATIONS	13
ACCURACY OF MEASUREMENT	14
TEST EQUIPMENT	15
CONCLUSION	16
APPENDIX A – SAMPLE LABEL	17

MEASUREMENT REPORT

Scope - Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

Responsible Party :	TECHVILL CO., LTD.
Contact Person :	H. Y. Yoo
	Tel./Fax. : 82-2-718-8466/82-2-718-8889
Manufacturer :	TECHVILL CO., LTD.
	5F, 433-2, Daeheung-Dong, Mapo-Gu, Seoul, Korea

- Trade / Model : **TV-W0700**
- Brand Name : -
- EUT Type : TFT LCD TV
- Classification : FCC Class B
- Rule Part(s) : FCC Part 2 & Part 15 Subpart C
- Test Procedure(s): ANSI C63.4 (1992)
- Dates of Test: July 11 to 23 2002
- Place of Tests: SGS KES Co., Ltd. EMC Site
- Test Report No.: 2002KESEMC-II-0223.FCC
- Order No. : SKI-02-065/E
- Fundamental Frequency **88.5MHz~89.5MHz**

Applicable Test Item

	Applicable Standard	Applicable	Reason
Conducted Emission	Part 15.207	Yes	This device uses AC-DC Adapter.
Radiated Emission	Part 15.209 & 15.239	Yes	This device uses FM Transmitter inside.

INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-1992) was used in determining radiated emissions emanating from TECHVILL CO., LTD.

Model : TV-W0700

These measurement tests were conducted at **SGS KES Co., Ltd. EMC Laboratory**.

The site address is 705, Dongchun-Ri, Sooji-Eub, Yongin-Shi, Kyungki-Do, Korea.

The area of SGS KES Co., Ltd. EMC Test Site is located in a mountain area at 45 kilometers (28 miles) southeast from Seoul National Airport (Kimpo Airport), 23 kilometers (14miles) southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

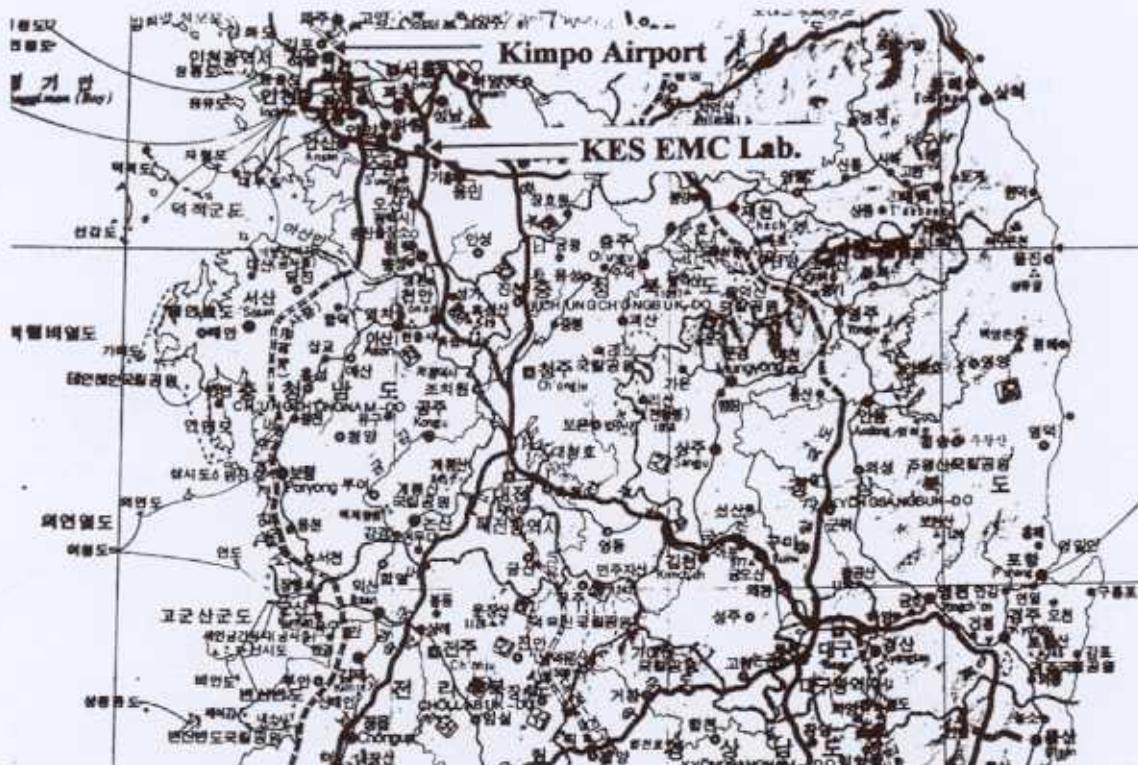


Fig. 1. The map above shows the Seoul in Korea vicinity area.
The map also shows SGS KES Co., Ltd. EMC Lab and Kimpo Airport.

PRODUCT INFORMATION

Equipment Description:

The Equipment Under Test (EUT) is the **TECHVILL CO., LTD.**

Model : **TV-W0700**

Intentional Frequency Band :	88.5MHz~89.5MHz	
Chipset :	SIP3845122-AG89	
Clock	3.579545MHz	
Port(s) :	Phone, EXT ANT, DIVERSITY, DC IN	
Power Consumption :	AC 110V, 60Hz	
LCD Panel :	Model : TM070WA-22L04 (TORISAN TFT-LCD)	S/N : 600410000711829
Power Supply :	Model : L4D-1201400 (SPEC LIN)	S/N : N/A
Main Board :	Model : N/A (N/A)	S/N : N/A

EMI suppression device(s) added and/or modified during testing:

- none

DESCRIPTION OF TESTS

Conducted Emissions

The line-conducted facility is located inside a 3.0x6.0x2.5 shielded enclosure. It is manufactured by Daeil EMC Engineering. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1mx1.5m. wooden table 0.8m. height is placed 0.4m. away from the vertical wall and 1.5m away from the side wall of the shielded room. PMM L3-25, L1-150 and EMCO Model 3825-2 (10kHz-30MHz) 50Ω / $50\text{ }\mu\text{H}$ Line Impedance Stabilization Networks (LISNs) are bonded to the shielded room. The EUT is powered from the PMM LISN and the support equipment is powered from the EMCO LISN. Power to the LISNs are filtered by a high-current high-insertion loss Sangshin power line filters (100dB 14kHz-10GHz). The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure. All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2". If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the PMM LISN. LISN schematic diagram is shown in Figure 2. All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 450 kHz to 30 MHz with 20 msec sweep time. The frequency producing the maximum level was reexamined using EMI/Field Intensity Meter and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak mode. The bandwidth of the receiver was set to 10 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission. Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/or support equipment, and powering the monitor from the floor mounted outlet box and the computer aux AC outlet, if applicable; which ever determined the worst-case emission. Photographs of the worst-case emission can be seen in Appendix C. Each EME reported was calibrated using the R/S SMG signal generator.

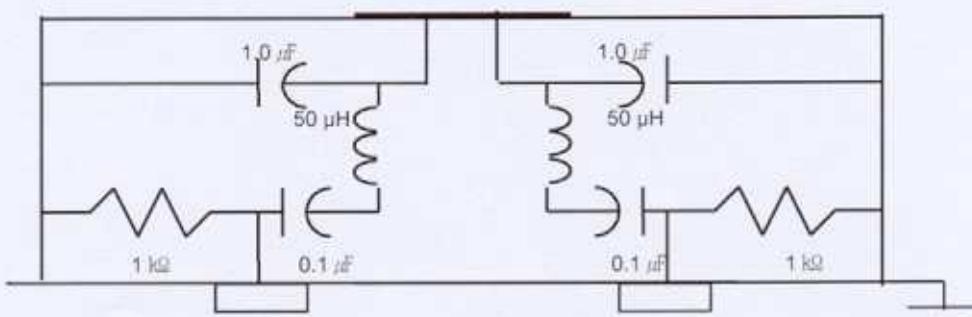


Fig. 2. LISN Schematic Diagram

Radiated Emissions

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were note for each frequency found. The spectrum was scanned from 30 to 300 MHz using biconical antenna and 300 to 1000 MHz using log-periodic antenna.

Final measurements were made outdoors at 3 meter test range. The test equipment was placed on a wooden and plastic bench situated on a 1.5x2 meter area adjacent to measurement area. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was reexamined and investigated using EMI/Field Intensity Meter. The detector function was set to average mode and the bandwidth of the receiver was set to 100 kHz or 1 MHz depending on the frequency or type of signal.

The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8-meter high non-metallic 1x1.5 meter table. The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meter and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/or support equipment, and powering the monitor from the floor mounted outlet box and the computer aux AC outlet, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in Appendix C. Each EME reported was calibrated using the R/S SMG signal generator.

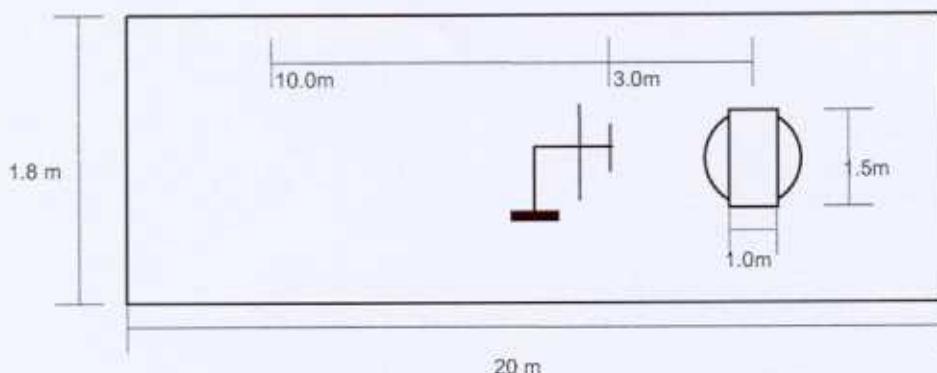
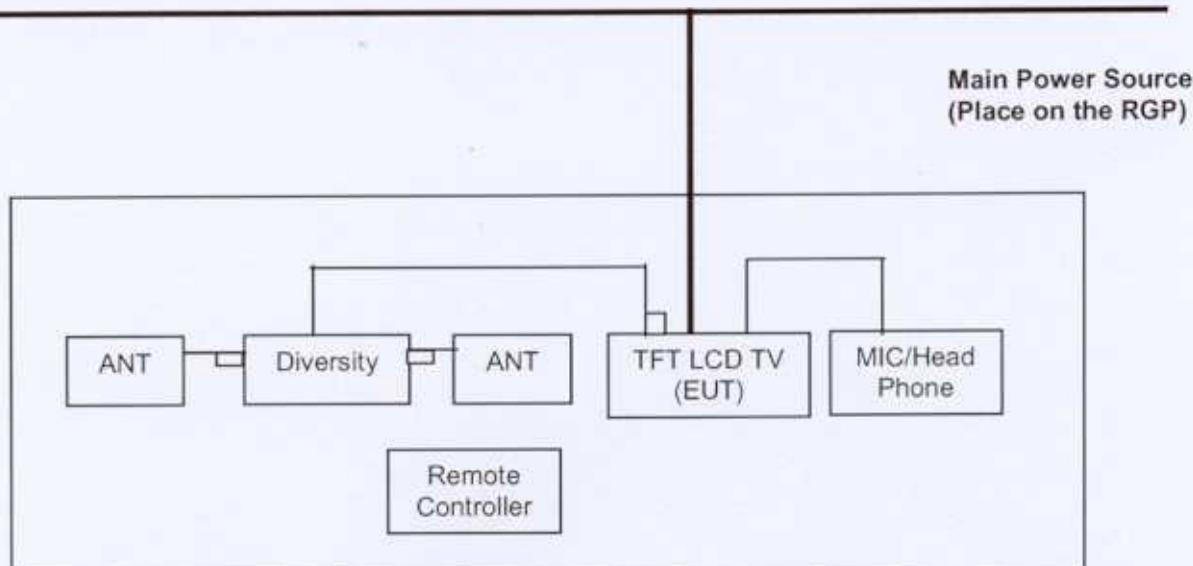


Fig. 3. Dimensions of Outdoor Test Site

SUPPORT EQUIPMENT USED


Peripheral equipment

Description	Model	Serial No.	Manufacturer
MIC/Headphone	CD-2MVs	N/A	Hi-Sonic
Tuner (Diversity car Antenna System)	BKD-9000	N/A	N/A
Remote Controller	CR-100	N/A	N/A

User Interface Cable List

Start		END		Cable Spec.	
Name	I/O Port	Name	I/O Port	Length	Shield
EUT	Phone	MIC/Headset	-	2.5	Unshielded
	EXT. ANT	Tuner	ANT.DIVER	1.5	Unshielded
	DIVERSITY	Tuner	ANT.DIVER	1.5	Unshielded
	DC IN	Adapter	-	1.0	Unshielded
Adapter	AC IN	LISN	-	1.0	Unshielded
Tuner	ANT.DIVER	EUT	EXT.ANT.	1.5	Unshielded
	ANT. IN1	Antenna	-	3.0	Unshielded
	ANT. IN2	Antenna	-	3.0	Unshielded
	ANT. IN3	Antenna	-	3.0	Unshielded
	ANT. IN4	Antenna	-	3.0	Unshielded

TEST SET UP

1. *Operating Mode : Receive TV Broadcast signals at each channel and Continuously send voice signals to a car FM Radio Receiver.*
2. *Operating Frequency 88.9MHz among 88.5 ~ 89.5MHz was chosen to conduct Subpart C tests.*

TEST DATA

Conducted Emissions(Part 15.207)

Company : TECHVILL CO., LTD.

Model No. : TV-W0700(FDD ID : QG5-TV0700)

Date of Test : 11 July 2002

Measure Bandwidth : 9kHz

FREQ (MHz)	LEVEL(dB μ V)	LINE	LIMIT(μ V)	(μ V)	MARGIN*(dB)
0.45	18.0	H	250	7.94	30.0
0.48	17.5	H	250	7.50	30.5
0.58	18.0	H	250	7.94	30.0
12.32	20.5	H	250	10.59	27.5
12.77	18.0	N	250	7.94	30.0
13.48	18.5	H	250	8.41	29.5

Table 1. Line Conducted Emissions Tabulated Data

NOTES:

* Measurements using CISPR quasi-peak mode

Tested by See - Ho, Lee

Tested by See - Ho, Lee

TEST RESULTS**Radiated Emissions(Part 15.209 & 15.239)**

Company : TECHVILL CO., LTD.

Model No. : TV-W0700 (FDD ID : QG5-TV0700)

Date of Test : 1 August 2002

Measure Bandwidth : 120kHz

Freq. (MHz)	Level (dB μ V)	AF*	CL**	POL	Limit (dB)	F/S (μ V/m)	Margin*** (dB)
88.90	28.10	8.30	1.90	H	48.00	82.26	9.70
158.39	2.00	10.16	2.90	H	43.50	5.66	28.44
162.00	2.80	9.82	3.00	H	43.50	6.04	27.88
177.80	23.40	8.67	3.20	H	43.50	58.02	8.23
199.82	19.30	8.55	3.30	H	43.50	36.09	12.35
239.71	8.90	11.16	3.87	H	46.00	15.72	22.07
266.70	2.00	13.40	4.16	H	46.00	9.51	26.44
355.60	15.40	14.39	5.00	H	46.00	54.83	11.21
444.50	2.00	16.75	5.75	H	46.00	16.80	21.50
533.40	2.00	18.78	6.46	H	46.00	23.03	18.76

Table 1. Radiated Measurements at 3meters.

* AF = Antenna Factor.

** CL = Cable Loss.

*** Margin=Each Frequency Limit Level(dBuV) - (Level+AF+CL)

Remark : This is basically measured by Average Detector.**Note : All Frequency from 30MHz to 1GHz was scanned and the worst cases are reported in the above table. This Unit was found to be within the limits.**

Tested by See - Ho, Lee

TEST RESULTS**Radiated Emissions(Part 15.209 & 15.239)**

Company : TECHVILL CO., LTD.

Model No. : TV-W0700 (FDD ID : QG5-TV0700)

Date of Test : 1 August 2002

Measure Bandwidth : 120kHz

Freq. (MHz)	Level (dB μ V)	AF*	CL** (dB)	POL (H/V)	Limit (dB)	F/S (μ V/m)	Margin*** (dB)
88.90	28.40	8.30	1.90	H	68.00	85.15	29.40
158.39	18.10	10.16	2.90	H	63.50	36.12	32.34
162.00	20.50	9.82	3.00	H	63.50	46.34	30.18
177.80	24.30	8.67	3.20	H	63.50	64.36	27.33
199.82	26.70	8.55	3.30	H	63.50	84.61	24.95
239.71	17.10	11.16	3.87	H	66.00	40.40	33.87
266.70	13.40	13.40	4.16	H	66.00	35.33	35.04
355.60	18.20	14.39	5.00	H	66.00	75.69	28.41
444.50	10.30	16.75	5.75	H	66.00	43.68	33.20
533.40	9.50	18.78	6.46	H	66.00	54.61	31.26

Table 1. Radiated Measurements at 3meters.

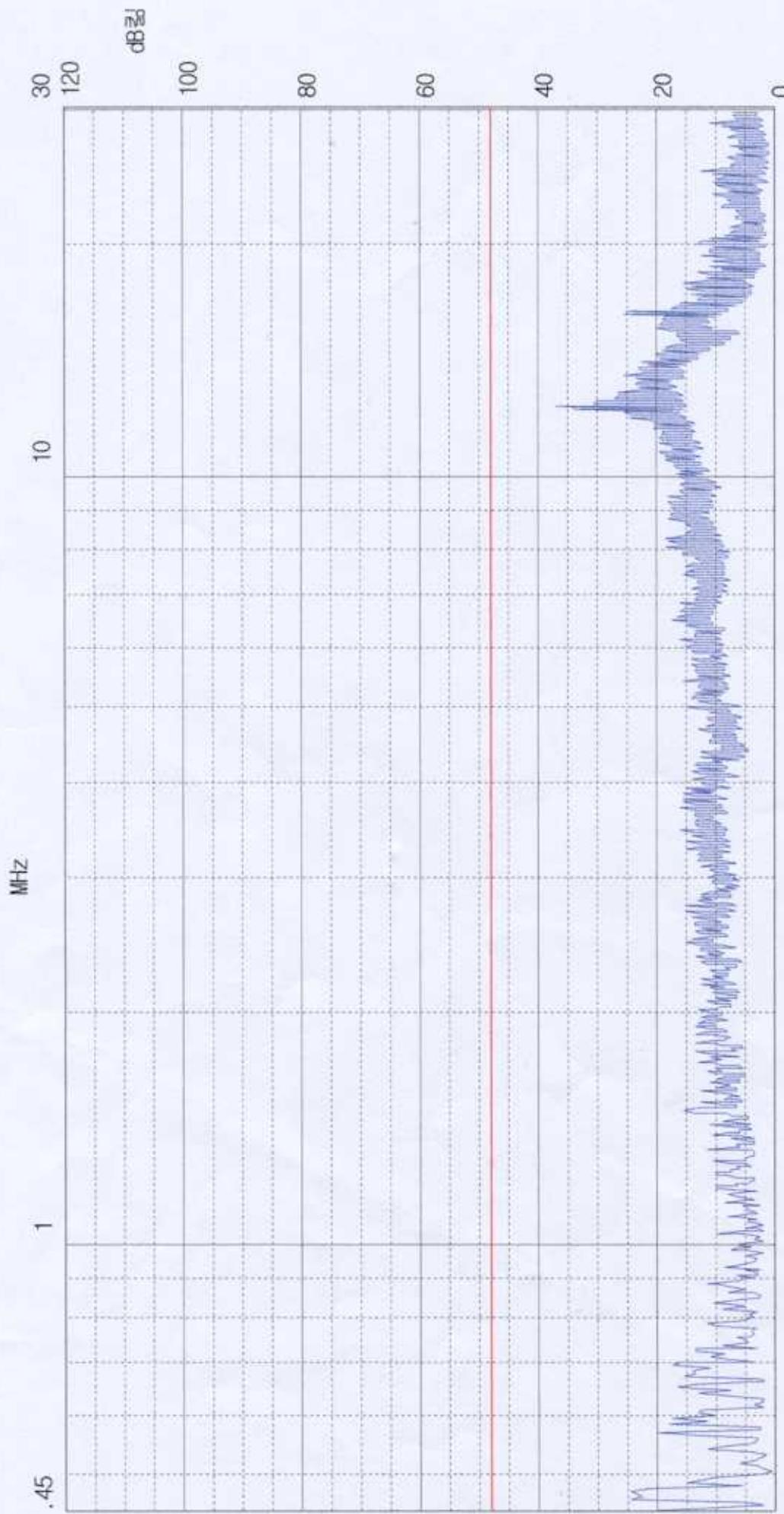
* AF = Antenna Factor.

** CL = Cable Loss.

*** Margin=Each Frequency Limit Level(dBuV) - (Level+AF+CL)

**** Each Frequency Limit Level=Average Limit + 20dB

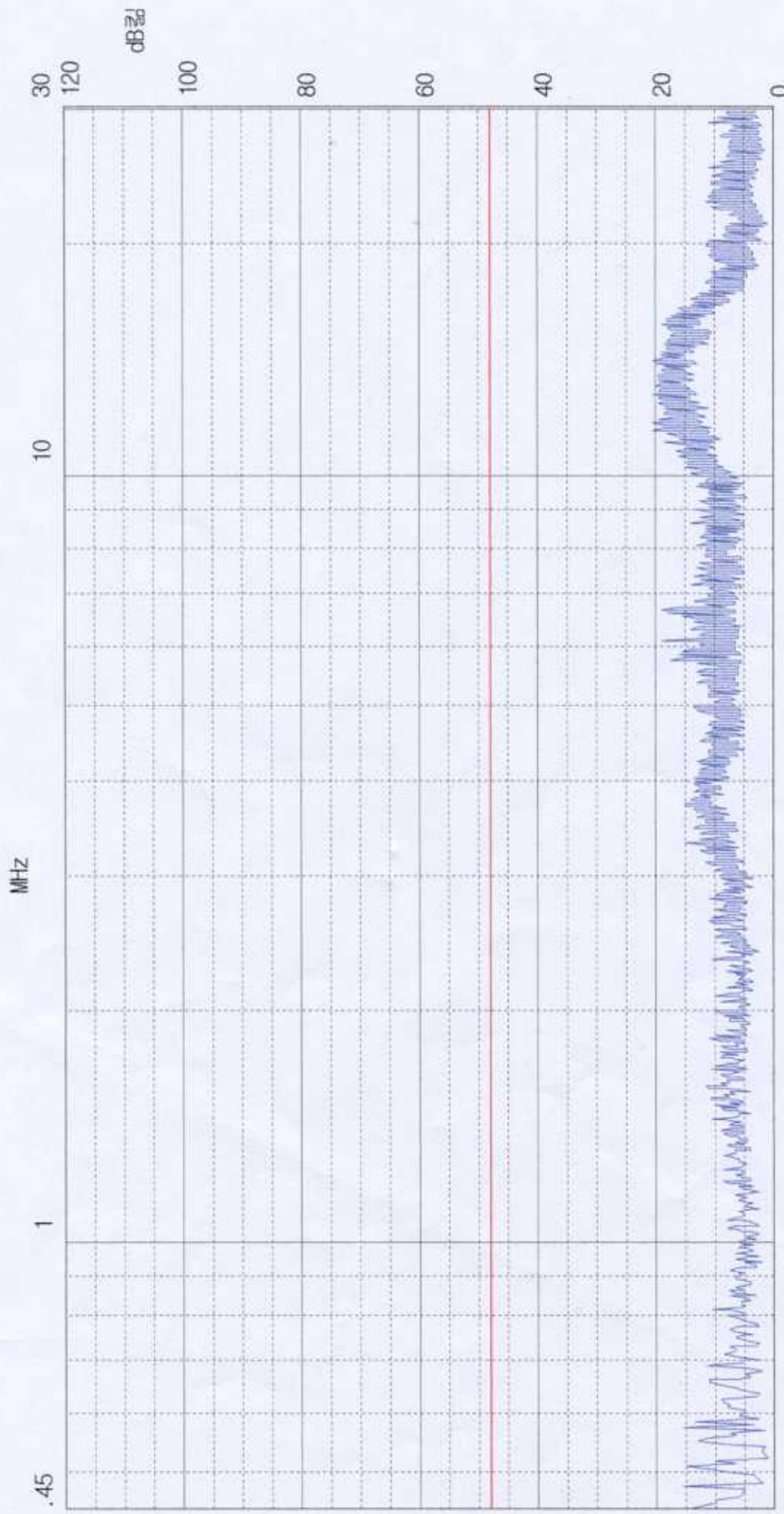
*Remark : This is measured by Peak Detector.**Note : All Frequency from 30MHz to 1GHz was scanned and the worst cases are reported in the above table. This Unit was found to be within the limits.*


Tested by See - Ho, Lee

PLOTS OF EMISSIONS

PM 8010 for windows

Name: Date: 02-07-11 Time: 18:33


Limit : FCC_15_b Detector: Peak Line: L2-16 Line: 1

MODEL : TV-W0700
LINE : HOT
OPERATOR : S.H.LEE

Signature

PM 8010 for windows

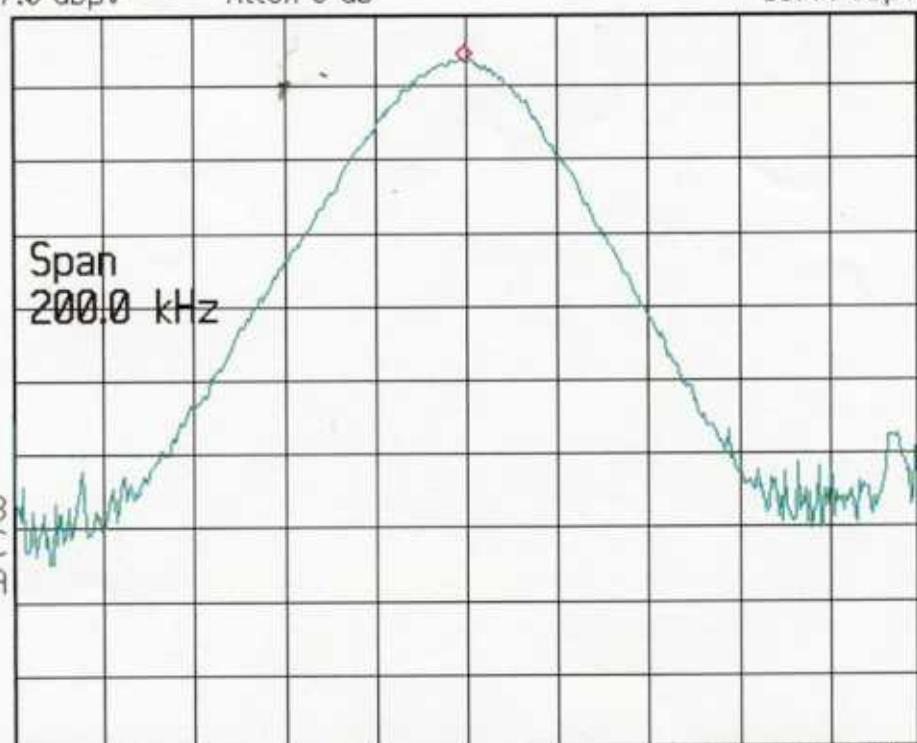
Name: Date: 02-07-11 Time: 18:30

Limit: FCC_15_b Detector: Peak

Line: L2-16 Line: 1

MODEL: TV-W0700
LINE: NEUTRAL
OPERATOR: S.H.LEE

Signature


19:48:31 JUL 23, 2002

Ref 57.0 dB μ V

Atten 0 dB

Mkr 88.9034 MHz
53.44 dB μ VPeak
Log
5
dB/Span
200.0 kHzVA SB
SC FC
AACenter 88.9034 MHz
#Res BW 30 kHz

#VBW 10 kHz

Span 200.0 kHz
#Sweep 75.0 msec

Trace

Trace
A B C

Clear Write A

Max Hold A

View A

Blank A

Operations>

Normalize>

SAMPLE CALCULATIONS

$$\text{dB } \mu\text{V} = 20 \log_{10} (\mu\text{V}/\text{m})$$

$$\mu\text{V} = 10^{(\text{dB } \mu\text{V}/20)}$$

EX. 1.

@20.3 MHz

Class B limit = 250 $\mu\text{V} = 48.0 \text{ dB } \mu\text{V}$

Reading = 40.8 dB μV (calibrated level)

$$10^{(40.8/20)} = 109.64 \text{ } \mu\text{V}$$

$$\text{Margin} = 48.0 - 40.8 = 7.2$$

7.2 dB below limit

EX. 2.

@57.7 MHz

Class B limit = 100 $\mu\text{V}/\text{m} = 40.0 \text{ dB } \mu\text{V}/\text{m}$

Reading = 19.1 dB μV (calibrated level)

Antenna factor + Cable Loss = 10.12 dB

$$\text{Total} = 29.22 \text{ dB } \mu\text{V}/\text{m}$$

$$\text{Margin} = 40.0 - 29.22 = 10.78$$

10.78 dB below the limit

ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 with the confidence level of 95%

Contribution	Distribution	Uncertainties	
		3 m	10 m
Field Strength Monitor	Gaussian (2s)	+/- 0.5	+/- 0.5
Field Strength Variation	Rectangular	+/- 1.2	+/- 1.5
Random	Gaussian (1s)	+/- 0.7	+/- 0.7
Total Uncertainty@95% min. confidence probability		+/- 1.91	+/- 2.11

Measurement Uncertainty Calculations:

$$U = 2 \sqrt{S^2 \ s_1 + S^2 \ s_2 \dots + S^2 \ s_r}$$

TEST EQUIPMENT

Conducted Emission

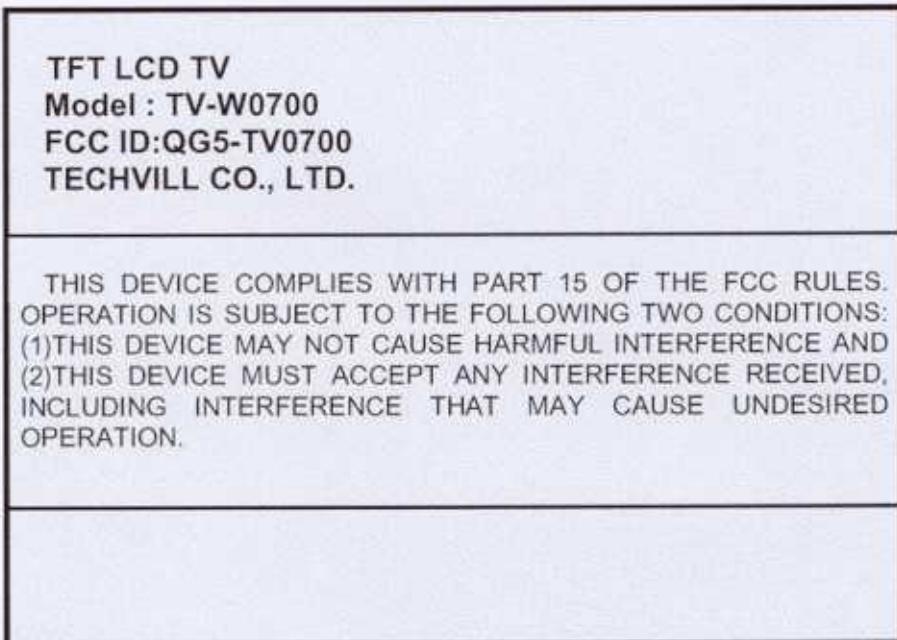
Equipment	Manufactory	Model	Cal. Date
Signal Analyzer	PMM	8010	Sep. 2001
LISN	PMM	3825/2	Apr. 2002
LISN	PMM	3825/2	Apr. 2002
Pulse Limiter	PMM	PL-01	Jul. 2002
Shielded Room	Daeil	N/A	-

Radiated Emission

Equipment	Manufactory	Model	Cal. Date
Test Receiver	R & S	ESVS30	Nov. 2001
Spectrum Analyzer	H.P	E4411A	Dec. 2001
RF Amplifier	H.P	8447F	May. 2002
Bilog Antenna	SCHAFFNER	CBL6111C	Apr. 2002
RF Select s/w	DAIWA	CS201	Apr. 2002

CONCLUSION

The test results collected show that the EUT


Company : TECHVILL CO., LTD. **Model : TV-W0700**

Complies with part 15.207 & part 15.239 of the FCC Rules. The conducted and radiated emissions from this unit are observed within the limits. Emissions from the intentional radiator are within a band 200kHz wide centered on the operating frequency as attached data. The 200kHz band lies wholly within the frequency range of 88~108MHz,

APPENDIX A – SAMPLE LABEL

Labelling Requirements

The sample label shown shall be *permanently affixed* at a conspicuous location on the unit and be readily visible to the user at the time of purchase.

