

Exposure Test Report
Agrident GmbH
Mobile RFID Reader for electronic animal
identification
Model: BPR-3001
In accordance with FCC 47 CFR Part 1 I
and ISED RSS-102

Prepared for: Agrident GmbH
Dahlkampsanger 2
D-30890 Barsinghausen

COMMERCIAL-IN-CONFIDENCE

FCC ID: QG2BMR1
IC: 6252A-BMR1

Date: 2025-06-13
Document Number TR-713337986-07 | Revision 1

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Martin Steindl	2025-06-13	 SIGN-ID 1052042
Authorised Signatory	Alexander Grill	2025-06-16	 SIGN-ID 1052368

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

Engineering Statement:

This measurement shown in this report were made in accordance with the procedures described on test pages.
All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 1 I and ISED RSS-102.

The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Martin Steindl	2025-06-13	 SIGN-ID 1052045

Laboratory Accreditation
DAkkS Reg. No. D-PL-11321-11-02
DAkkS Reg. No. D-PL-11321-11-03

Laboratory recognition
Registration No. BNetzA-CAB-16/21-15

Industry Canada test site registration
3050A-2

Executive Statement:

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 1 I:2023 and ISED RSS-102:2023

DISCLAIMER AND COPYRIGHT
This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2025 TÜV SÜD Product Service.

Trade Register Munich
HRB 85742
VAT ID No. DE129484267
Information pursuant to Section 2(1)
DL-InfoV (Germany) at
www.tuvsud.com/imprint

Managing Directors:
Walter Reithmaier (Sprecher / CEO)
Patrick van Welij

Phone: +49 (0) 9421 56 82-0
Fax: +49 (0) 9421 56 82-199
www.tuvsud.com

TÜV SÜD Product Service GmbH
Äußere Frühlingstraße 45
94315 Straubing
Germany

Content

1	Report Summary	2
1.1	Modification Report	2
1.2	Introduction	2
1.3	Brief Summary of Results.....	3
1.4	Product Information.....	4
1.5	Test Configuration.....	4
1.6	Modes of Operation.....	5
1.7	EUT Modifications Record.....	5
1.8	Test Location.....	6
2	Test Details	7
2.1	RF Exposure	7
2.2	Nerve Stimulation.....	12
3	Photos of Test Setup	18
4	Measurement Uncertainty	19

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Revision	Description of changes	Date of Issue
0	First Issue	2025-03-21
1	Correction of IC ID on title page	2025-06-13

Table 1: Report of Modifications

1.2 Introduction

Applicant	Agrent GmbH
Manufacturer	Agrent GmbH
Model Number(s)	BPR-3001
Serial Number(s)	1701000501
Number of Samples Tested	1
Test Specification(s) /	FCC 47 CFR Part 1 I : 2023 and
Issue / Date	ISED RSS-102, Issue 6 ; 2023
Test Plan/Issue/Date	N/A
Order Number	2024-05-16
Date	
Date of Receipt of EUT	2025-01-22
Start of Test	2025-01-29
Finish of Test	2025-01-29
Name of Engineer(s)	M. Steindl
Related Document(s)	ANSI C63.10:2013

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 1 I and ISED RSS-102 is shown below.

Section	Specification Clause	Test Description	Result
2.1	1.1307	RF Exposure	Pass

Table 2: Results according to FCC 47 CFR Part 1 I

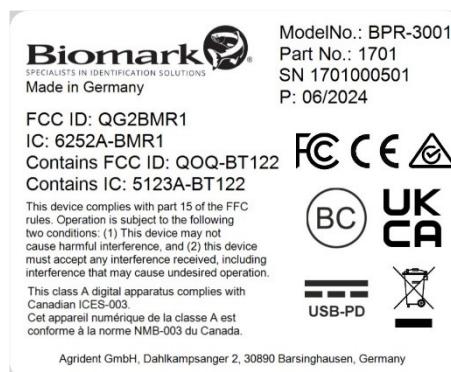
Section	Specification Clause	Test Description	Result
2.1	6.3	RF Exposure	Pass
2.2	7.3	Nerve Stimulation	Pass

Table 3: Results according to ISED RSS-102

1.4 Product Information

1.4.1 Technical Description

Frequency Bands: 119 – 140 kHz
2400.0 MHz – 2483.5 MHz


RFID: 134.2 kHz

Bluetooth Classic: Channels: 79
2402 – 2480 MHz

Bluetooth Low Energy (BLE): Channels: 40
2402 – 2480 MHz

Supply Voltage: 14.4 V

Supply Frequency: Internal battery supply

1.4.2 EUT Ports / Cables identification

Port	Max Cable Length specified	Usage	Screened
USB	2 m	Signal/Control port with DC power	y
Antenna cable	2 m	Signal/Control port	n

Table 4

1.5 Test Configuration

The EUT was configured in stand alone mode.

The EUT was provided with a Globtek GTM96605-G2A1-R3A external power supply.

1.6 Modes of Operation

RFID:

Reading tag continuously.

Mode 1:

Bluetooth Classic, Channel 1, 2402 MHz,

Mode 2:

Bluetooth Low Energy, Channel 40, 2480 MHz,

1.7 EUT Modifications Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	Not Applicable	Not Applicable

Table 5

Product Service

1.8 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
RF Exposure (SAR based)	M. Steindl
Nerve Stimulation	M. Steindl

Office Address:

Äußere Frühlingstraße 45
94315 Straubing
Germany

2 Test Details

2.1 RF Exposure

2.1.1 Specification Reference

FCC 47 CFR Part 1, § 1.1307(b)(3)
RSS-102, Issue 6, 6.3

2.1.2 Equipment under Test and Modification State

BPR-3001; S/N: 1701000501; Modification State 0

2.1.3 Date of Test

2025-01-29

2.1.4 Environmental Conditions

Ambient Temperature	24 °C
Relative Humidity	32 %

2.1.5 Specification Limits

47 CFR, Part 1, § 1.1307(b)(3)

- (i) For single RF sources (i.e. any single fixed RF source, mobile device, or portable device, as defined in paragraph(b)(2) of this section): A single RF source is exempt if:
 - (A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
 - (B) Or the available maximum time-averaged power or effective radiate power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by

$$P_{th}(\text{mW}) = \begin{cases} \text{ERP}_{20\text{cm}} (d/20 \text{ cm})^x, & d \leq 20 \text{ cm}; \\ \text{ERP}_{20\text{cm}}, & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases}$$

where

$$x = -\log_{10} \left(\frac{60}{\text{ERP}_{20\text{cm}} \sqrt{f}} \right); f \text{ in GHz}$$

and

$$\text{ERP}_{20\text{cm}}(\text{mW}) = \begin{cases} 2040 f, & 0.3 \text{ GHz} \leq f < 1.5 \text{ GHz} \\ 3060, & 1.5 \text{ GHz} \leq f \leq 6 \text{ GHz} \end{cases}$$

d = the test separation distance (cm);

- (C) Or using the table below and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value described for that frequency. For the exemption in the table to apply, R must be at least $\lambda/2\pi$ where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF source frequency (MHz)	Threshold ERP (Watts)
0.3 – 1.34	$1920 R^2$
1.34 – 30	$3450 R^2/f^2$
30 – 300	$3.83 R^2$
300 – 1500	$0.0128 R^2 f^2$
1500 – 100000	$19.2 R^2$

- (ii) For multiple RF sources: Multiple RF sources are exempt if:
 - (A) The available maximum time-averaged power of each source is no more than 1 mW and there is a separation distance of 2 cm between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1 mW during the time-averaging period, in which case they may be treated as a single source (separation is not required). This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(i)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(i)(A).
 - (B) In case of fixed RF sources operating in the same time-averaging period, or of multiple or portable RF sources within a device in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^a \frac{P_i}{P_{th,i}} + \sum_{j=1}^b \frac{\text{ERP}_j}{\text{ERP}_{th,j}} + \sum_{k=1}^c \frac{\text{Evaluated}_k}{\text{ExposureLimit}_k} \leq 1$$

RSS-102, section 6.3

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the table below:

f (MHz)	Exemption Limits (mW) at separation distance of									
	5 mm VI	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	50 mm VI
≤ 300	45	116	139	163	189	216	246	280	319	362
450	32	71	87	104	124	147	175	208	248	296
835	21	32	41	54	72	96	129	172	228	298
1900	6	10	18	33	57	92	138	194	257	323
2450	3	7	16	32	56	89	128	170	209	245
3500	2	6	15	29	50	72	94	114	134	158
5800	1	5	13	23	32	41	54	74	102	128

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for route evaluation are multiplied by a factor of 5. For limb-worn devices where the 10 grams value applies, the exemption limits for routine evaluation are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implant device is defined as the higher of the conducted or e.i.r.p. to determine whether the device is exempt from the SAR evaluation.

2.1.6 Test Method

Field strength values for 134.2 kHz at 300 m were taken from test report TR-713337986-03.
Field strength values for the 2.4 GHz-band at 3 m were taken from test report TR-713337986-03.
Original measurements were conducted at 3 m and 10 m distance; the value for 300 m was calculated through interpolation. Maximum output was calculated through following equation:

$$P = \frac{(E \cdot d)^2}{30 \cdot G}$$

P: Maximum output power (in W)
E: Electric field strength (in V/m)
d: Distance to antenna (in m)
G: Linear antenna gain (= 1)

2.1.7 Test Results

Evaluation for multiple frequencies:

$$\frac{8.3928 \cdot 10^{-7}}{45} + \frac{1.51}{3.02} = 0.5008$$

Pass:

Sum of fractions is smaller than 1.

2.1.8 Test Location and Test Equipment

The test was carried out in semi anechoic room, Cabin No. 11

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Electromagnetic radiation meter	Narda	EMR-200	19590	36	2025-12-31
Magnetic field probe	Narda	Type 12.1	19592	36	2025-12-31
Magnetic field analyzer	Sekels	MFA-110	68030	12	2025-05-27
Isotropic magnetic field probe 3.5 cm ²	Sekels	B-Field Probe 3.5 cm ²	68027	12	2025-05-27
Isotropic field probe	Lumiloop	Lumiloop LSProbe 1.2	46950	36	2026-10-31

Table 10

2.2 Nerve Stimulation

2.2.1 Specification Reference

ISED RSS-102, Issue 6, section 7.3
ISED RSS-102.NS.MEAS, Issue 1, section 4.4.4

2.2.2 Equipment under Test and Modification State

BPR-3001; S/N: 1701000501; Modification State 0

2.2.3 Date of Test

2025-01-29

2.2.4 Environmental Conditions

Ambient Temperature 24 °C
Relative Humidity 32 %

2.2.5 Specification Limits

Frequency range (MHz)	Reference level basis	Reference level (E_{RL}) for uncontrolled environment (V/m)	Reference level (E_{RL}) for controlled environment (V/m)	Reference period
0.003 – 10	NS	83	170	Instantaneous
1.10 – 10	SAR	$87 / f^{0.5}$	N/A	6 min
1.29 – 10	SAR	N/A	$193 / f^{0.5}$	6 min

Frequency range (MHz)	Reference level basis	Reference level (E_{RL}) for uncontrolled environment (A/m)	Reference level (E_{RL}) for controlled environment (A/m)	Reference period
0.003 – 10	NS	90	180	Instantaneous
0.1 – 10	SAR	$0.73 / f$	$1.6 / f$	6 min

Exposure Region	Relaxation Factor	NS-based H-field (A/m RMS)
Head / torso	1.0	90
Leg	1.5	135
Arm	2.5	225
Hand / foot	5.0	450

2.2.6 Test Method

The electric field strength and magnetic flux density were measured at 20 mm moving away from the device every 10 mm. All values were used to extrapolate to the 0 mm and 10 mm distance.

2.2.7 Test Results

2.2.7.1 NS Test Results

The test results for electric field strength and magnetic field strength. Magnetic field strength was measured as magnetic flux. The highest value on the handle at 20 mm was tested at 20 mm moving away from the device every 10 mm. All the values were used to extrapolate to the 0 mm distance.

Distance (mm)	E-Field (V/m)	B-Field (µT)	H-Field (A/m)
20	17.60	140.700	111.966
30	15.40	110.700	88.092
40	12.30	89.190	70.975
50	8.87	70.470	56.078
60	6.73	57.260	45.566
70	4.96	46.900	37.322
80	3.90	39.050	31.075
90	3.13	31.980	25.449
100	2.75	27.550	21.924
110	2.27	23.420	18.637
120	1.95	19.680	15.661
130	1.70	17.100	13.608
140	1.56	14.870	11.833
150	1.43	12.920	10.281

Exponential extrapolation

The equation used to extrapolate the value to zero is $y = a \cdot b^x$, where x is the distance and y is the extrapolated value. This form is exponential regression decay.

	Electric field strength	Magnetic field strength
The extrapolated value at 0 mm:	24.24 V/m	143.50 A/m
The extrapolated value at 10 mm:	19.73 V/m	119.53 A/m

Regression Statistics

Multiple r:	0.986608	0.996254
r^2	0.973395	0.992523
Adjusted r^2	0.971178	0.991900
Standard error s	0.148173	0.069092

Quadratic extrapolation

The equation used to extrapolate the value to zero is $y = a_2 x^2 + a_1 x + a_0$, where x is the distance and y is the extrapolated value. This form is quadratic (2nd order) regression decay.

	Electric field strength	Magnetic field strength
The extrapolated value at 0 mm:	24.41 V/m	142.00 A/m
The extrapolated value at 10 mm:	20.84 V/m	122.70 A/m

Regression Statistics

Multiple r:	0.994117	0.993500
r^2	0.988269	0.987042
Adjusted r^2	0.986136	0.984686
Standard error s	0.640823	3.881284

Quadratic extrapolation

The equation used to extrapolate the value to zero is $y = a_3 x^3 + a_2 x^2 + a_1 x + a_0$, where x is the distance and y is the extrapolated value. This form is cubic (3rd order) regression decay.

	Electric field strength	Magnetic field strength
The extrapolated value at 0 mm:	27.53 V/m	166.59 A/m
The extrapolated value at 10 mm:	22.58 V/m	136.36 A/m

Regression Statistics

Multiple r:	0.997423	0.999660
r^2	0.994853	0.999321
Adjusted r^2	0.993309	0.999117
Standard error s	0.931892	0.931892

Quartic extrapolation

The equation used to extrapolate the value to zero is $y = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$, where x is the distance and y is the extrapolated value. This form is quartic (4th order) regression decay.

	Electric field strength	Magnetic field strength
The extrapolated value at 0 mm:	24.39 V/m	177.33 A/m
The extrapolated value at 10 mm:	21.23 V/m	140.97 A/m

Regression Statistics

Multiple r:	0.998284	0.999962
r^2	0.996572	0.999924
Adjusted r^2	0.995048	0.999890
Standard error s	0.382993	0.328988

5th order extrapolation

The equation used to extrapolate the value to zero is $y = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$, where x is the distance and y is the extrapolated value. This form is 5th order regression decay.

	Electric field strength	Magnetic field strength
The extrapolated value at 0 mm:	16.23 V/m	179.86 A/m
The extrapolated value at 10 mm:	18.51 V/m	141.81 A/m

Regression Statistics

Multiple r:	0.999637	0.999966
r^2	0.999274	0.999932
Adjusted r^2	0.998819	0.999889
Standard error s	0.186993	0.330630

6th order extrapolation

The equation used to extrapolate the value to zero is $y = a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$, where x is the distance and y is the extrapolated value. This form is 6th order regression decay.

	Electric field strength	Magnetic field strength
The extrapolated value at 0 mm:	8.32 V/m	181.12 A/m
The extrapolated value at 10 mm:	16.43 V/m	142.14 A/m

Regression Statistics

Multiple r:	0.999905	0.999966
r^2	0.999810	0.999932
Adjusted r^2	0.999647	0.999874
Standard error s	0.102224	0.352395

7th order extrapolation

The equation used to extrapolate the value to zero is $y = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$, where x is the distance and y is the extrapolated value. This form is 7th order regression decay.

	<u>Electric field strength</u>	<u>Magnetic field strength</u>
The extrapolated value at 0 mm:	6.67 V/m	192.39 A/m
The extrapolated value at 10 mm:	16.06 V/m	146.78 A/m

Regression Statistics

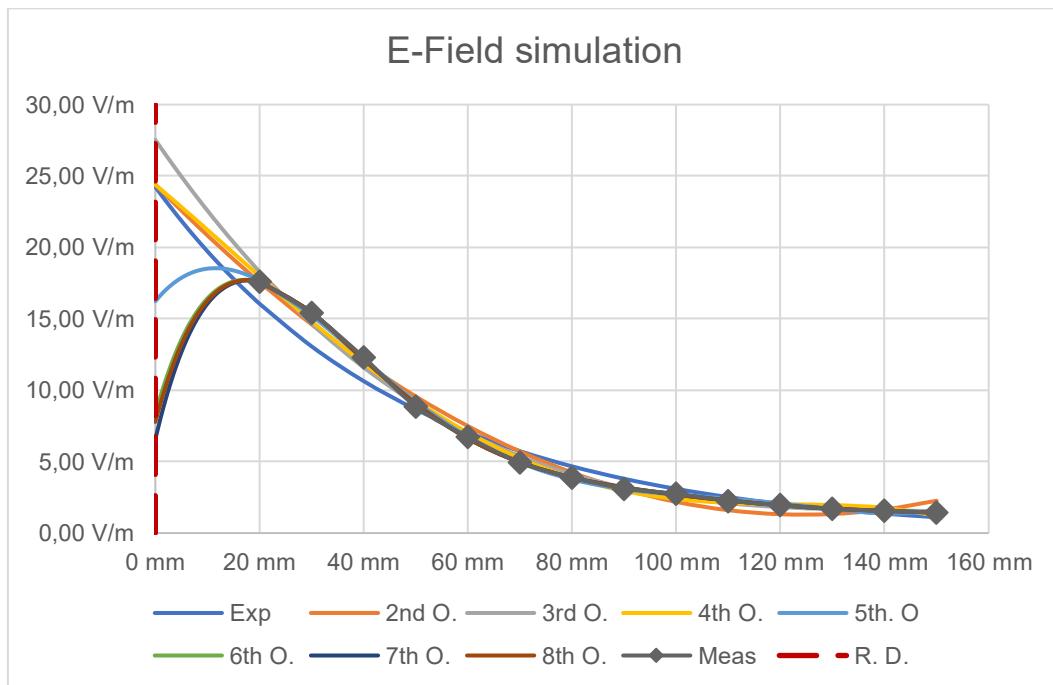
Multiple r:	0.999907	0.999969
r^2	0.999815	0.999938
Adjusted r^2 (\bar{r}^2)	0.999599	0.999866
Standard error s	0.108976	0.363118

8th order extrapolation

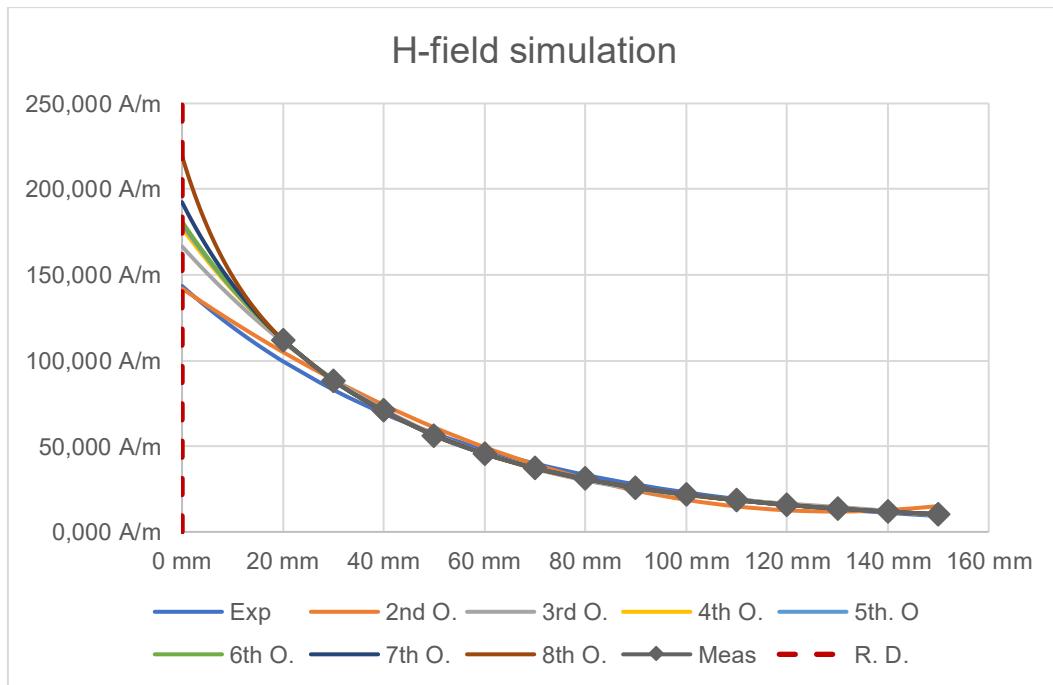
The equation used to extrapolate the value to zero is $y = a_8 x^8 + a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$, where x is the distance and y is the extrapolated value. This form is 8th order regression decay.

	<u>Electric field strength</u>	<u>Magnetic field strength</u>
The extrapolated value at 0 mm:	7.78 V/m	219.31 A/m
The extrapolated value at 10 mm:	16.27 V/m	149.17 A/m

Regression Statistics


Multiple r:	0.999908	0.999972
r^2	0.999815	0.999944
Adjusted r^2	0.999520	0.999854
Standard error s	0.379403	0.379403

Regression statistics


Regression for direct contact (0 mm)

	E-Field (V/m)	r	r^2	\bar{r}^2	s
Exponential	24.24	0.986608	0.973395	0.971178	0.148173
2nd O. Poly	24.41	0.994117	0.988269	0.986136	0.640823
3rd O. Poly	27.53	0.997423	0.994853	0.993309	0.931892
4th O. Poly	24.39	0.998284	0.996572	0.995048	0.382993
5th O. Poly	16.23	0.999637	0.999274	0.998819	0.186993
6th O. Poly	8.32	0.999905	0.999810	0.999647	0.102224
7th O. Poly	6.57	0.999907	0.999815	0.999599	0.108976
8th O. Poly	7.78	0.999908	0.999815	0.999520	0.379403

	H-Field (A/m)	r	r^2	\bar{r}^2	s
Exponential	143.50	0.996254	0.992523	0.991900	0.069092
2nd O. Poly	142.00	0.993500	0.987042	0.984686	3.881284
3rd O. Poly	166.59	0.999660	0.999321	0.999117	0.931892
4th O. Poly	177.33	0.999962	0.999924	0.999890	0.328988
5th O. Poly	179.86	0.999966	0.999932	0.999889	0.330630
6th O. Poly	181.12	0.999966	0.999932	0.999874	0.352395
7th O. Poly	192.39	0.999969	0.999938	0.999866	0.363118
8th O. Poly	219.31	0.999972	0.999944	0.999854	0.379403

E-Field extrapolation to direct contact (at 0 mm), based on different interpolations

H-Field extrapolation to direct contact (at 0 mm), based on different interpolations

Comparison of the Interpolations

Interpolation result for direct hand contact (0 mm):

	E-Field (V/m)	H-Field (A/m)
Exponential	24.24	143.50
2nd O. Poly	24.41	142.00
3rd O. Poly	27.53	166.59
4th O. Poly	24.39	177.33
5th O. Poly	16.23	179.86
6th O. Poly	8.32	181.12
7th O. Poly	6.57	192.39
8th O. Poly	7.78	219.31

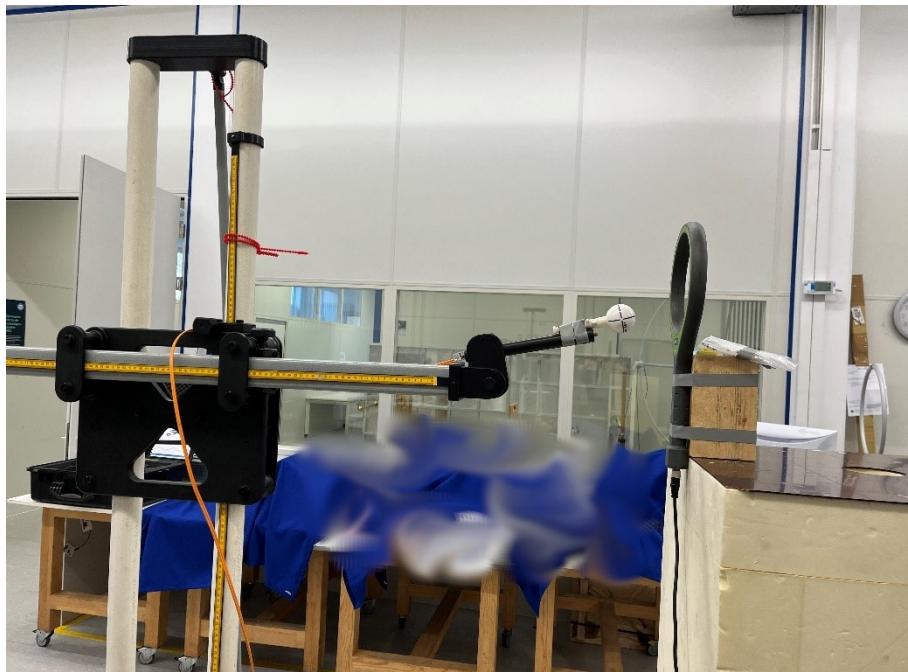
Frequency	E-Field Measure- ment (V/m)	Limit (V/m)	E-Field / Limit (%)	Verdict
134.2 kHz	27.53	83	33.17	Pass

Frequency	H-Field Measure- ment (A/m)	Limit (A/m)	H-Field / Limit (%)	Verdict
134.2 kHz	219.31	450	48.74	Pass

Test result for body / trunk (100 mm):

Frequency	E-Field Measure- ment (V/m)	Limit (V/m)	E-Field / Limit (%)	Verdict
134.2 kHz	2.75	83	33.17	Pass

Frequency	H-Field Measure- ment (A/m)	Limit (A/m)	H-Field / Limit (%)	Verdict
134.2 kHz	21.92	90	24.36	Pass


2.2.8 Test Location and Test Equipment

The test was carried out in radio test laboratory

Instrument	Manufacturer	Type No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
Magnetic field analyzer	Sekels	MFA-110	68030	12	2025-05-27
Isotropic magnetic field probe 3.5 cm ²	Sekels	B-Field Probe 3.5 cm ²	68027	12	2025-05-27
Isotropic field probe	Lumiloop	Lumiloop LSProbe 1.2	46950	36	2026-10-31

Table 10

3 Photos of Test Setup

NS measurement for electric field strength

NS measurement for magnetic flux density

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Radio Interference Emission Testing		
Test Name	<i>kp</i>	Expanded Uncertainty
Conducted Voltage Emission		
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB
100 kHz to 200 MHz (50Ω/5µH AMN)	2	± 3.6 dB
Discontinuous Conducted Emission		
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB
Conducted Current Emission		
9 kHz to 200 MHz	2	± 3.5 dB
Magnetic Fieldstrength		
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB
Radiated Emission		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 5.0 dB
1 GHz to 6 GHz	2	± 4.6 dB
Test distance 10 m		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 4.9 dB
The expanded uncertainty reported according to CISPR16-4-2: 2011 + A1 + A2 + Cor1 is based on a standard uncertainty multiplied by a coverage factor of <i>kp</i> = 2, providing a level of confidence of <i>p</i> = 95.45%		

Table 6 Measurement uncertainty based on CISPR 16-4-2

<i>Radio Interference Emission Testing</i>		
<i>Test Name</i>	<i>kp</i>	<i>Expanded Uncertainty</i>
Occupied Bandwidth	2	± 5 %
Conducted Power		
9 kHz ≤ f < 30 MHz	2	± 1.0 dB
30 MHz ≤ f < 1 GHz	2	± 1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	± 2.5 dB
1 MS/s power sensor (TS8997)	2	± 1.5 dB
Occupied Bandwidth	2	± 5 %
Power Spectral Density	2	± 3.0 dB
Radiated Power		
25 MHz – 6 GHz	1.96	±4.4 dB
1 GHz – 18 GHz	1.96	±4.7 dB
18 GHz – 40 GHz	1.96	±4.9 dB
40 GHz – 325 GHz	1.96	±6.1 dB
Conducted Spurious Emissions	2	± 3.0 dB
Radiated Spurious Emissions	2	± 6.0 dB
Voltage		
DC	2	± 1.0 %
AC	2	± 2.0 %
Time (automatic)	2	± 5 %
Frequency	2	± 10 ⁻⁷

The expanded uncertainty reported according to ETSI TR 100 028:2001 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Table 7 Measurement uncertainty based on ETSI TR 100 028

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to CISPR16-4-2: 2011 + A1 + A2 + Cor1 (U_{CISPR}) and as specified in the test report below. This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

<i>Test Name</i>	<i>Expanded Uncertainty</i>
Occupied Bandwidth	±5 %
Conducted Power	
9 kHz ≤ f < 30 MHz	±1.0 dB
30 MHz ≤ f < 1 GHz	±1.5 dB
1 GHz ≤ f ≤ 40 GHz	±2.5 dB
1 MS/s power sensor (2.4 / 5 GHz band)	±1.5 dB
Power Spectral Density	±3.0 dB
Radiated Power	
25 MHz – 26.5 GHz	±6.0 dB
26.5 GHz – 66 GHz	±8.0 dB
40 GHz – 325 GHz	±10.0 dB
Conducted Spurious Emissions	±3.0 dB
Radiated Field Strength 9 kHz – 40 GHz	±6.0 dB
Voltage	
DC	± 1.0 %
AC	± 2.0 %
Time (automatic)	± 5 %
Frequency	± 10 ⁻⁷

Table 8 Decision Rule: Maximum allowed measurement uncertainty