

FCC PART 15 Subpart C
EMI MEASUREMENT AND TEST REPORT
For
NEWCONT ELE CO., LTD.

40F, BLOCK C SCIENCE & TECHNOLOGY BLDG
SHENNANZHONGLU, SHENZHEN, P.R.CHINA

FCC ID: QFENTP6348S

February 6, 2004

This Report Concerns: <input checked="" type="checkbox"/> Original Report	Equipment Type: 2.4GHz Cordless Phone
Test Engineer: Benjamin Jin	
Report No.: R0401202	
Test Date: February 2, 2004	
Reviewed By: Ling Zhang	
Prepared By: Bay Area Compliance Laboratory Corporation 230 Commercial Street Sunnyvale, CA 94085 Tel (408) 732-9162 Fax (408) 732-9164	

Note: This test report is specially limited to the above client company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST METHODOLOGY	3
TEST FACILITY	3
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	4
EXTERNAL I/O CABLING LIST AND DETAILS	4
SYSTEM TEST CONFIGURATION.....	5
DESCRIPTION OF TEST CONFIGURATION	5
EQUIPMENT MODIFICATIONS	5
CONFIGURATION OF TEST SYSTEM	5
TEST SETUP BLOCK DIAGRAM.....	6
SUMMARY OF TEST RESULTS.....	7
§ 15.249 (C) - CONDUCTED EMISSIONS TEST DATA	8
MEASUREMENT UNCERTAINTY	8
EUT SETUP	8
SPECTRUM ANALYZER SETUP	8
TEST EQUIPMENT LIST AND DETAILS.....	8
TEST PROCEDURE	8
ENVIRONMENTAL CONDITIONS	9
SUMMARY OF TEST RESULTS	9
CONDUCTED EMISSIONS TEST DATA	9
PLOT OF CONDUCTED EMISSIONS TEST DATA	9
§15.209(A) - RADIATED EMISSION DATA.....	12
MEASUREMENT UNCERTAINTY	12
EUT SETUP	12
SPECTRUM ANALYZER SETUP	12
TEST EQUIPMENT LIST AND DETAILS.....	12
ENVIRONMENTAL CONDITIONS	13
TEST PROCEDURE	13
CORRECTED AMPLITUDE & MARGIN CALCULATION	13
SUMMARY OF TEST RESULTS	13
RADIATED EMISSIONS TEST RESULT DATA	14
§15.249(C) - BAND EDGES TESTING.....	18
STANDARD APPLICABLE	18
TEST PROCEDURE	18
TEST EQUIPMENT LIST AND DETAILS.....	18
ENVIRONMENTAL CONDITIONS	18
TEST RESULTS	18

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *NEWCONT ELE CO., LTD.*'s product, model name: NTP-6210 or the "EUT" as referred to in this report is a 2.4GHz Cordless Phone. The EUT was composed of two parts, one is a Handset which measures approximately 6”L x 2.1”W x 1.4”H, and the other is a Base which measures approximately 4.5”L x 4.25” W x 4”H.

The EUT utilized ktec AC power adapter, M/N: KA12D090030024U.

** The test data gathered are from production sample, serial number: NC1011, provided by the manufacturer.*

Objective

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2001.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.205, 15.207, and 15.249, 15.203, 15.209 rules.

Related Submittal(s)/Grant(s)

No Related Submittals

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 - 2001, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2001.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, CISPR 22:1997 and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Teltone	Line Simulator	TLS-3B-01	80071	N/A
Southern Telecom	Phone	N/A	N/A	N/A

External I/O Cabling List and Details

Cable Description	Length (M)	Port/From	To
Phone Line	1.0	Line 1 Port / Line Simulator	Phone
Phone Line	1.0	Line 2 Port / Line Simulator	EUT

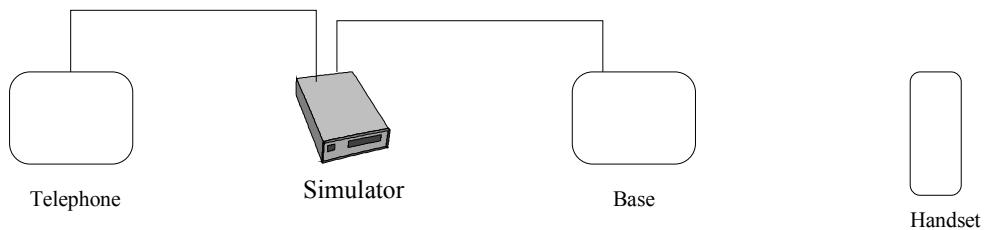
SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing according to ANSI C63.4-2001.

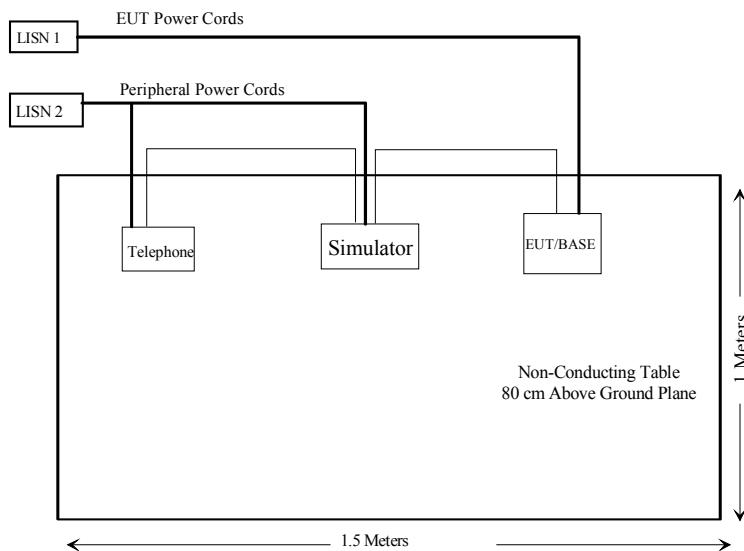
Handset being tested: The Handset unit was placed on the wooden table and tested in three orthogonal axis. The handset was connected to the headset via its headset port. The Low, middle, and high channels were tested. The handset was transmitting to and receiving from the Base unit. The EUT was investigated for emissions while off hook. The radiated data was taken in this mode of operation. All initial and final investigations were performed with the EMI receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the 2.3.

Base being tested: The Base unit was placed on the wooden table. The Low, middle, and high channels were tested. The base was connected to the line simulator and an AC adapter via its Tel Line and power ports, respectively. The base was transmitting and receiving from the Handset. The conducted as well as radiated data was taken in this mode of operation. All initial and final investigations were performed with the EMI receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the 2.3.

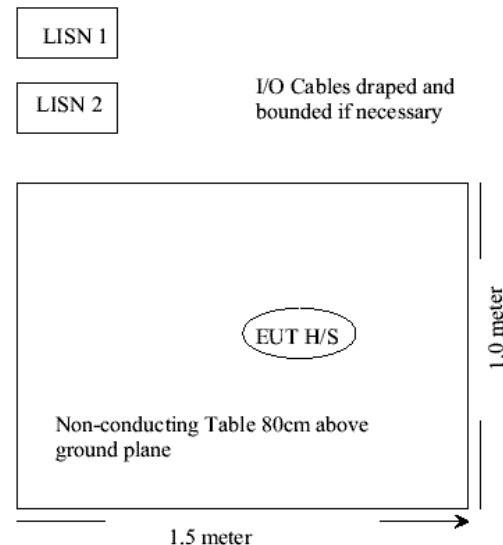

Equipment Modifications

No modifications were made to the EUT.

Configuration of Test System


Radiated Setup for Base

Radiated Setup for Handset



Test Setup Block Diagram

Radiated Setup for Base

Radiated Setup for Handset

SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.207 (a)	Conducted Emission	Compliant
§15.209 (a)	Radiated Emission	Compliant
§15.249 (c)	Band Edge Testing	Compliant

§ 15.249 (c) - CONDUCTED EMISSIONS TEST DATA

Measurement Uncertainty

All measurements involve certain levels of uncertainties. These uncertainties are attributed to: Spectrum analyzer, Cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the estimated uncertainty of any conducted emission measurement at BACL is ± 2.4 dB.

EUT Setup

The measurement was performed in the shielded room, using the same setup per ANSI C63.4-2001 measurement procedure. The specification used was FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle as required.

The host PC system was connected with 120Vac/60Hz power source.

Spectrum Analyzer Setup

The spectrum analyzer was set to investigate the spectrum from 150 kHz to 30Mhz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Due Date
Rohde & Schwarz	Artificial LISN	ESH2-Z5	871884/039	2003-03-28
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2003-05-06

* **Statement of Traceability:** BACL Corp. certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

Maximizing procedure were performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with an "QP". Average readings are distinguished with an "Ave".

Environmental Conditions

Temperature:	13 °C
Relative Humidity:	50%
ATM Pressure:	1027 mbar

Summary of Test Results

According to the recorded data in following table, the EUT complies with the FCC Conducted limit for a Class B device, with the *worst* margin reading of:

-40.1 dB μ V at 0.605 MHz in the Line mode

Conducted Emissions Test Data

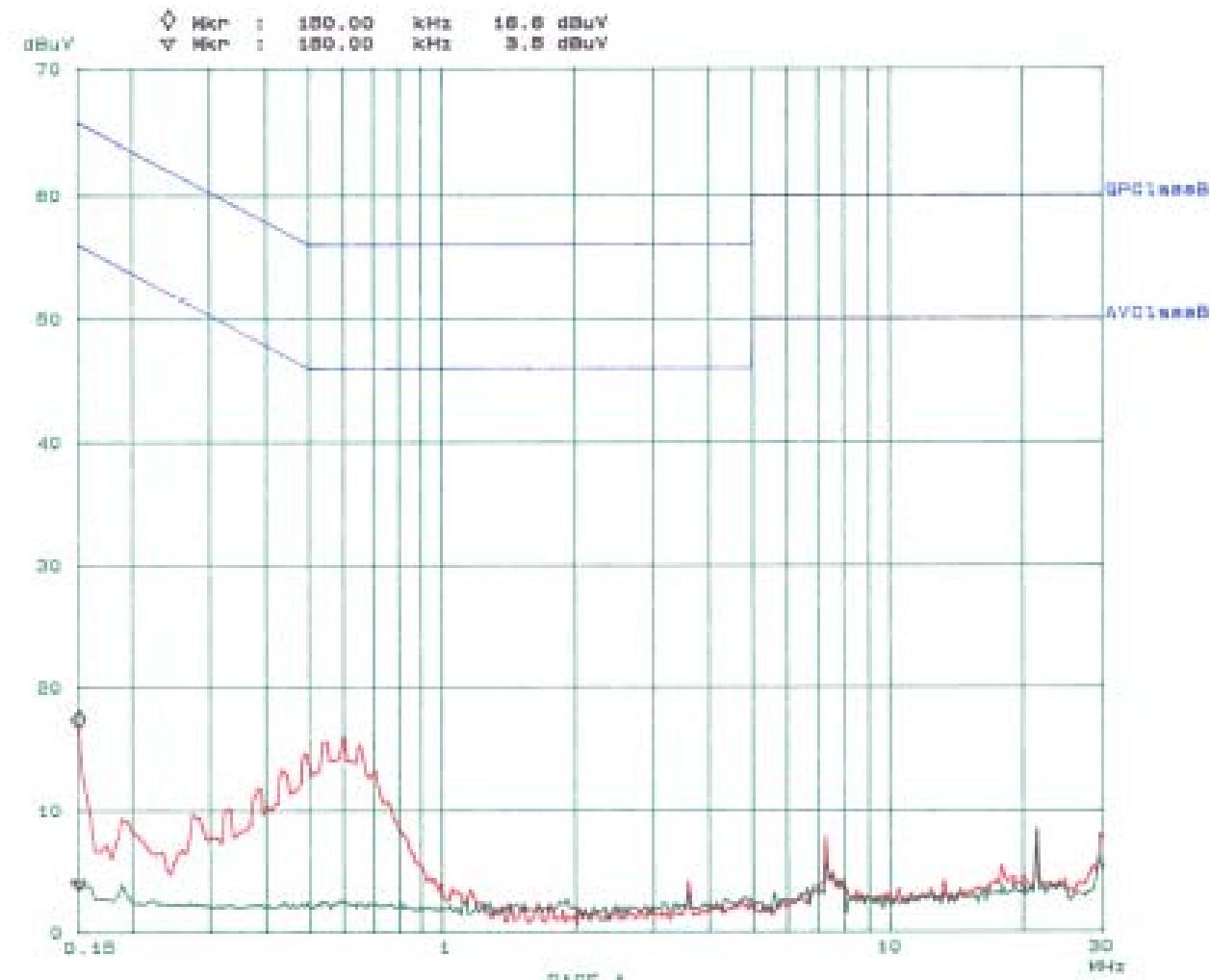
LINE CONDUCTED EMISSIONS				FCC CLASS B	
Frequency MHz	Amplitude dB μ V	Detector Qp/Ave/Peak	Phase Line/Neutral	Limit dB μ V	Margin dB
0.605	15.9	Qp	Line	56	-40.1
22.1	8.1	Ave	Line	50	-41.9
30	6.7	Ave	Neutral	50	-43.3
0.605	2.5	Ave	Line	46	-43.5
0.62	14.6	Qp	Neutral	60	-45.4
0.62	2.3	Ave	Neutral	50	-47.7
0.15	16.6	Qp	Line	66	-49.4
30	9.8	Qp	Neutral	60	-50.2
22.1	8.7	Qp	Line	60	-51.3
0.15	3.5	Ave	Line	56	-52.5
0.15	3.5	Ave	Neutral	56	-52.5
0.15	12.8	Qp	Neutral	66	-53.2

Plot of Conducted Emissions Test Data

Plot of Conducted Emissions test data was presented hereinafter as reference.

Bay Area Compliance Laboratory Corp
Class B

03. Feb 04 10:58


H
2004/2/4

BUT: NTP-6348
Manuf: NEWCONT
Op. Cond: Normal
Operator: Heng
Comment: L

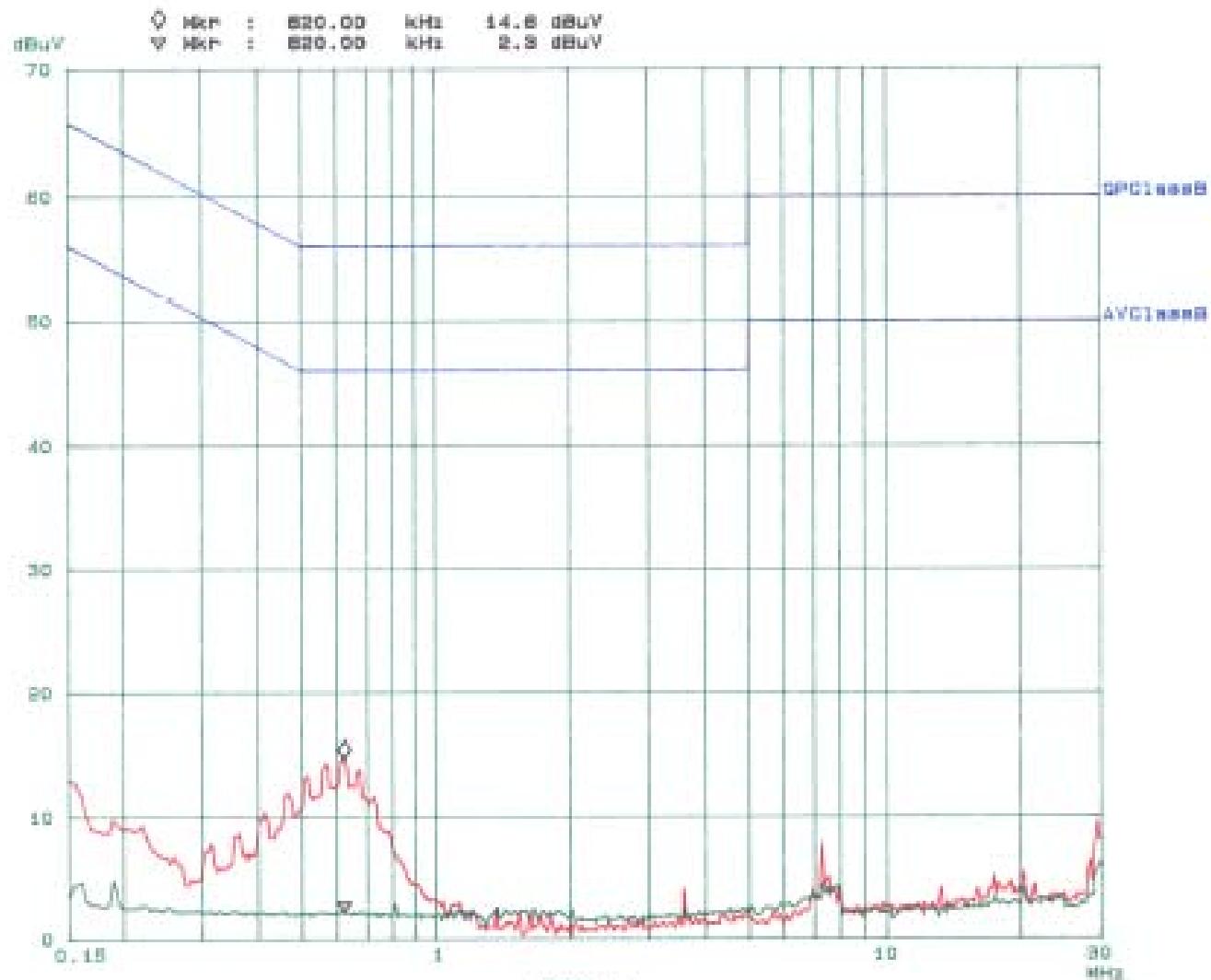
Scan Settings (3 Ranges)

Frequencies			Receiver Settings				
Start	Stop	Step	IF BW	Detector	H-TIME	ATTEN	PREAMP
100K	1M	5K	5K	QPSK	20ms	15dBm	OFF
1M	5M	10K	5K	QPSK	1ms	15dBm	OFF
5M	20M	100K	5K	QPSK	1ms	15dBm	OFF

Final Measurement: X QP / + AV
HOLD TIME: 1 s
Subranges: 25
Acc Margin: 6dB

Bay Area Compliance Laboratory Corp
Class B

03. Feb 04 10:32


Han
2004-2-4

GU: NTP-0348
Manuf: NEWCONT
Op Cond: Normal
Operator: Han
Comment: N

Scan Settings (5 Ranges)

Frequencies			Receiver Settings					
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp	
100K	1M	5K	5K	QP+AV	20ns	15dBFLN	OFF	
1M	5M	10K	5K	QP+AV	1ns	15dBFLN	OFF	
5M	30M	100K	5K	QP+AV	1ns	15dBFLN	OFF	

Final Measurement: x QP / + AV
Hese Time: 1 s
Subranges: 20
Acc Margin: 6dB

§15.209(a) - RADIATED EMISSION DATA

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with ANSI C63.4-2001. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle as required.

The host PC system was connected with 120Vac/60Hz power source.

Spectrum Analyzer Setup

According to FCC Rules, 47 CFR 15.33 (a) (1), the system was tested to 25GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

<i>Frequency Range</i>	<i>RBW</i>	<i>Video B/W</i>
Below 30MHz	10kHz	10kHz
30 – 1000MHz	100kHz	100kHz
Above 1000MHz	1MHz	1MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Spectrum Analyzer	8565EC	3946A00131	2004-06-30
A. H. Systems	DRG Horn Antenna	SAS-200/571	2455-261	2004-02-08
HP	Quasi-Peak Adapter	85650A	3107A01505	2003-09-30
Agilent	Amplifier (0.1 – 1300MHz)	8447D	2944A10198	2003-09-23
Electro-Metrics	Biconical Antenna	EM-6912	585	2003-01-17
Electro-Metrics	Logperiodic Antenna	EM-6950	788	2003-04-15

* **Statement of Traceability:** **BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	13 °C
Relative Humidity:	50%
ATM Pressure:	1027 mbar

Test Procedure

For the radiated emissions test, the power cord of the host system and all support equipment were connected to the AC floor outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within $-4 \text{ dB}\mu\text{V}$ of specification limits), and are distinguished with a “Qp” in the data table.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7 \text{ dB}\mu\text{V}$ means the emission is $7 \text{ dB}\mu\text{V}$ below the maximum limit for applicable limits. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{Applicable Limit}$$

Summary of Test Results

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.207, and 15.249 after tested to 10th harmonics as required by FCC and had the worst margin of:

Handset, 30MHz – 25GHz, 3 Meters

- 4.82 dB at 2472MHz in the Horizontal polarization at Low Frequency
- 4.65 dB at 2476 MHz in the Vertical polarization at High Frequency
- 15 dB at 239.5 MHz in the Vertical polarization at Unintentional Emission

Base, 30MHz – 25GHz, 3 Meters

- 0.32 dB at 2403MHz in the Vertical polarization at Low Frequency
- 0.55 dB at 2407 MHz in the Horizontal polarization at High Frequency
- 4.33 dB at 279.2 MHz in the Horizontal polarization at Unintentional Emission

Radiated Emissions Test Result Data**Handset Unit, 30 MHz to 25GHz, 3 meters**

INDICATED			TABLE	ANTENNA		CORRECTION FACTOR			CORRECTED AMPLITUDE	FCC 15 Subpart C	
Frequency MHz	Ampl. dB μ V/m	Comments	Angle Degree	Height Meter	Polar H/V	Antenna dB μ V/m	Cable DB	Amp. dB	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB
Low Frequency											
2472	93.33	FUND / Ave.	150	1.5	H	28.1	3.35	35.6	89.18	94	-4.82
2472	93.17	FUND / Ave.	0	1.3	V	28.1	3.35	35.6	89.02	94	-4.98
7416	41.67	AVG	150	1.5	H	35.1	5.645	35.6	46.815	54	-7.19
7416	41.5	AVG	15	1.4	V	35.1	5.645	35.6	46.645	54	-7.36
9888	40.5	AVG	0	1.4	V	35.1	5.645	35.6	45.645	54	-8.36
9888	40.33	AVG	150	1.5	H	35.1	5.645	35.6	45.475	54	-8.53
2461	47	Local Oscillator	180	1.7	H	28.1	3.35	35.6	42.85	54	-11.2
2461	46.5	Local Oscillator	30	1.8	V	28.1	3.35	35.6	42.35	54	-11.7
4944	38.5	AVG	0	1.4	V	32.5	4.91	35.6	40.31	54	-13.7
4944	38.33	AVG	135	1.5	H	32.5	4.91	35.6	40.14	54	-13.9
7416	47.17	Peak	150	1.5	H	35.1	5.645	35.6	52.315	74	-21.7
9888	46.17	Peak	150	1.5	H	35.1	5.645	35.6	51.315	74	-22.7
7416	44.83	Peak	15	1.4	V	35.1	5.645	35.6	49.975	74	-24
2472	93.83	FUND / Peak.	0	1.3	V	28.1	3.35	35.6	89.68	114	-24.3
2472	93.67	FUND / Peak.	150	1.5	H	28.1	3.35	35.6	89.52	114	-24.5
9888	44.17	Peak	0	1.4	V	35.1	5.645	35.6	49.315	74	-24.7
4944	44.33	Peak	0	1.4	V	32.5	4.91	35.6	46.14	74	-27.9
4944	44.33	Peak	135	1.5	H	32.5	4.91	35.6	46.14	74	-27.9
High Frequency											
2476	93.5	FUND / Ave.	270	2	V	28.1	3.35	35.6	89.35	94	-4.65
2476	92.17	FUND / Ave.	225	1.5	H	28.1	3.35	35.6	88.02	94	-5.98
7428	41.33	AVG	225	1.5	H	35.1	5.645	35.6	46.475	54	-7.53
7428	41.17	AVG	270	2	V	35.1	5.645	35.6	46.315	54	-7.69
9904	40.67	AVG	225	1.8	V	35.1	5.645	35.6	45.815	54	-8.19
9904	40.5	AVG	210	1.5	H	35.1	5.645	35.6	45.645	54	-8.36
4952	38.33	AVG	210	1.6	H	32.5	4.91	35.6	40.14	54	-13.9
4952	38	AVG	270	2.2	V	32.5	4.91	35.6	39.81	54	-14.2
7428	46.5	Peak	270	2	V	35.1	5.645	35.6	51.645	74	-22.4
7428	46.33	Peak	225	1.5	H	35.1	5.645	35.6	51.475	74	-22.5
9904	46	Peak	225	1.8	V	35.1	5.645	35.6	51.145	74	-22.9
9904	45	Peak	210	1.5	H	35.1	5.645	35.6	50.145	74	-23.9
2476	94	FUND / Peak.	270	2	V	28.1	3.35	35.6	89.85	114	-24.2
2476	93.67	FUND / Peak.	225	1.5	H	28.1	3.35	35.6	89.52	114	-24.5
4952	43.33	Peak	270	2.2	V	32.5	4.91	35.6	45.14	74	-28.9
4952	42.83	Peak	210	1.6	H	32.5	4.91	35.6	44.64	74	-29.4
2465	46.17	Local Oscillator	270	2.2	V	28.1	3.35	35.6	42.02	54	-12
2465	47.33	Local Oscillator	150	1.6	H	28.1	3.35	35.6	43.18	54	-10.8

Unintentional Emission, 30MHz to 1000MHz											
239.5	41.2	-	150	1.5	V	12.6	2.17	25	30.97	46	-15
239.6	40.3	-	120	1.5	H	12.6	2.17	25	30.07	46	-15.9
120	39.2	-	90	1.5	V	11.7	1.57	25	27.47	43.5	-16
144	37.5	-	60	1.2	V	12.4	1.63	25	26.53	43.5	-17
172	36.4	-	60	1.5	V	13	1.86	25	26.26	43.5	-17.2
172	35.6	-	90	1.2	H	13	1.86	25	25.46	43.5	-18
144.1	36.4	-	45	1.3	H	12.4	1.63	25	25.43	43.5	-18.1
120	35.4	-	90	1.2	H	11.7	1.57	25	23.67	43.5	-19.8

Base Unit, 30 MHz to 25GHz, 3 meters

INDICATED			TABLE	ANTENNA		CORRECTION FACTOR			CORRECTED AMPLITUDE	FCC 15 Subpart C	
Frequency MHz	Ampl. dB μ V/m	Comments	Angle Degree	Height Meter	Polar H/V	Antenna dB μ V/m	Cable DB	Amp. dB	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB
Low Frequency											
2403	97.83	FUND / Ave.	210	1.4	V	28.1	3.35	35.6	93.68	94	-0.32
2403	96.17	FUND / Ave.	15	1.4	H	28.1	3.35	35.6	92.02	94	-1.98
7209	43.5	AVG	0	1.5	H	35.1	5.645	35.6	48.645	54	-5.36
7209	42.7	AVG	225	1.5	V	35.1	5.645	35.6	47.845	54	-6.15
2441	50.67	Local Oscillator	210	1.4	H	28.1	3.35	35.6	46.52	54	-7.48
9612	40.33	AVG	210	1.4	V	35.1	5.645	35.6	45.475	54	-8.53
9612	40	AVG	15	1.4	H	35.1	5.645	35.6	45.145	54	-8.86
4806	40.5	AVG	15	1.4	H	32.5	4.91	35.6	42.31	54	-11.7
4806	38.83	AVG	210	1.4	V	32.5	4.91	35.6	40.64	54	-13.4
2441	43.17	Local Oscillator	270	1.5	V	28.1	3.35	35.6	39.02	54	-15
2403	99	FUND / Peak.	210	1.4	V	28.1	3.35	35.6	94.85	114	-19.2
7209	49.1	Peak	225	1.5	V	35.1	5.645	35.6	54.245	74	-19.8
7209	48.83	Peak	0	1.5	H	35.1	5.645	35.6	53.975	74	-20
2403	96.67	FUND / Peak.	15	1.4	H	28.1	3.35	35.6	92.52	114	-21.5
9612	46	Peak	210	1.4	V	35.1	5.645	35.6	51.145	74	-22.9
9612	45.33	Peak	15	1.4	H	35.1	5.645	35.6	50.475	74	-23.5
4806	45.67	Peak	15	1.4	H	32.5	4.91	35.6	47.48	74	-26.5
4806	45.33	Peak	210	1.4	V	32.5	4.91	35.6	47.14	74	-26.9
High Frequency											
2407	97.6	FUND / Ave.	0	1.5	H	28.1	3.35	35.6	93.45	94	-0.55
2407	96.67	FUND / Ave.	225	1.4	V	28.1	3.35	35.6	92.52	94	-1.48
7221	42	AVG	225	1.4	V	35.1	5.645	35.6	47.145	54	-6.86
7221	41.5	AVG	0	1.5	H	35.1	5.645	35.6	46.645	54	-7.36
9628	40.17	AVG	225	1.4	V	35.1	5.645	35.6	45.315	54	-8.69
9628	40.17	AVG	0	1.5	H	35.1	5.645	35.6	45.315	54	-8.69
2441	48.33	Local Oscillator	270	1.2	V	28.1	3.35	35.6	44.18	54	-9.82
2441	48.17	Local Oscillator	0	1.3	H	28.1	3.35	35.6	44.02	54	-9.98
4814	39.67	AVG	15	1.5	H	32.5	4.91	35.6	41.48	54	-12.5
4814	38.5	AVG	225	1.4	V	32.5	4.91	35.6	40.31	54	-13.7
2407	98.5	FUND / Peak.	0	1.5	H	28.1	3.35	35.6	94.35	114	-19.7
2407	97.17	FUND / Peak.	225	1.4	V	28.1	3.35	35.6	93.02	114	-21
7221	47.67	Peak	225	1.4	V	35.1	5.645	35.6	52.815	74	-21.2
7221	46.83	Peak	15	1.5	H	35.1	5.645	35.6	51.975	74	-22
9628	45.5	Peak	225	1.4	V	35.1	5.645	35.6	50.645	74	-23.4
9628	44.5	Peak	0	1.5	H	35.1	5.645	35.6	49.645	74	-24.4
4814	45.17	Peak	30	1.5	H	32.5	4.91	35.6	46.98	74	-27
4814	43.5	Peak	225	1.4	V	32.5	4.91	35.6	45.31	74	-28.7

Unintentional Emission, 30MHz to 1000MHz											
279.2	51.17	-	270	1.6	H	13.3	2.2	25	41.67	46	-4.33
299	50.67	-	270	1.1	H	13.7	2.3	25	41.67	46	-4.33
299	49.17	-	180	1.4	V	13.7	2.3	25	40.17	46	-5.83
324	47	-	150	1.3	V	15.5	2.33	25	39.83	46	-6.17
252.4	49.33	-	90	1.8	H	13.3	2.17	25	39.8	46	-6.2
324	46.8	-	120	1.4	H	15.5	2.33	25	39.63	46	-6.37
325.8	46.67	-	180	1.3	V	15.5	2.33	25	39.5	46	-6.5
254.2	48.17	-	90	1.8	H	13.3	2.17	25	38.64	46	-7.36
279.2	47.83	-	120	1.6	V	13.3	2.2	25	38.33	46	-7.67
325.8	45.2	-	150	1.1	H	15.5	2.33	25	38.03	46	-7.97
268.5	46.83	-	120	1.1	H	13.4	2.2	25	37.43	46	-8.57
268.5	46	-	270	1.4	V	13.4	2.2	25	36.6	46	-9.4
259.6	45.8	-	210	1.3	V	13.3	2.17	25	36.27	46	-9.73
254.2	45.17	-	0	1.7	V	13.3	2.17	25	35.64	46	-10.4
259.6	44.17	-	90	1.1	H	13.3	2.17	25	34.64	46	-11.4
252.4	43	-	210	1.5	V	13.3	2.17	25	33.47	46	-12.5
236.3	43.17	-	90	1.3	V	12.6	2.17	25	32.94	46	-13.1
236.3	42.5	-	210	1.3	H	12.6	2.17	25	32.27	46	-13.7
216.4	37.8	-	90	1.4	H	11.9	2.17	25	26.87	46	-19.1
216.4	36.8	-	210	1.4	V	11.9	2.17	25	25.87	46	-20.1

Ave.: Average

Note: This test was performed by placing the handset on 3 orthogonal axis.

§15.249(c) - BAND EDGES TESTING

Standard Applicable

Requirements: FCC 15.249 (c), the emission power at the START and STOP frequencies shall be at least 50 dB below the level of the fundamental or to the general radiated emission limits in FCC 15.209, whichever is the lesser attenuation.

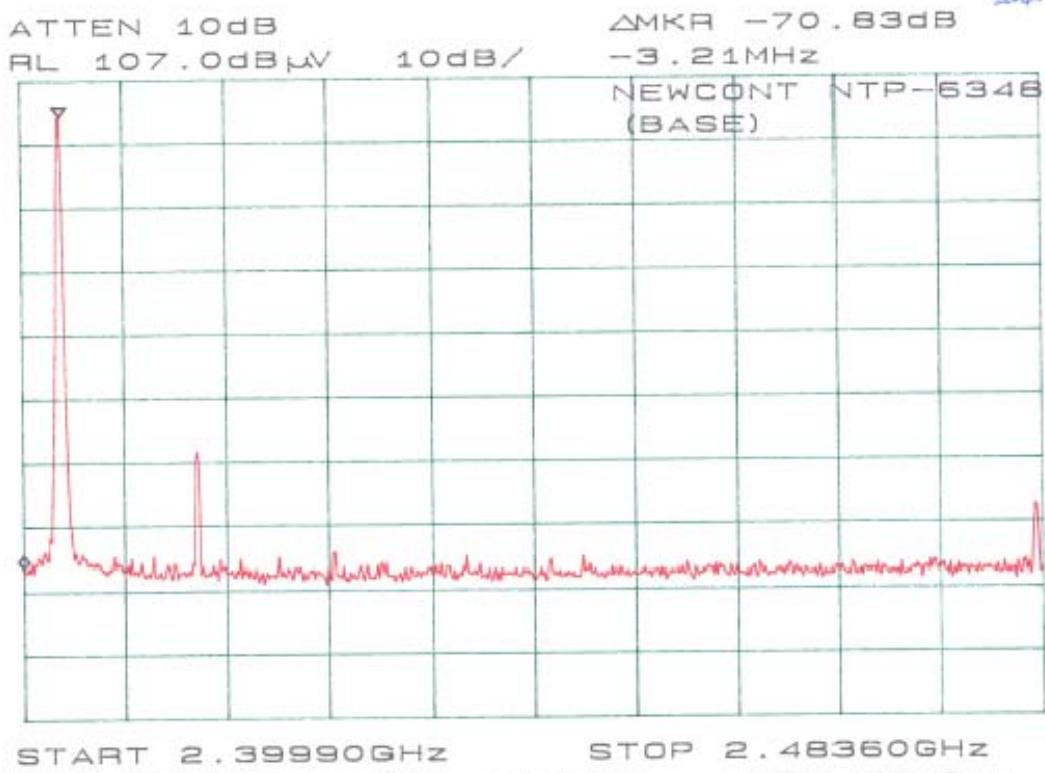
Test Procedure

With the EUT's antenna attached, the EUT's radiated emission power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

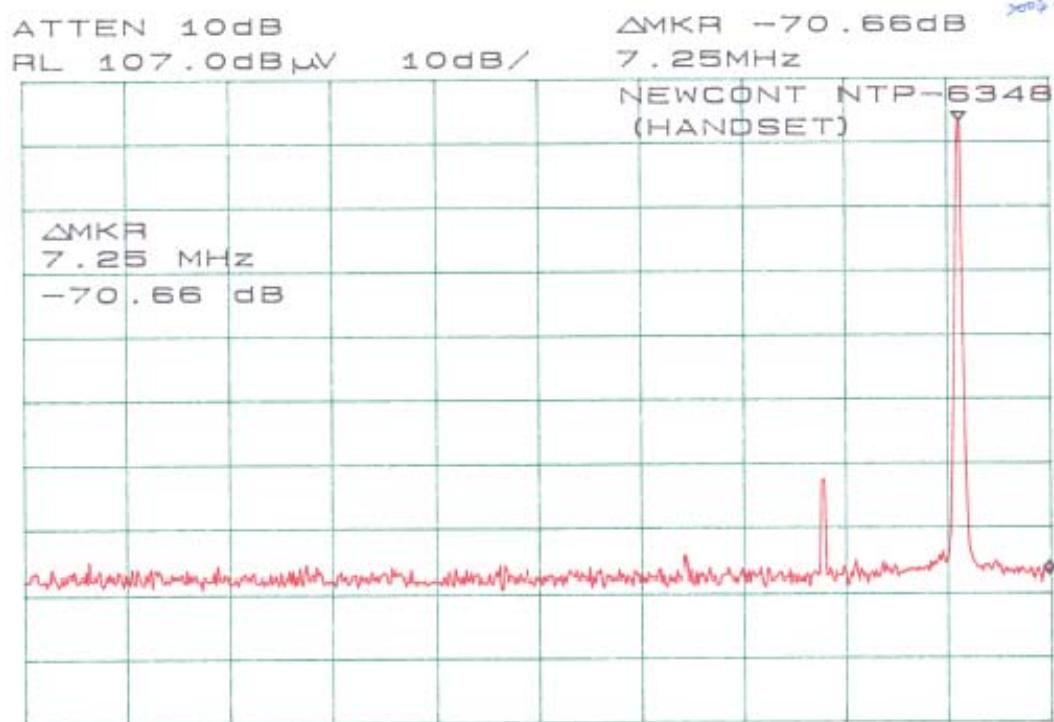
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Spectrum Analyzer	8565EC	3946A00131	2003-05-03

* **Statement of Traceability:** BACL Corp. certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.


Environmental Conditions

Temperature:	13 °C
Relative Humidity:	50%
ATM Pressure:	1027 mbar


Test Results

Refer to the attached plots.

Base - Low Frequency
Handset - High Frequency

START 2.39990GHz STOP 2.48360GHz
*RBW 100kHz VBW 100kHz SWP 50.0ms

START 2.39990GHz STOP 2.48360GHz
*RBW 100kHz VBW 100kHz SWP 50.0ms