

Stephen Walmsley

SAR Compliance Test Report

Test report no.: Salo_SAR_0541_03 Date of report: 2005-11-01

Template version: 4 Number of pages: 58

Testing laboratory: TCC Salo **Client:** Nokia Canada / Vancouver P.O. Box 86 9200 Glenlyon Parkway

Joensuunkatu 7H / Kiila 1B Burnaby, BC, V5J 5J8 Canada FIN-24101 SALO, FINLAND Vancouver, CANADA Tel. +358 (0) 7180 08000 Tel. +1-604-456-5400

Product contact

person:

Fax. +358 (0) 7180 45220 Fax +1-604-456-5454

engineer:

Virpi Tuominen

Measurements made by: Janne Hirsimäki, Virpi Tuominen

Tested device: RM-43

FCC ID: QEYRM-43

IC: 661L-RM43

Supplement reports: -

Testing has been carried out in accordance with:

Responsible test

47CFR §2.1093

Radiofreguency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Techniques

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years

at TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

Virpi Tuominen System Test Manager

CONTENTS	
1. SUMMARY OF SAR TEST REPORT	
1.1 Test Details	9
1.2 MAXIMUM RESULTS	
1.2.1 Head Configuration	3
1.2.2 Body Worn Configuration	
1.2.3 Maximum Drift	
1.2.4 Measurement Uncertainty	
2. DESCRIPTION OF THE DEVICE UNDER TEST	
2.1 Picture of the Device	
2.2 DESCRIPTION OF THE ANTENNA	
3. TEST CONDITIONS	5
3.1 TEMPERATURE AND HUMIDITY	
3.2 TEST SIGNAL, FREQUENCIES AND OUTPUT POWER	5
4. DESCRIPTION OF THE TEST EQUIPMENT	5
4.1 MEASUREMENT SYSTEM AND COMPONENTS	5
4.1.1 Isotropic E-field Probe SN: 1396	
4.2 Phantoms	
4.3 TISSUE SIMULANTS	
4.3.1 Tissue Simulant Recipes	
4.3.2 System Checking4.3.3 Tissue Simulants used in the Measurements	
5. DESCRIPTION OF THE TEST PROCEDURE	
5.1 DEVICE HOLDER	
5.2 TEST POSITIONS	
5.2.1 Against Phantom Head5.2.2 Body Worn Configuration	
5.3 Scan Procedures	
5.4 SAR AVERAGING METHODS	
6. MEASUREMENT UNCERTAINTY	
7. RESULTS	14
APPENDIX A: SYSTEM CHECKING SCANS	17
APPENDIX B: MEASUREMENT SCANS	25
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	57
APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	58
SAR Report	Type: RM-43
Salo SAR 0541 03	

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2005-10-11 to 2005-10-25
SN, HW and SW numbers of	SN: 004400/42/166236/0, HW: 4005, SW: 05w36_p1, DUT: 10800
tested device	SN: 004400/42/166222/0, HW: 4005, SW: wlan_Rx_damn, DUT: 10832
Batteries used in testing	BL-5C, DUT: 10802, 10803
Headsets used in testing	AD-36, DUT: 10813
Other accessories used in	-
testing	
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Position	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
GSM1900 + WLAN2450	Left Cheek	1.6 W/kg	0.74 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Separation distance	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
GSM1900+WLAN2450	1.5cm	1.6 W/kg	0.58 W/kg	PASSED

1.2.3 Maximum Drift

Maximum drift during measurements	-0.36 dB

1.2.4 Measurement Uncertainty

Extended Uncertainty (k=2) 95%	± 29.8 %
, , , , , , , , , , , , , , , , , , ,	

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes and Bands of Operation	GSM	GPRS	EGPRS		
				BT	WLAN
	1900	1900	1900		
Modulation Mode	GMSK	GMSK	8PSK	GFSK	
Duty Cycle	1/8	1/8 or 2/8	1/8 or 2/8		1
Transmitter Frequency Range (MHz)	1850 - 1910	1850 - 1910	1850 - 1910	2402-2480	2412-2462

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM900, GSM1800 and WCDMA2100 which are not part of this filing.

This device has Dual Transfer Mode capability for use at the ear. Therefore, SAR for 2-slot GPRS and 2-slot EGPRS modes were evaluated against the head profile of the phantom.

2.1 Picture of the Device

Device with slide closed

Device with slide open

2.2 Description of the Antenna

The device has an internal patch antenna.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	21.5 to 23.1
Ambient humidity (RH %):	33 to 53

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester, except in the case of WLAN2450 for which command instructions were used. When a call tester was used, communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit as used for SAR testing.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4 software version 4.6, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements on the device was the 'worst-case extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE V1	388	12 months	2006-01
E-field Probe ET3DV6	1396	12 months	2006-01
Dipole Validation Kit, D1900V2	5d026	24 months	2007-01
Dipole Validation Kit, D2450V2	749	24 months	2006-06

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SML03	101265	12 months	2006-07
Amplifier	ZHL-42 (SMA)	N072095-5	12 months	2006-07
Power Meter	NRVS	849305/028	12 months	2006-07
Power Sensor	NRV-Z32	839176/020	12 months	2006-07
Call Tester	CMU 200	101111	-	-
Call Tester	CMU 200	104983	-	-
Vector Network Analyzer	8753E	US38432928	12 months	2005-10
Dielectric Probe Kit	85070B	US33020420	-	-

4.1.1 Isotropic E-field Probe SN: 1396

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Optical Surface ± 0.2 mm repeatability in air and clear liquids over diffuse

Detection reflecting surfaces

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checking and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 ± 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipes were used for Head and Body tissue simulants:

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	54.50	70.25
Tween 20	45.23	29.41
Salt	0.27	0.34

2450MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	56.0	70.2
Tween 20	44.0	29.62
Salt	-	0.18

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

	System checking, nead dissue simulant						
		SAR [W/kg],	Dielectric F	arameters	Temp		
f [MHz]	Description	1g	εr	σ [S/m]	[°C]		
	Reference result	9.49	39.5	1.46			
	$\pm10\%$ window	8.54 - 10.44					
1900	2005-10-10	10.1	38.2	1.40	21.0		
	2005-10-11	10.3	38.3	1.41	21.0		
	2005-10-12	10.1	38.5	1.39	21.0		
	Reference result	13.5	38.5	1.86			
	$\pm10\%$ window	12.2 - 14.8					
2450	2005-10-21	14.2	38.4	1.84	21.0		
	2005-10-24	14.3	38.1	1.88	21.0		

System checking, body tissue simulant

		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1 g	εr	σ [S/m]	[°C]
	Reference result	9.65	52.2	1.57	
	$\pm10\%$ window	8.68 - 10.62			
1900	2005-10-12	9.95	53.3	1.53	21.0
	Reference result	13.2	51.5	2.00	
	$\pm10\%$ window	11.9 - 14.5			
2450	2005-10-25	14.4	51.8	2.02	21.0

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

		Dielectric F	Temp	
f [MHz]	Description	€r	σ [S/m]	[°C]
	Recommended value	40.0	1.40	
	± 5% window	38.0 – 42.0	1.33 - 1.47	
1880	2005-10-10	38.2	1.38	21.0
	2005-10-11	38.3	1.39	21.0
	2005-10-12	38.7	1.38	21.0
	Recommended value	39.2	1.79	
	± 5% window	37.3 – 41.2	1.70 - 1.88	
2442	2005-10-21	38.4	1.83	21.0
	2005-10-24	38.1	1.87	21.0

Body tissue simulant measurements

	body tissue simulant measurements						
		Dielectric F	Parameters	Temp			
f [MHz]	Description	€r	σ [S/m]	[°C]			
	Recommended value	53.3	1.52				
	\pm 5% window	50.6 - 56.0	1.44 - 1.60				
1880	2005-10-12	53.4	1.52	21.0			
	Recommended value	52.7	1.94				
	\pm 5% window	50.1 – 55.3	1.85 - 2.04				
2442	2005-10-24	51.7	2.01	21.0			
	2005-10-25	51.8	2.00	21.0			

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Photo of the device with slide closed in "cheek" position

Photo of the device with slide closed in "tilt" position

Photo of the device with slide open in "cheek" position

Photo of the device with slide open in "tilt" position

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in the photo below using a separate flat spacer that was removed before the start of the measurements. The device was oriented slide closed with its antenna facing the phantom since this orientation gives higher results.

Photo of the device positioned for Body SAR measurement.
The spacer was removed for the tests.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Table 6.1 – Measurement uncertainty evaluation							
Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	C _i .U _i (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.8	N	1	1	±5.8	8
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p)1/2	±1.9	8
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	8
Boundary Effect	E2.3	±8.3	R	√3	1	±4.8	8
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	8
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	8
Response Time	E2.7	±0.8	R	√3	1	±0.5	8
Integration Time	E2.8	±2.6	R	√3	1	±1.5	8
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	8
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	8
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	8
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5.2	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2.1	± 6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±10.0	R	√3	1	±5.8	8
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	~
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±14.9	206
Coverage Factor for 95%			k=2			±17.3	200
Expanded Standard Uncertainty			N-L			±29.8	
Expanded Standard Officerating	L	l					

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

1900MHz, Head SAR results

			·	SAR, averaged over 1g (W/kg)			
Mode	Slide	Test conf	Test configuration		Ch 661	Ch 810	
				1850.2 MHz	1880.0 MHz	1909.8 MHz	
		Po	wer	26.8 dBm	28.1 dBm	26.5 dBm	
		Left	Cheek	0.404	0.346	0.328	
2-slot GPRS	Closed		Tilt	-	0.320	-	
		Right	Cheek	-	0.330	-	
			Tilt	-	0.331	-	
		Po	wer	26.5 dBm	26.4 dBm	26.0 dBm	
		Left	Cheek	0.407	0.404	0.410	
2-slot GPRS	0pen		Tilt	-	0.301	-	
		Right	Cheek	-	0.331	-	
			Tilt	-	0.325	-	
2-slot GPRS	Open	Left Cheek, BT	active	-	-	0.391	
		Po	wer	29.9 dBm	30.7 dBm	29.4 dBm	
GSM	Closed	Left Cheek		0.362	0.337	0.338	
		Po	wer	28.9 dBm	29.1 dBm	28.1 dBm	
GSM	0pen	Left Cheek		0.411	0.413	0.415	
GSM	Open	Left Cheek, BT	active	-	-	0.410	
		Power		25.8 dBm	27.1 dBm	25.6 dBm	
2-slot EGPRS	Closed	Left Cheek		0.219	0.207	0.205	
		Po	wer	25.4 dBm	25.3 dBm	24.4 dBm	
2-slot EGPRS	Open	Left Cheek		0.252	0.262	0.233	

2450MHz, Head SAR results

				SAR, av	eraged over 1g	(W/kg)
Mode	Slide	Test configuration		Ch 1 2412.0 MHz	Ch 7 2442.0 MHz	Ch 11 2462.0 MHz
		Po	wer	22.0 dBm	22.0 dBm	17.8 dBm
		Left	Cheek	-	0.147	-
WLAN2450	Closed		Tilt	-	0.099	-
		Right	Cheek	0.241	0.160	0.165
			Tilt	-	0.088	-
		Power		23.6 dBm	19.0 dBm	19.6 dBm
		Left	Cheek	0.323	0.153	-
WLAN2450	0pen		Tilt	-	0.048	-
		Right	Cheek	0.304	0.157	0.179
			Tilt	-	0.045	-

Combined 1900MHz and WLAN2450, Head SAR results

	Test		Ma	ıx. 1g SAR resu	Sum of 1g SAR values	
Slide	config	uration	2-slot GPRS1900	GSM1900 WLAN2450		GSM/GPRS 1900 + WLAN2450
	Left	Cheek	0.404	-	0.147	0.551
Closed		Tilt	0.320	-	0.099	0.419
	Right	Cheek	0.330	-	0.241	0.571
		Tilt	0.331	-	0.088	0.419
	Left	Cheek	-	0.415	0.323	0.738
0pen		Tilt	0.301	-	0.048	0.349
	Right	Cheek	0.331	-	0.304	0.635
		Tilt	0.325	-	0.045	0.370

The measured Body SAR values for the test device are tabulated below:

1900MHz, Body SAR results

Option used:		SAR, averaged over 1g (W/kg)			
Slide	Test configuration	Ch 512	Ch 661	Ch 810	
		1850.2 MHz	1880.0 MHz	1909.8 MHz	
	2-slot GPRS	26.8 dBm	28.1 dBm	26.5 dBm	
Closed	Without headset	0.467	0.442	0.393	
	Headset AD-36	0.407	0.388	0.370	
Closed	Without headset, BT active	0.475	-	-	
	GSM	29.9 dBm	30.7 dBm	29.4 dBm	
Closed	Without headset	0.468	0.430	0.382	
	Headset AD-36	0.387	-	-	
Closed	Without headset, BT active	0.485	•	-	

2450MHz, Body SAR results

Option used:		SAR, averaged over 1g (W/kg)			
Slide	Test configuration	Ch 1	Ch 7	Ch 11	
Silue		2412.0 MHz	2442.0 MHz	2462.0 MHz	
	WLAN2450	22.0 dBm	22.0 dBm	17.8 dBm	
Closed	Without headset	0.095	0.032	0.031	
	Headset AD-36	0.107	0.033	0.030	

Combined 1900MHz and WLAN2450, Body SAR results

	Test	М	ax. 1g SAR resul	Sum of 1g SAR values	
Slide	Configuration	GSM1900	2-slot GPRS1900	WLAN2450	GSM/GPRS1900 + WLAN2450
			GFK31300		WLANZ430
Closed	Without headset	0.485	-	0.095	0.580
	With headset	-	0.407	0.107	0.514

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date/Time: 2005-10-10 21:41:08 Test Laboratory: TCC Nokia

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d026, Program Name: System Check

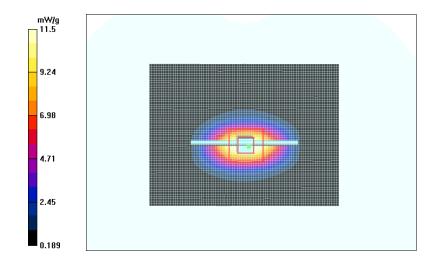
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.4 mho/m; ε_r = 38.2; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1396; ConvF(5.25, 5.25, 5.25); Calibrated: 20.01.2005


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn388; Calibrated: 07.01.2005
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

d=15mm, Pin=250mW, t=20.9 C/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.2 mW/g

d=15mm, Pin=250mW, t=20.9 C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.0 V/m; Power Drift = 0.047 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.33 mW/gMaximum value of SAR (measured) = 11.5 mW/g

Date/Time: 2005-10-11 08:30:05 Test Laboratory: TCC Nokia

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d026, Program Name: System Check

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1396; ConvF(5.25, 5.25, 5.25); Calibrated: 20.01.2005

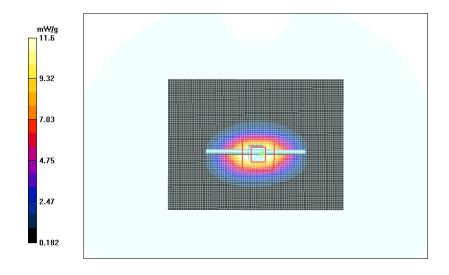
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn388; Calibrated: 07.01.2005

- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP - 1177

- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

d=15mm, Pin=250mW, t=21.8 C/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.5 mW/g


d=15mm, Pin=250mW, t=21.8 C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.5 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.45 mW/g

Maximum value of SAR (measured) = 11.6 mW/g

D / /T' 2005 10 12 15 00 40

Date/Time: 2005-10-12 16:09:40 Test Laboratory: TCC Nokia

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d026, Program Name: System Check

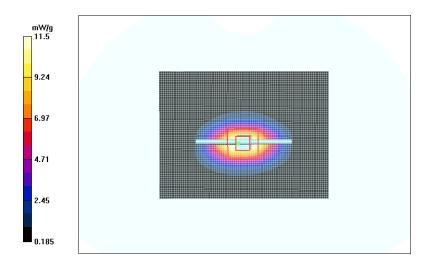
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.39 mho/m; ϵ_r = 38.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1396; ConvF(5.25, 5.25, 5.25); Calibrated: 20.01.2005


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn388; Calibrated: 07.01.2005
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

d=15mm, Pin=247mW, t=21.8 C/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.2 mW/g

d=15mm, Pin=247mW, t=21.8 C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.2 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.36 mW/g Maximum value of SAR (measured) = 11.5 mW/g

Date/Time: 2005-10-21 09:20:52

Test Laboratory: TCC Nokia

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:749, Program Name: System Check

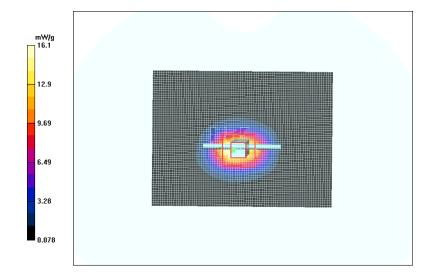
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ mho/m}$; $\epsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1396; ConvF(4.59, 4.59, 4.59); Calibrated: 20.01.2005


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn388; Calibrated: 07.01.2005
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

d=15mm, Pin=250mW, t=21.8 C/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 18.1 mW/g

d=15mm, Pin=250mW, t=21.8 C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.2 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.59 mW/g Maximum value of SAR (measured) = 16.1 mW/g

D . /T' 2005 10 24 00 50 00

Date/Time: 2005-10-24 09:50:09 Test Laboratory: TCC Nokia

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:749, Program Name: System Check

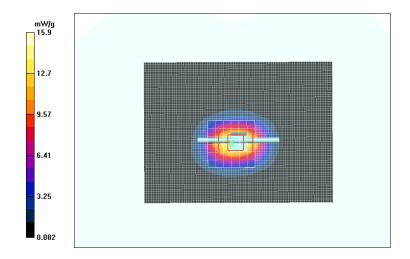
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1396; ConvF(4.59, 4.59, 4.59); Calibrated: 20.01.2005


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn388; Calibrated: 07.01.2005
- Phantom: SAM 2; Type: Twin SAM 040 CA; Serial: TP 1177
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

d=15mm, Pin=247mW, t=21.9 C/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.8 mW/g

d=15mm, Pin=247mW, t=21.9 C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.6 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 14.3 mW/g; SAR(10 g) = 6.63 mW/gMaximum value of SAR (measured) = 15.9 mW/g

Date/Time: 2005-10-12 08:38:41 Test Laboratory: TCC Nokia

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d026, Program Name: System Check

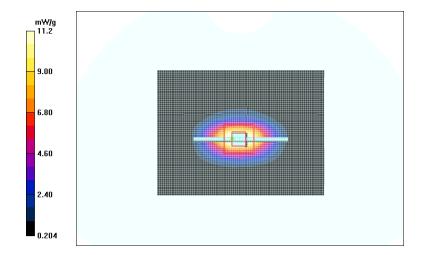
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.53 mho/m; ϵ_r = 53.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1396; ConvF(4.64, 4.64, 4.64); Calibrated: 20.01.2005


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn388; Calibrated: 07.01.2005
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1179
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

d=15mm, Pin=250mW, t=20.8 C/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.0 mW/g

d=15mm, Pin=250mW, t=20.8 C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.1 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.95 mW/g; SAR(10 g) = 5.3 mW/g Maximum value of SAR (measured) = 11.2 mW/g

Data /Time 2005 10 25 00 10 42

Date/Time: 2005-10-25 09:18:42 Test Laboratory: TCC Nokia

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:749, Program Name: System Check

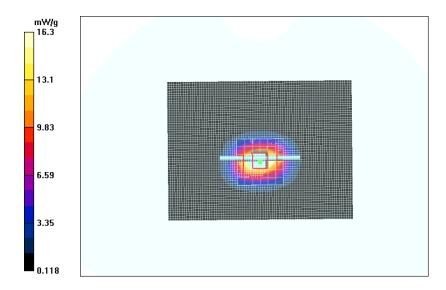
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\epsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1396; ConvF(4.18, 4.18, 4.18); Calibrated: 20.01.2005


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn388; Calibrated: 07.01.2005
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1179
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

d=15mm, Pin=251mW, t=22.0 C/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.2 mW/g

d=15mm, Pin=251mW, t=22.0 C/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.4 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 14.4 mW/g; SAR(10 g) = 6.67 mW/gMaximum value of SAR (measured) = 16.3 mW/g

