13005099

TÜV Rheinland Group

FCC Part 15 TEST REPORT

TÜV Rheinland Group

October 21, 2005
TUV Rheinland Korea Ltd.

Revision No: 1.1 Page: 1 of 48

REPROT NO:

13005099

TÜV Rheinland Group

TEST REPROT CERTIFICATION

Applicant : INFOHAND Co., Ltd

Adderss : #1207 Kranz-Techno bldg., 5442-1, Sangdaewon-dong,

Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea

EUT Name : Wireless Headset

Model No. : IBMH-A100

Serial No. : Engineering Sample

FCCID : QE6IBMH-A100

Testing location : LG Innotek Co.,Ltd.

133, Gongdan-dong, Gumi-City, Gyeongbuk 730-703, R.O.K

Applied : FCC Part 15

specification

Test result : The above mentioned test item passed.

Tested by: Gye-Woog Lee Reviewed by: Uon-Chae Song

October 21,2005 October 21,2005

Date Signature Date Signature

I HEREBY CERTIFY THAT the data shown in this report were made in accordance with the procedures given in the applied specification and I assume full responsibility for accuracy and completeness of these data.

Note: This test report relates to the a. m. test item. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark on this or similar products.

Revision No: 1.1 Page: 2 of 48

REPROT NO:

13005099

Contents

1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION	5
1.2 Project data	5
1.3 APPLICANT	5
1.4 MANUFACTURER	5
2. EUT INFORMATION	6
2.1 GENERAL EUT INFORMATION	6
2.2 CENTER FREQUENCY OF TESTED CHANNEL	6
2.3 TEST ENVIRONMENT	6
2.4 ACCESSORIES AND ANCILLARY EQUIPMENT	6
3. TESTING FACILITIES	7
4. EUT DESCRIPTION AND OPERATIONAL DESCRIPTION	7
5. Test Set-up	8
5.1 PRINCIPLE OF CONFIGURATION	8
5.2 OPERATIONAL MODES	8
5.3 APPLIED SPECIFICATION	8
6. TEST REPORT SUMMARY	g
7. TEST RESULTS	10
7.1 ANTENNA CONNECTOR REQUIREMENTS	10
7.2 AC CONNECTED EMISSION	11
7.3 CARRIER FREQUENCY SEPARATION	12
7.4 TIME OF OCCUPANCY(DWELL TIME)	14
7.5 20dB Bandwidth	16
7.6 NUMBER OF HOPPING FREQUENCIES REQUIREMENTS	20
7.7 PSEUDORANDOM FHS AND EQUAL HOPPING FREQUENCY USE REQUIREMENTS	22
7.8 RECEIVER INPUT BANDWIDTH REQUIREMENTS	23

REPROT NO:

13005099

TÜV Rheinland Group

7.9 PEAK OUTPUT POWER	24
7.10 BAND-EDGE COMPLIANCE	28
7.11 Spurious Conducted emissions	32
7.12 Spurious Radiated emissions	43
8. LIST OF TEST AND MEASUREMENT INSTRUMENTS	46
9. COMPLEMENTARY MATERIALS	48
9.1 ID LABEL AND LOCATION INFORMATION	48
9.2 OPERATIONAL DESCRIPTION	48
9.3 TEST SETUP PHOTOS	48
9.4 Internal Photos	48
9.5 EXTERNAL PHOTOS	48
9.6 User Manual	48
9.7 TECHNICAL DOCUMENTS	48

REPROT NO:

13005099

TÜV Rheinland Group

1. General Information

1.1 Product Description

Product Name : Wireless Headset

Product ID : IBMH-A100 Serial No. : Prototype

FCC ID : QE6IBMH-A100

1.2 Project data

Receipt of EUT : October 17, 2005

Date of Test : October 20, 2005

Data of report : October 21, 2005

1.3 Applicant

Company Name : INFOHAND Co., Ltd

Address : #1207 Kranz-Techno bldg., 5442-1, Sangdaewon-dong,

Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea

Contact Person : Mr. Kyu Don, Lee

1.4 Manufacturer

Company Name : INFOHAND Co., Ltd

Address : #1207 Kranz-Techno bldg., 5442-1, Sangdaewon-dong,

Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea

Contact Person : Mr. Kyu Don, Lee

Revision No: 1.1 Page: 5 of 48

REPROT NO:

13005099

TÜV Rheinland Group

2. EUT Information

2.1 General EUT Information

Туре	Transmitter	Receiver	
FCC Classification	FHSS Sequence Spread	FHSS Sequence Spread	
	Spectrum (FHSS)	Spectrum (FHSS)	
Operating frequency range	2402 – 2480 MHz	2402 – 2480 MHz	
Bands of operation	2.400 - 2.4835 GHz	2.400 – 2.4835 GHz	
Number of Channels	79	79	
Channel Separation	1MHz	1MHz	
Type of Antenna	Chip Antenna	Chip Antenna	
Power Supply	DC 3.7 V Lithum Polymer DC 3.7 V Lithum Polym		
	Battery	Battery	

2.2 Center Frequency of Tested Channel

Frequency	Tx (MHz)	Rx (MHz)
Lowest	2402	2402
Middle	2441	2441
Highest	2480	2480

2.3 Test Environment

Temperature	25°C	
Relative Humidity	30 ~ 60%	
Voltage	DC 3.7V	

2.4 Accessories and Ancillary Equipment

Equipment	Model No.	Serial Number	Maker
Laptop PC	PS428L-OE142	30014068J	Toshiba

Revision No: 1.1 Page: 6 of 48

REPROT NO:

13005099

TÜV Rheinland Group

3. Testing Facilities

LG Innotek Co.,Ltd.

133, Gongdan-dong, Gumi-City, Gyeongbuk 730-703, R.O.K.

4. EUT Description and Operational Description

The new Infohand wireless mono headset, IBMH-A100, with Bluetooth v1.2 technology, gives you the wireless experience you have been waiting for. To overcome the drawbacks of the common Bluetooth mono headsets, i.e. difficulty to wear, dangerous to wear while driving, pain on ear area because of being worn for a long time, uncomfortable when carried in a pocket, etc., it is designed thin, slim, and light, with a foldable microphone, as well as, with moving and rolling earphone. It is very comfort to carry in a pocket on a shirt, quick and easy to wear on ears, and it is painless on the ear area even for a long time wearing. The rolling earphone enable you use on bath the left and right ear. Only one experience wearing of the IBMH-A100 gives you great satisfaction. The wireless RF, the Bluetooth, and audio technology of Infohand guarantees noise free, gapless, best quality audio communication, compatibility for all Bluetooth cellular phone, and long wireless operational range.

The convenient rechargeable battery design gives you up to 8 hours of talk time with each charge.

The 100 hours of stand-by time frees you from the everyday recharge.

* Features

- Bluetooth v1.2 or higher compliant
- Operate wirelessly up to 10 meter
- Rechargeable battery provides up to 8 hours of battery life in single charge
- Noise canceling microphone
- High quality voice sound
- Futuristic, stylish, slim, and thin design
- Quick and easy to wear and carry
- Comport and painless to wear
- Full functional 3 button control (Talk/Power/Registration, Volume up and down)
- Online LED indicator
- sleep mode control for power saving

Revision No: 1.1 Page: 7 of 48

REPROT NO:

13005099

TÜV Rheinland Group

* Functional Description

- Basic Functions
- Making a call
- Last number redial
- Answering a call
- Transferring the call to the Bluetooth headset
- Ending a call
- Adjusting the volume with mute feature
- Additional Functions
- Making a voice dial call
- Call rejection
- Call transfer (Bluetooth headset to Bluetooth phone)
- Call waiting and toggling

5. Test Set-up

5.1 Principle of configuration

Conducted: The equipment under test (EUT) was configured with a temporary SMA Connector and EUT transmits the related packet type with PRBS 9 as payload.

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes and test settings were adapted accordingly in reference to the instructions for use.

For details, please refer to the Operation mode in chapter 7.

5.2 Operational Modes

Page Scan,

Inquiry Scan

Hopping Mode

Fixed mode (2402Mhz, 2441Mhz and 2480Mhz)

5.3 Applied Specification

FCC Part 15

Revision No: 1.1 Page: 8 of 48

REPROT NO:

13005099

TÜV Rheinland Group

6. Test Report Summary

Related	Test Cases	FCC Part	Result
Clause		Sections	(Note1)
7.1	Antenna Connector Requirements	15.203	С
		15.204	
7.2	AC Connected Emission	15.207	N/A
7.3	Carrier Frequency Separation	15.247	Pass
7.4	Time of Occupancy(Dwell time)	15.247	Pass
7.5	20dB Bandwidth	15.247	Pass
7.6	Number of Hopping Frequencies	15.247	С
	Requirements		
7.7	Pseudorandom Frequency Hopping	15.247	С
	Sequence and Equal Hopping		
	Frequency use Requirements		
7.8	Receiver Input Bandwidth	15.247	С
	Requirements		
7.9	Peak Output Power	15.247	Pass
7.10	Band-edge Compliance	15.247	Pass
7.11	Spurious Conducted emissions	15.247	Pass
7.12	Spurious Radiated emissions	15.247	Pass

^{*} Note1: C: Complies, Pass: Passed, Fail : Failed and NA : Not Applicable

Revision No: 1.1 Page: 9 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7. Test Results

7.1 Antenna Connector Requirements

Requirements

Subclause 15.203 and 15.204(c)

According to the Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. And according to the Part 15.204(c), only the antenna with which an intentional radiator is authorized may be used with the intentional radiator.

Test results

RESULT: Complies

The antenna is permanently attached on the PCB.

The EUT has a Chip Antenna soldered to the circuit board.

For more information on the antenna:

Antenna gain : 0 dBi

Manufacturer : KOSAN I & T Co., Ltd.

Model No. : KBI-115F-206

Type : Surface Chip Antenna

Revision No: 1.1 Page: 10 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.2 AC Connected Emission

Test Mode and conditions

The power is supplied by a DC 3.7 V Li-ion Polymer and it does not operate during the charging.

Requirements

Subclause15.207(a)

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \, \mu H/50$ ohms line impedance stabilization network (LISN).

Frequency of Emission (M	Conducted Limit (dBµV)		
Hz)	Quasi-peak Average		
0.15-0.5	66-56*	56-46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

Test results

N/A

Revision No: 1.1 Page: 11 of 48

^{*} It is designed not to operate during the charging.

REPROT NO:

13005099

TÜV Rheinland Group

7.3 Carrier Frequency Separation

Test Mode and conditions

Mode of operation : Tx mode (hopping on), DH1 packet with PRBS9 payload

Measurement Method: Conducted

Detector : PK

Trace : Max hold

RBW/VBW : 100kHz/300kHz

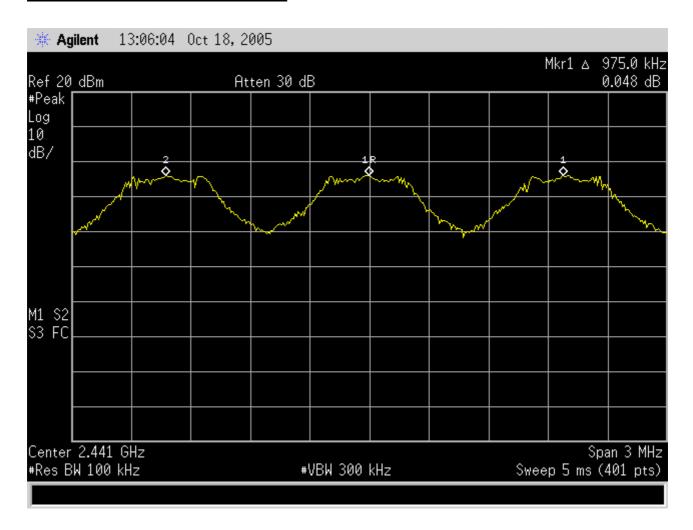
Requirements

Subclause 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Test results

Reference frequency	Channel Separation	Limit	Results
(MHz)	(kHz)		
2441.000	975	Minimum of 25kHz or	Pass
		the 20dB bandwidth	


Revision No: 1.1 Page: 12 of 48

13005099

TÜV Rheinland Group

Carrier Frequency Separation Plot

Revision No: 1.1 Page: 13 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.4 Time of Occupancy(Dwell time)

Test Mode and conditions

Mode of operation : Hopping on , DH5 packet with PRBS9 payload

Measurement Method: Conducted

Detector : PK

Trace : Max hold

RBW/VBW : 1MHz/300kHz

Requirements

Subclause 15.247(a)(1)(iii)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 75 hopping frequencies. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

Test results

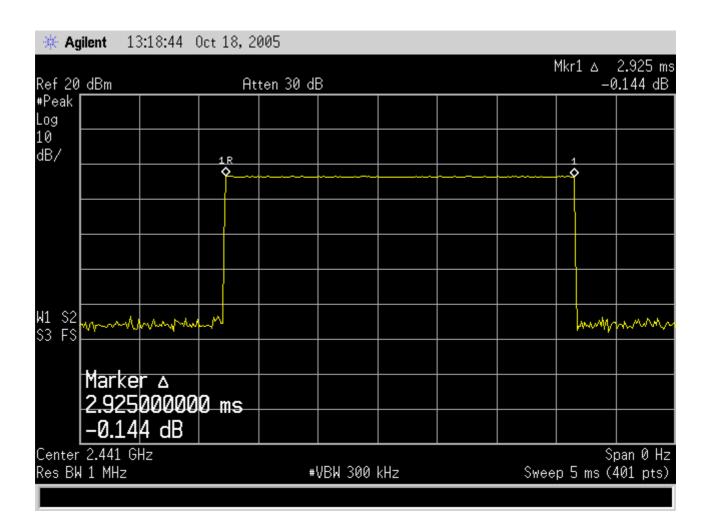
The system makes 1600 hops per second or has a length of 625us.

Let take DH5 packet in worst case. A DH5 packet has 5 slots for transmitting and 1 slot for receiving. It means it can have maximum 266.67 (=1600/6) hops per second.

Therefore it has 3.38 hops(=266.67/79) per second for each channel.

And it has 106.81hops appearance for 31.6 seconds (= 0.4x79channels).

Length per	Number slots	Dwell Time	Limit	Results
slot(L)	(N)	(=L*N)		
2.925 ms	106.81	312.41925 ms	0.4 seconds	Pass


Revision No: 1.1 Page: 14 of 48

13005099

TÜV Rheinland Group

Time of Occupancy Plot

Revision No: 1.1 Page: 15 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.5 20dB Bandwidth

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz),

DH5 packet with PRBS9 payload

Measurement Method: Conducted

Detector : PK

Trace : Max hold

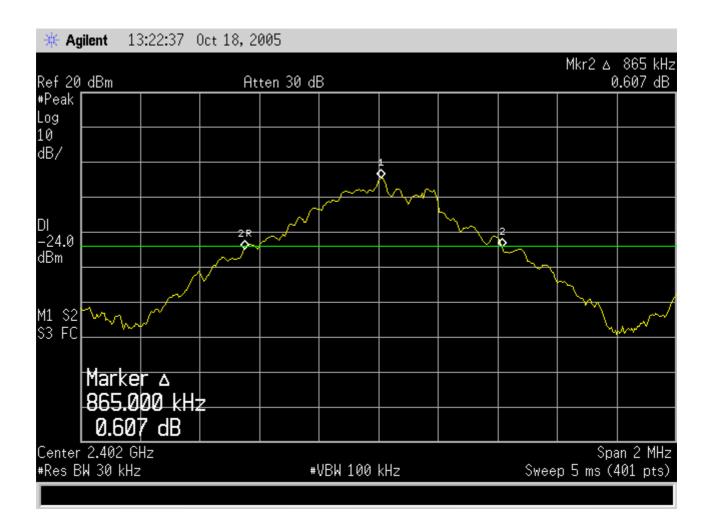
RBW/VBW : 30kHz/100kHz

Requirements Subclause 15.247(a)(1)

It is mentioned implicitly as the maximum 20dB bandwidth of the hopping channel is 1Mhz.

Test results

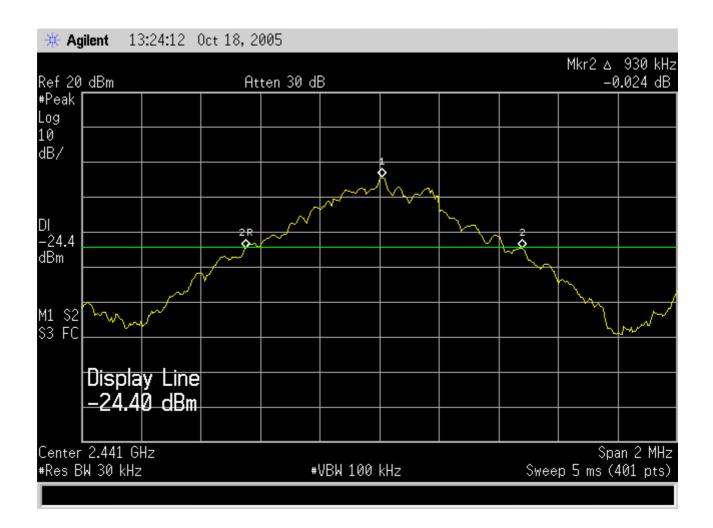
Operating frequency (MHz)	20dB Bandwidth (MHz)	Limit	Results
2402	0.865	< 1 Mhz	Pass
2441	0.930	< 1 Mhz	Pass
2480	0.925	< 1 Mhz	Pass


Revision No: 1.1 Page: 16 of 48

13005099

TÜV Rheinland Group

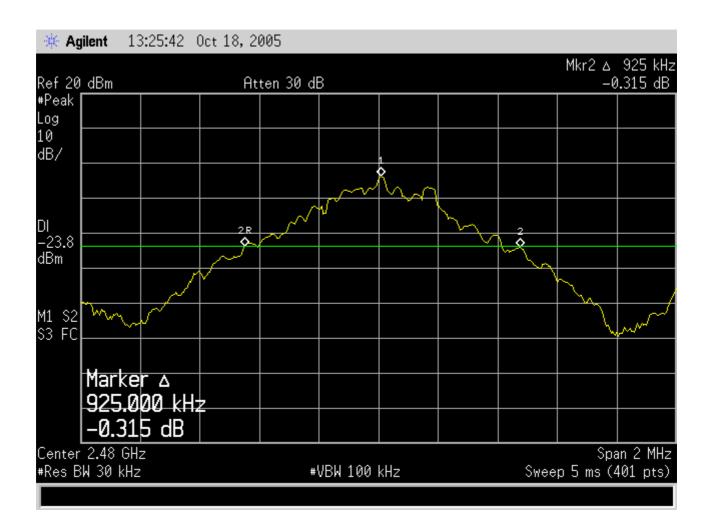
20dB Bandwidth Plot - 2402Mhz


Revision No: 1.1 Page: 17 of 48

13005099

TÜV Rheinland Group

20dB Bandwidth Plot - 2441Mhz


Revision No: 1.1 Page: 18 of 48

13005099

TÜV Rheinland Group

20dB Bandwidth Plot - 2480Mhz

Revision No: 1.1 Page: 19 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.6 Number of Hopping Frequencies Requirements

Test Mode and conditions

Mode of operation : Hopping, DH1 with PRBS9 payload

Measurement Method: Conducted

Detector : PK

Trace : Max hold

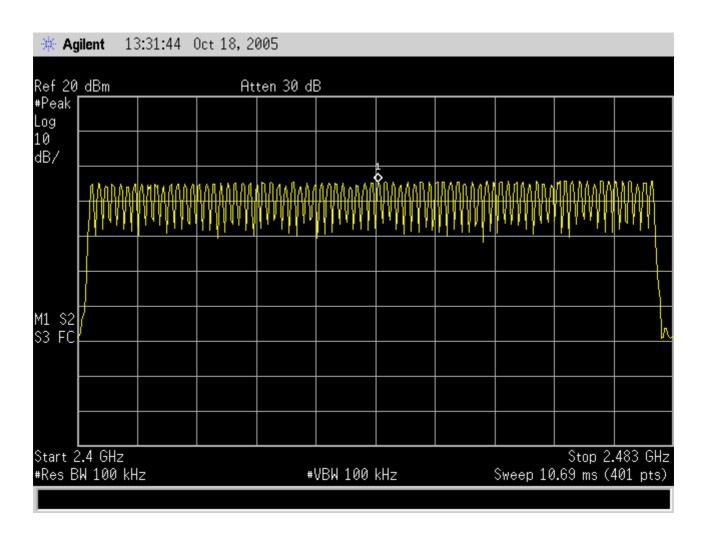
RBW/VBW : 100kHz/100kHz

Requirements 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 Mhz band shall use at least 15 non-overlapping Channels.

Test results

Operating frequency (MHz)	Number of Hopping	Limit	Results
2402~2480	79	≥ 15	Pass


Revision No: 1.1 Page: 20 of 48

13005099

TÜV Rheinland Group

Number of Hopping Frequencies Plot

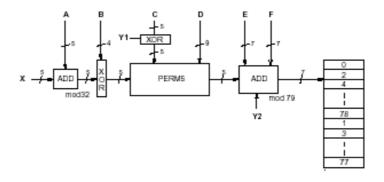
Revision No: 1.1 Page: 21 of 48

13005099

TÜV Rheinland Group

7.7 Pseudorandom FHS and Equal Hopping Frequency use Requirements

Requirements


Subclause 15.247 (a)(1)

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter.

<u>RESULT</u> Complies

The channel is represented by a pseudo-random hopping sequence hopping throug h the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master. For details, refer to the figure 1. The X input determines the phase in the 32-hop segment, whereas Y1 and Y2 selects between master-to-slave and slave-to-master transmission. The inputs A to D determine the ordering within the segment, the inputs E and F determine the mapping onto thehop frequencies.

The algorism in the Bluetooth specifications shows the each of its hoping channels Is used equally on average also.

< Figure 1 : Block diagram of hop selection kernel for 79 hop system >

Revision No: 1.1 Page: 22 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.8 Receiver Input Bandwidth Requirements

Requirements

Subclause 15.247 (a)(1)

The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in the synchronization with the transmitted signals.

<u>RESULT</u> Complies

The receiver bandwidth is equal to the receiver bandwidth in the 79 hopping channel mode, which is 1 MHz. The receiver bandwidth is indirectly verified during Bluetooth RF conformance testing.

Revision No: 1.1 Page: 23 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.9 Peak Output Power

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz),

DH1 packet with PRBS 9 payload

Measurement Method: Conducted

Detector : PK

Trace : Max hold RBW/VBW : 1MHz/3MHz

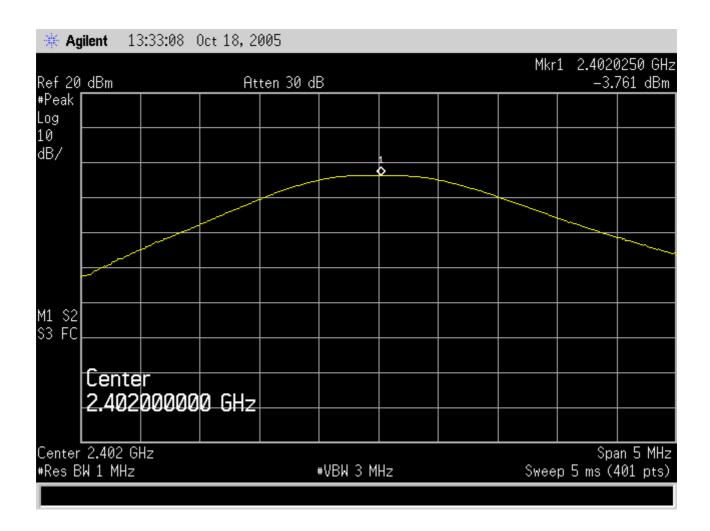
Requirements

Subclause 15.247(b)(1)

For frequency hopping systems operating in the 2400~2483.5 Mhz band employing at least 75hopping channels, the maximum output power of the intentional radiator shall not exceeded 1 watt.

Test results

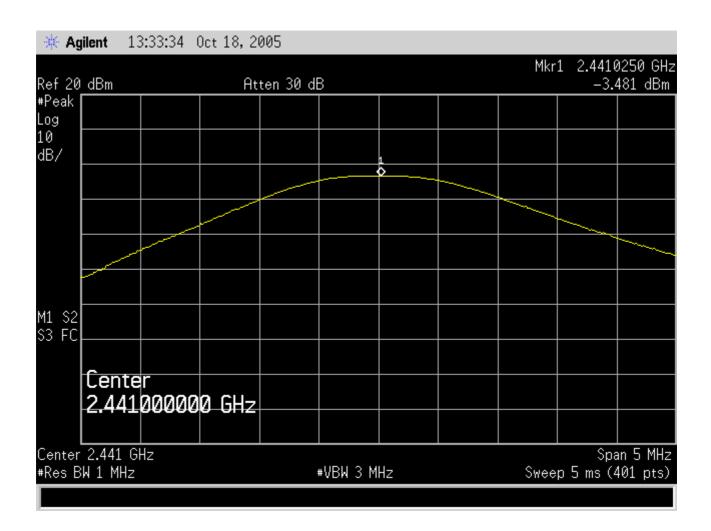
Operating	Reading	Cable	Actual	Limit	Results
Frequency	(dBm)	attenuation	Value	(W)	
(MHz)		(dB)	(W)		
2402	-3.761	1.80	0.000636649	<1.0	Pass
2441	-3.481	1.83	0.000683800	<1.0	Pass
2480	-3.059	1.85	0.000757007	<1.0	Pass


Revision No: 1.1 Page: 24 of 48

13005099

TÜV Rheinland Group

Peak Output Power Plot - 2402

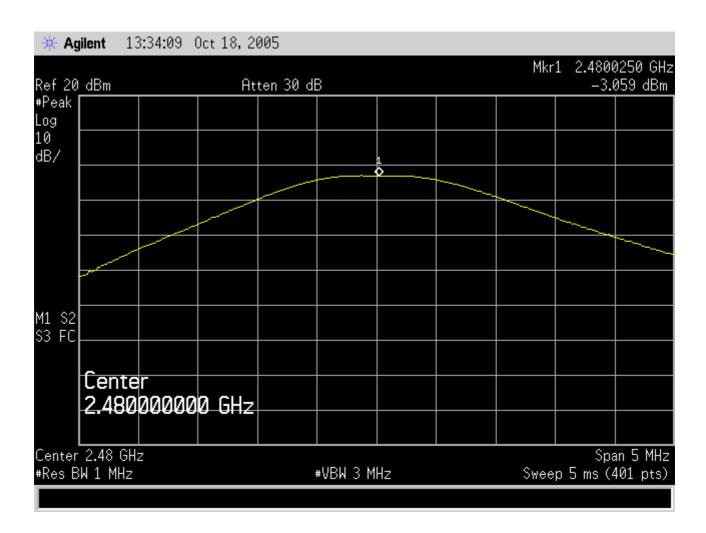

Revision No: 1.1 Page: 25 of 48

13005099

ΤÜV

TÜV Rheinland Group

Peak Output Power Plot - 2441


Revision No: 1.1 Page: 26 of 48

13005099

TÜV Rheinland Group

Peak Output Power Plot - 2480

Revision No: 1.1 Page: 27 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.10 Band-edge Compliance

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz), DH1 packet

Measurement Method: Conducted

Detector : PK

Trace : Max hold

RBW/VBW : 300kHz/1.0MHz

Requirements

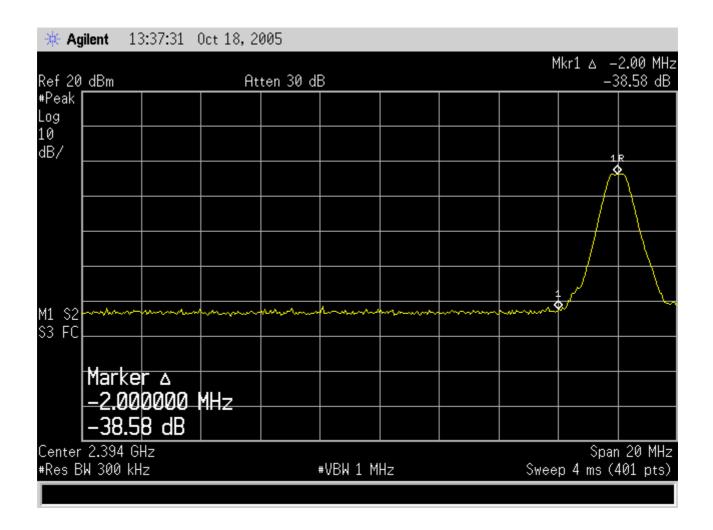
Subclause 15.247(c)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100k Hz bandwidth within the band that contains the highest level of the desired power, b ased on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Test results

There is no peak found outside any 100kHz bandwidth of the operating frequency band in the three transmit frequency.

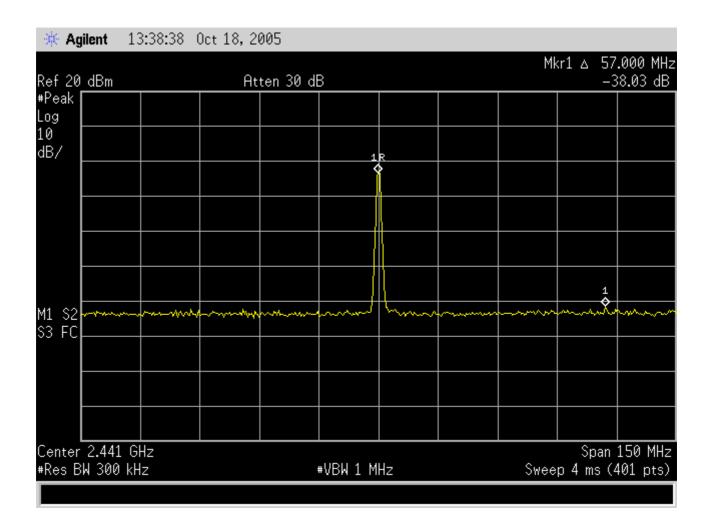
Tx Frequency (MHz)	RF power outside 100kHz BW (MHz)	Limit	Results
2402	No peak above 20dB	20dB below	Pass
2441	No peak above 20dB	20dB below	Pass
2480	No peak above 20dB	20dB below	Pass


Revision No: 1.1 Page: 28 of 48

13005099

TÜV Rheinland Group

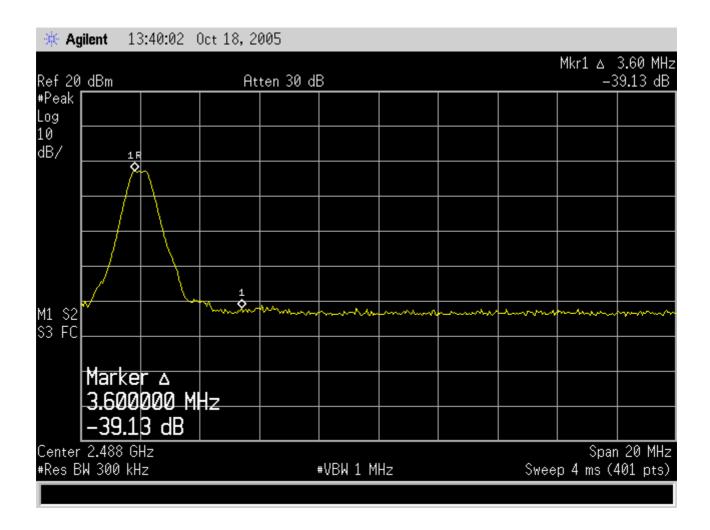
Band-edge Compliance Plot - 2402


Revision No: 1.1 Page: 29 of 48

13005099

TÜV Rheinland Group

Band-edge Compliance Plot - 2441


Revision No: 1.1 Page: 30 of 48

13005099

TÜV Rheinland Group

Band-edge Compliance Plot - 2480

Revision No: 1.1 Page: 31 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.11 Spurious Conducted emissions

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz), DH1 packet

Measurement Method: Conducted

Detector : PK

Trace : Max hold

RBW/VBW : 100kHz/300kHz

Requirements Subclause 15.247(c)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100k Hz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Test results

Tool Toodito						
Frequency (MHz)	Reading Value (dBm)	Correction Factor (dB)	Results (dBm)	Reference Value (dBm)	Delta to Reference (dB)	
Operating frequency : 2402MHz						
9576	-45.22	3.4	-41.82	-23.762	18.058	
13525	-43.91	6.0	-37.91	-23.762	14.148	
24650	-42.61	6.7	-35.91	-23.762	12.148	

Revision No: 1.1 Page: 32 of 48

REPROT NO:

13005099

TÜV

TÜV Rheinland Group

Frequency (MHz)	Reading Value (dBm)	Correction Factor (dB)	Results (dBm)	Reference Value (dBm)	Delta to Reference (dB)	
	Operating frequency : 2441MHz					
7283	-45.57	3.4	-42.17	-23.481	18.69	
13700	-43.84	6.0	-37.84	-23.481	14.359	
24637.5	-42.66	6.7	-35.96	-23.481	12.479	

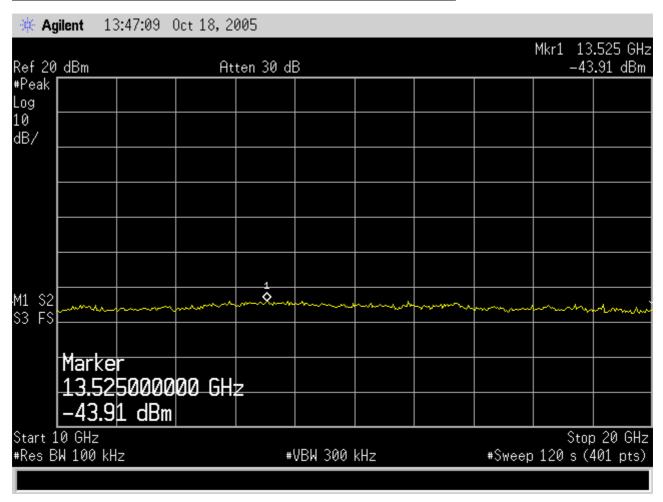
Frequency (MHz)	Reading Value (dBm)	Correction Factor (dB)	Results (dBm)	Reference Value (dBm)	Delta to Reference (dB)
Operating frequency : 2480MHz					
7807	-44.92	3.4	-41.52	-23.059	18.461
13425	-43.95	6.0	-37.95	-23.059	14.891
24650	-42.6	6.7	-35.9	-23.059	12.841

Revision No : 1.1 Page: 33 of 48

13005099

TÜV Rheinland Group

Spurious Conducted emissions plot- 2402 (30MHz~10GHz)


Revision No: 1.1 Page: 34 of 48

13005099

TÜV Rheinland Group

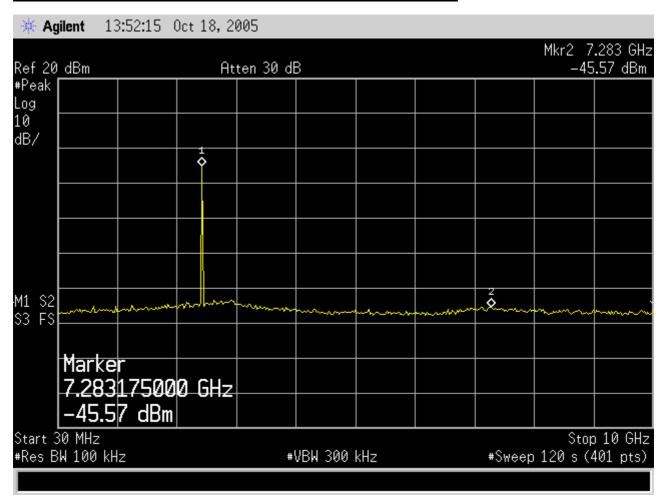
Spurious Conducted emissions plot- 2402 (10GHz~20GHz)

Revision No: 1.1 Page: 35 of 48

13005099

TÜV Rheinland Group

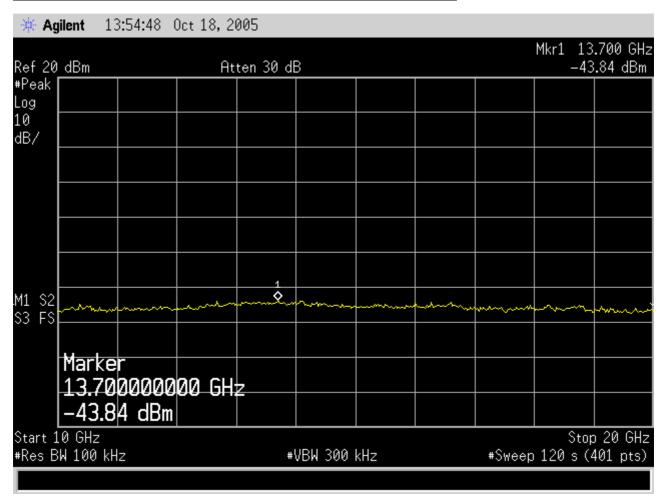
Spurious Conducted emissions plot- 2402 (20GHz~25GHz)


Revision No: 1.1 Page: 36 of 48

13005099

TÜV Rheinland Group

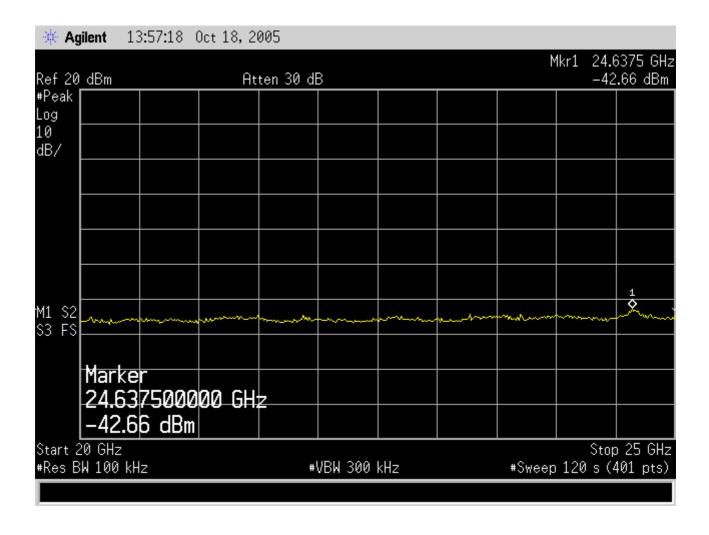
Spurious Conducted emissions plot- 2441 (30MHz~10GHz)


Revision No: 1.1 Page: 37 of 48

13005099

TÜV Rheinland Group

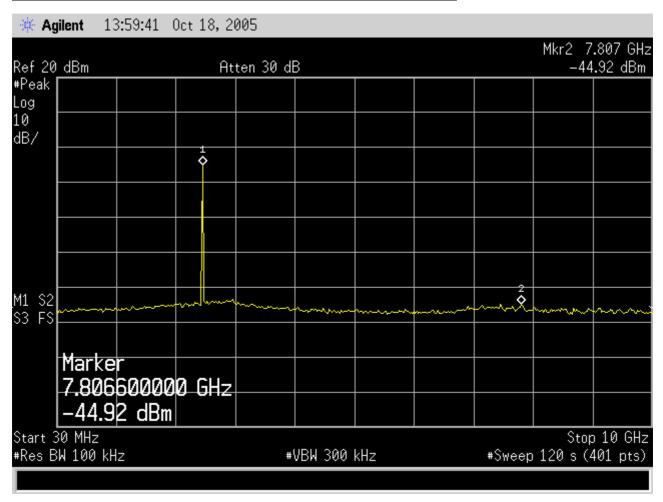
Spurious Conducted emissions plot- 2441 (10GHz~20GHz)


Revision No: 1.1 Page: 38 of 48

13005099

TÜV Rheinland Group

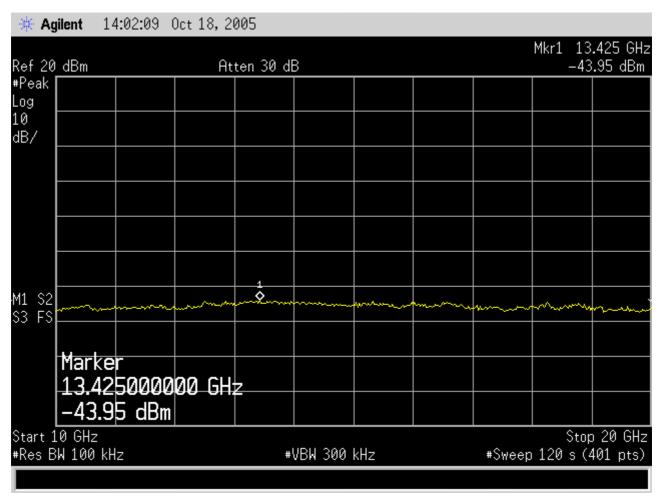
Spurious Conducted emissions plot- 2441 (20GHz~25GHz)


Revision No: 1.1 Page: 39 of 48

13005099

TÜV Rheinland Group

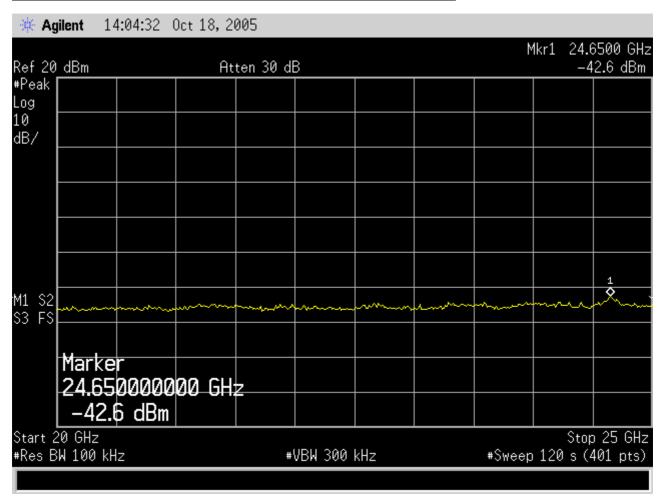
Spurious Conducted emissions plot- 2480 (30MHz~10GHz)


Revision No: 1.1 Page: 40 of 48

13005099

TÜV Rheinland Group

Spurious Conducted emissions plot- 2480 (10GHz~20GHz)


Revision No: 1.1 Page: 41 of 48

13005099

TÜV Rheinland Group

Spurious Conducted emissions plot- 2480 (20GHz~25GHz)

Revision No: 1.1 Page: 42 of 48

REPROT NO:

13005099

TÜV Rheinland Group

7.12 Spurious Radiated emissions

Test Mode and conditions

Mode of operation : Tx mode (2402MHz, 2441MHz, 2480MHz),

DH1 packet

Detector : PK

Trace : Max hold

Measurement Method : Radiated- Enclosure

Measurement Distance: 3m

Measurement BW : 1 MHz for $f \ge 1$ GHz, 100kHz for f < 1 GHz

Requirements Subclause 15.247(c)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to Section 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field strength (microvolts/meter)	Field strength	Measurement
(MHz)		(dBμV/m)	distance
			(meters)
30-88	100**	$20*\log(100) = 40.0$	3
88-216	150**	$20*\log(150) = 43.5$	3
216-960	200	$20*\log(200) = 46.0$	3
960-2500	500	$20*\log(500) = 54.0$	3

^{**} Except as provided in paragraph(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72Mhz, 76-88Mhz, 174-216Mhz or 470-806Mhz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241. According to section 15.35(b), on any frequency or frequencies above 1000 MHz the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurements are specified in this part, including emission measurements below

Revision No: 1.1 Page: 43 of 48

REPROT NO:

13005099

TÜV Rheinland Group

1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit for the frequency being investigated

Test results

Frequ-	Polariz-	Corr.	Re	sult	Lir	nit	Mai	rgin	Table	Ant.
ency	ation	Factor	(dBu	V/m)	(dBuV	/m)	(d	B)	Angle	Height
(MHz)	(H/V)	(dB)	Α	Р	Α	Р	Α	Р	(Deg.)	(m)
	Operating frequency: 2402Mhz									
1601	V	1.2	28.9	44.7	54	74	25.1	29.3	90	240
4800	V	10.8	30.8	46.5	54	74	23.2	27.5	90	240
4775	Н	10.8	31.1	46.7	54	74	22.9	27.3	195	255

Revision No: 1.1 Page: 44 of 48

REPROT NO:

13005099

TÜV Rheinland Group

Frequ-	Polariz-	Corr.	Re	sult	Lir	nit	Mai	rgin	Table	Ant.
ency	ation	Factor	(dBu	V/m)	(dBuV	/m)	(d	B)	Angle	Height
(MHz)	(H/V)	(dB)	А	Р	А	Р	Α	Р	(Deg.)	(m)
	Operating frequency: 2441Mhz									
1192	V	-1.8	28.7	44.9	54	74	25.3	29.1	90	240
1625	V	1.2	29.5	45.8	54	74	24.5	28.2	90	240
4872	V	17.1	33.7	49.4	54	74	20.3	24.6	90	240
1192	Н	-1.8	29.8	46.2	54	74	24.2	27.8	195	255

Frequ-	Polariz-	Corr.	Re	sult	Lir	nit	Mai	rgin	Table	Ant.
ency	ation	Factor	(dBu	V/m)	(dBuV	/m)	(d	B)	Angle	Height
(MHz)	(H/V)	(dB)	Α	Р	Α	Р	Α	Р	(Deg.)	(m)
		(Dperati	ng fred	quency	: 248	0Mhz			
1649	V	1.3	28.5	44.8	54	74	25.5	29.2	90	240
4944	V	16.5	37.9	53.5	54	74	16.1	20.5	90	240
4944	Н	16.5	32.8	48.5	54	74	21.2	25.5	195	255

Note:

- 1. Remark "*" means that the emission frequency is produced by local oscillator.
- 2. Remark" -- " means that the emission level is too low to be measured.
- 3. The measurement uncertainty of the radiated emission test is $\pm 3 dB$
- 4. "A" and "P" mean average and peak measurement respectively.
- 5. There are no spurious emissions found between the lowest internal oscillating frequency and 30 MHz.

Revision No: 1.1 Page: 45 of 48

13005099

TÜV Rheinland Group

8. List of Test and Measurement Instruments

	Kind of Equipment	Туре	Manufacturer	S/N	
\boxtimes	EMI Test Receiver	ESMI	R/S	1032.5510.53	
\boxtimes	Spectrum Analyzer	FSP30	R/S	1093.4495.30	
	Tracking Generator	ESMI-B1	R/S	1033.3240.52	
	Spectrum Analyzer	8566B	HP	3638A0857E	
\boxtimes	Spectrum Analyzer	E4407B	HP	MY41310181	
	Wave Dipole Antenn a	HZ-12	R/S	842006/0012	
	Wave Dipole Antenn a	HZ-12	R/S	846556/0004	
	Biconical Antenna	3104C	EMCO	9408-4667	
	Biconical Antenna	3109	EMCO	9405-2812	
	Log-Periodic Antenna	3146A	EMCO	1064	
	Biconilog Antenna	3142	EMCO	9710-1220	
	V-Network	ESH3-Z5	R/S	847265/030	
	V-Network	ESH3-Z6	R/S	847250/016	
	T-Network	E-Z10	R/S	84480/011	
	LISN	6338-5-PJ-50-N	Solar	953938/95393 9	
\boxtimes	Turn Table	2081	EMCO		
\boxtimes	Antenna Tower	2075	EMCO		
	Multi Device Controll er	2090	EMCO	9708-1255	
	Printer	C4569A	HP	SG78K1H1FS	
	Absorbing Clamp	MDS 21	R/S	847905/005	
	Signal Generator	2023	MARCONI	112246067	
	Swept Signal Genera tor	83620B	HP	3722A00549	
	10dB Attenuator	23-10-34	Weinschel co	BD4316	
	10dB Attenuator	33-10-34	Weinschel co	BB9784	
\boxtimes	Antenna	3142	EMCO	9710-1220	
	Antenna	3115	EMCO	9511-4612	

Revision No: 1.1 Page: 46 of 48

REPROT NO:

13005099

ÜV m

TÜV Rheinland Group

	Antenna	3160-08	EMCO	1168
	Antenna	3160-09	EMCO	1304
	Amplifier	HP8447F	HP	3113A06911
	Amplifier	HP83006	HP	3104A00611
\boxtimes	Amplifier	HP8449B	HP	3008A00859
	EMI test receiver	ESCS30	R&S	839809/003
	Artificial mains netwo	ESH2-Z5	R&S	829991/009
	rk			
	Artificial hand	FCC-AH-1	Fischer custo	2008
			m communicat	
			ions Inc.	

Revision No: 1.1 Page: 47 of 48

REPROT NO:

13005099

TÜV Rheinland Group

- 9. Complementary Materials
- 9.1 ID Label and Location Information
- 9.2 Operational Description
- 9.3 Test Setup Photos
- 9.4 Internal Photos
- 9.5 External Photos
- 9.6 User Manual
- 9.7 Technical Documents
 - Schematics
 - Block Diagram
 - Bill of Materials

Revision No: 1.1 Page: 48 of 48