

Amadeus Tune Up Procedures

Copyright Statement

Copyright 2002 by Chi Mei Communication Systems, Inc. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Chi Mei Communication Systems, Inc.

Disclaimer

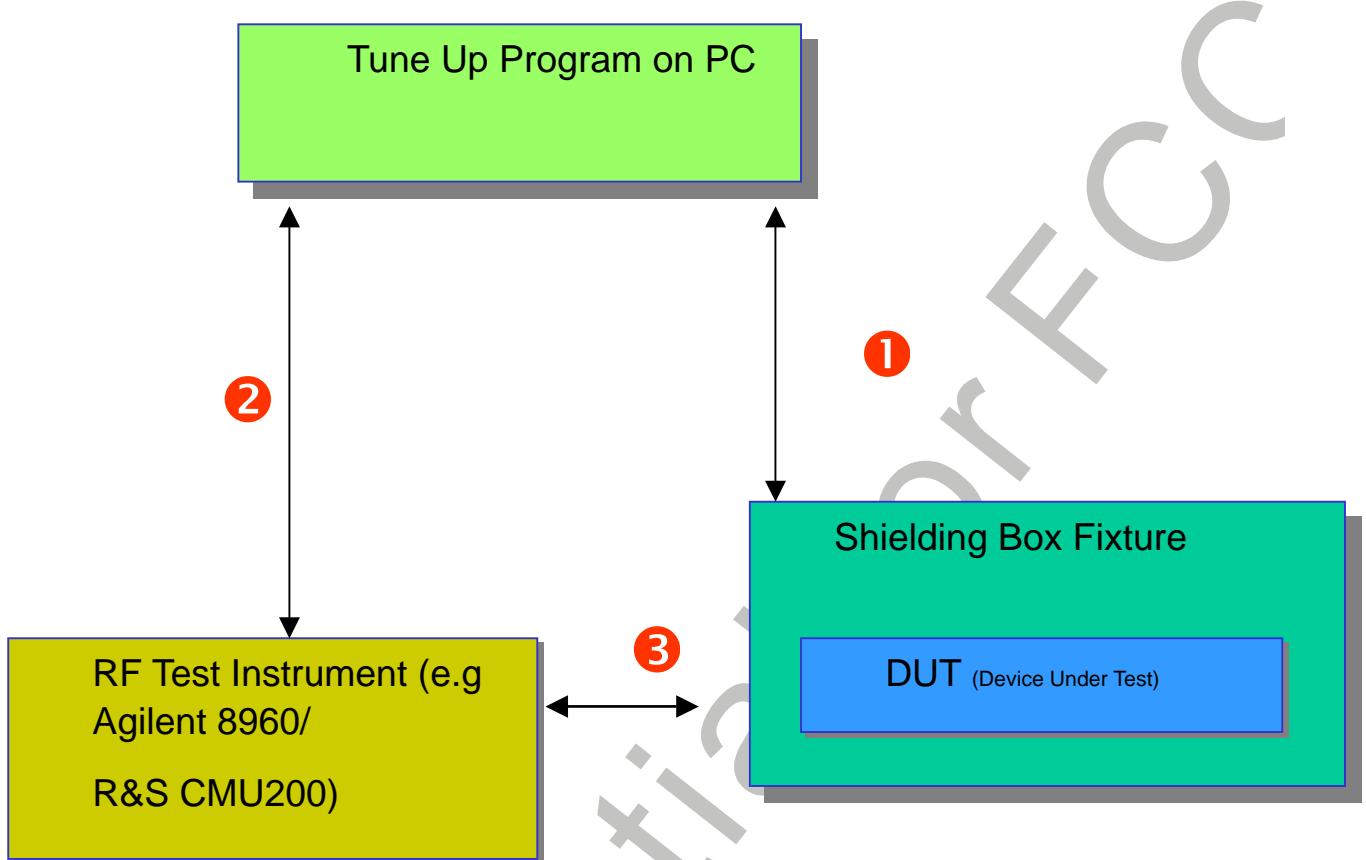
Chi Mei Communication Systems, Inc. makes no representations or warranties, either expressed or implied, with respect to the contents hereof and specifically disclaims any warranties, merchantability or fitness for any particular purpose. Further, Chi Mei Communication Systems, Inc. reserves the right to revise this publication and to make changes from time to time in the contents hereof without obligation of Chi Mei Communication Systems, Inc. to notify any person of such revision or changes.

ALL INFORMATION IS PROVIDED BY CMCS ON AN "AS IS" BASIS ONLY. CMCS PROVIDES NO REPRESENTATIONS AND WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY AND NONINFRINGEMENT.

History

Introduction

The output power in a mobile phone is produced by Power amplifier, and it should be in the range 880~915MHz(GSM), 1710~1785MHz(DCS), 1850~1910MHz (PCS). The power amplifier module has a voltage control loop to control output power level ,and the control signal is from baseband DSP IC, baseband IC generates an envelop signal to control the power ramp up, ramp down, and power level of the radio burst.


Baseband IC includes a simple processor that generates 10-bits word at a rate of 2167KHz. This processor computes the shape of the ramp-up and ramp-down transitions of envelope signal from the value of the power level step and from the 16 coefficients of the desired shaping filter which are stored in a random access memory(RAM).

Output power specification

Normal condition

GSM			DCS			PCS		
Power level	Target Output power	Tolerance Limit	Power level	Target Output power	Tolerance Limit	Power level	Target Output power	Tolerance Limit
5	33dBm	±2dB	0	30dBm	±2dB	0	30dBm	±2dB
6	31dBm	±3dB	1	28dBm	±3dB	1	28dBm	±3dB
7	29dBm	±3dB	2	26dBm	±3dB	2	26dBm	±3dB
8	27dBm	±3dB	3	24dBm	±3dB	3	24dBm	±3dB
9	25dBm	±3dB	4	22dBm	±3dB	4	22dBm	±3dB
10	23dBm	±3dB	5	20dBm	±3dB	5	20dBm	±3dB
11	21dBm	±3dB	6	18dBm	±3dB	6	18dBm	±3dB
12	19dBm	±3dB	7	16dBm	±3dB	7	16dBm	±3dB

13	17dBm	± 3 dB	8	14dBm	± 3 dB	8	14dBm	± 3 dB
14	15dBm	± 3 dB	9	12dBm	± 4 dB	9	12dBm	± 4 dB
15	13dBm	± 3 dB	10	10dBm	± 4 dB	10	10dBm	± 4 dB
16	11dBm	± 5 dB	11	8dBm	± 4 dB	11	8dBm	± 4 dB
17	9dBm	± 5 dB	12	6dBm	± 4 dB	12	6dBm	± 4 dB
18	7dBm	± 5 dB	13	4dBm	± 4 dB	13	4dBm	± 4 dB
19	5dBm	± 5 dB	14	2dBm	± 5 dB	14	2dBm	± 5 dB
			15	0dBm	± 5 dB	15	0dBm	± 5 dB

①: The host PC send commands to instruct the DUT to continuously transmit power, which varies according to different DAC values.

② : The host PC remotely control the test instrument via GPIB interface to measure specific power, and then retrieve the measured result.

Then the PC calculates a new DAC value according to the power difference and repeat step ① ②

③: A RF cable connects the instrument and the DUT directly.