

FCC CFR47 PART 15 CERTIFICATION

TEST REPORT

FOR

BLUETOOTH HEADSET

MODEL: WICOS201HS

FCC ID: QDHWICOS201HS

REPORT NUMBER: 02U1331-2

ISSUE DATE: JULY 24, 2002

Prepared for

WICOS CO., LTD.

**2F, HAKSAN BLDG. 567-29 YOUNNAM-DONG
MAPO-KU, SEOUL
KOREA**

Prepared by

COMPLIANCE CERTIFICATION SERVICES

**561 F MONTEREY ROAD
MORGAN HILL, CA 95037, USA
TEL: (408) 463-0885
FAX: (408) 463-0888**

TABLE OF CONTENT

1. TEST RESULT CERTIFICATION.....	3
2. EUT DESCRIPTION.....	4
3. TEST METHODOLOGY	4
4. TEST FACILITY.....	4
5. ACCREDITATION AND LISTING	4
5.1. LABORATORY ACCREDITATIONS AND LISTINGS.....	5
6. CALIBRATION AND UNCERTAINTY.....	6
6.1. MEASURING INSTRUMENT CALIBRATION	6
6.2. MEASUREMENT UNCERTAINTY	6
6.3. TEST AND MEASUREMENT EQUIPMENT.....	7
7. SUPPORT EQUIPMENT / EUT SETUP	7
8. APPLICABLE RULES AND BRIEF TEST RESULT.....	9
9. TEST SETUP, PROCEDURE AND RESULT.....	15
9.1. HOPPING FREQUENCY SEPARATION.....	15
9.2. NUMBER OF HOPPING FREQUENCIES	16
9.3. 20 DB BANDWIDTH MEASUREMENT.....	17
9.4. TIME OF OCCUPANCY	19
9.5. PEAK POWER OUTPUT	23
9.6. CONDUCTED SPURIOUS EMISSION	27
9.7. RESTRICTED BAND EDGE MEASUREMENT	34
9.8. PEAK POWER SPECTRAL DENSITY	37
9.9. RADIATED EMISSION	41
9.9.1. RADIATED EMISSION AND RESTRICTED BANDS	41
9.10. POWER LINE CONDUCTED EMISSION	50
9.11. SETUP PHOTOS.....	51

1. TEST RESULT CERTIFICATION

COMPANY NAME: WICOS CO., LTD.
2F, HAKSAN BLDG. 567-29 YOUNNAM-DONG
MAPO-KU, SEOUL, KOREA

CONTACT PERSON: HYUN-JIN KIM / DIRECTOR

TELEPHONE NO: 82-2-338-9300

EUT DESCRIPTION: BLUETOOTH HEADSET

MODEL NAME: WICOS201HS

DATE TESTED: JULY 9 – 16, 2002

TYPE OF EQUIPMENT	INTENTIONAL RADIATOR
EQUIPMENT TYPE	2.4GHz TRANSCEIVER
MEASUREMENT PROCEDURE	ANSI 63.4 / 1992, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 15 Subpart C

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 15 Subpart C. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

STEVE CHENG
EMC MANAGER
COMPLIANCE CERTIFICATION SERVICES

KERWIN CORPUZ
ASSOCIATE EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

The Bluetooth Headset is a Frequency Hopping Spread Spectrum Wireless Transceiver that operates on the 2400 – 2483.5 MHz band. This unit is a wireless headset and provides a power output of –9.8 dBm (104.7 uW) with a –6.1 dBi gain of the OMNI Directional antenna.

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

4. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

5.1. Laboratory Accreditations and Listings

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	FCC Part 15, CISPR 22, AS/NZS 3548, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11, CNS 13438	 200065-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	 1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	 R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1, EN50082-2, IEC61000-6-1, IEC61000-6-2, EN50083-2, EN50091-2, EN50130-4, EN55011, EN55013, EN55014-1, EN55104, EN55015, EN61547, EN55022, EN55024, EN61000-3-2, EN61000-3-3, EN60945, EN61326-1	 ELA 117
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the Collateral Standards for Electro-Medical Products. MDD, 93/42/EEC, AIMD 90/385/EEC	 ELA-171
Taiwan	BSMI	CNS 13438	 SL2-IN-E-1012
Canada	Industry Canada	RSS210 Low Power Transmitter and Receiver	 IC2324 A,B,C, and F

*No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government

6. CALIBRATION AND UNCERTAINTY

6.1. Measuring Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6.2. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission	
30MHz – 200 MHz	+/- 3.3dB
200MHz – 1000MHz	+4.5/-2.9dB
1000MHz – 2000MHz	+4.6/-2.2dB
Power Line Conducted Emission	
150kHz – 30MHz	+/-2.9

Any results falling within the above values are deemed to be marginal.

6.3. Test and Measurement Equipment

The following test and measurement equipment was utilized for the tests documented in this report:

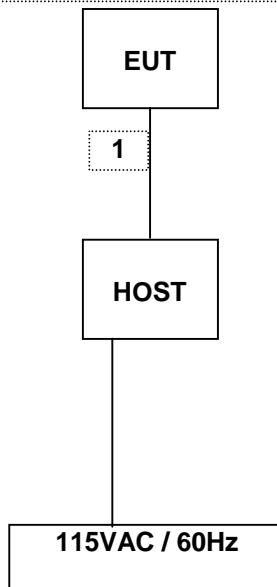
TEST AND MEASUREMENT EQUIPMENT LIST				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due Date
Spectrum Analyzer	HP	8566B	3014A06685	6/1/03
Spectrum Analyzer	HP	8593EM	3710A00205	6/11/03
Preamplifier	HP	8447D	2944A06589	8/10/02
Bilog Antenna	Chase	CBL6112B	2586	8/2/02
Preamplifier (1 - 26.5GHz)	MITEQ	NSP2600-44	646456	4/26/03
Horn Antenna (1 - 18GHz)	EMCO	3115	6739	1/31/03
Horn Antenna (18 - 26GHz)	Antenna Research Associates	MWH 1826/B	1013	7/26/02
High Pass Filter (4.57GHz)	FSY Microwave	FM-4570-9SS	003	N.C.R.

7. SUPPORT EQUIPMENT / EUT SETUP

The following peripheral support equipment was utilized to operate the equipment under test:

Note: EUT's normal operation will not need peripheral support equipment, testing purpose only.

PERIPHERAL SUPPORT EQUIPMENT LIST				
Device Type	Manufacturer	Model	Serial Number	FCC ID
PC Laptop	TOSHIBA	P/N: PS183U-00KP0X	91617937PU	DoC


The following setup was used to change the equipment under test channel:

NOTE: EUT is battery powered

SETUP BELOW 1 GHz TEST

NOTE: EUT is battery powered

SETUP ABOVE 1 GHz TEST

I/O CABLES

TEST I/O CABLES								
Cable No	I/O Port	#of I/O Port	Connector Type	Type of Cable	Cable Length	Data Traffic	Bundled	Remark
1	RS232	1	RS232	Un-Shielded	1m	No	No	Used to change channel only

8. APPLICABLE RULES AND BRIEF TEST RESULT

§15.247 (a) (1) – HOPPING FREQUENCY SEPARATION

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Spec limit: >660 kHz

Test result: No non-compliance noted.

Limit	Measured Separation
>660 kHz	1 MHz

§15.247 (a) (1) (ii) – NUMBER OF HOPPING FREQUENCIES

(ii) Frequency hopping systems operating in the 2400 – 2483.5 MHz and 5725 – 5850 MHz bands shall use at least 75 hopping frequencies.

Spec limit: >75 hopping frequencies.

Test result: No non-compliance noted.

Limit	Measured Hopping Frequencies
>75	79

§15.247 (a) (1) (ii) - BANDWIDTH LIMITATION

(a) (1) (ii) The maximum 20 dB bandwidth of the hopping channel is 1 MHz.

Spec limit: < 1 MHz.

Test result: No non-compliance noted.

Channel	Frequency (MHz)	Bandwidth(MHz)
low	2402	0.645
mid	2441	0.638
high	2480	0.660

§15.247 (a) (1) (ii) – TIME OF OCCUPANCY

(a) (1) (ii) The average time of occupancy on any frequency shall not be greater than 0.4 seconds within 30 second period.

Time of Occupancy = (number of pulses in 1 sec period) * (30 sec) * (duration of a single pulse)

Spec Limit: <0.4sec

Test result: No non-compliance noted.

Limit	Number of Pulses in 1 sec	Multiply 30 sec and Number of Pulses in 1 sec	Duration of each pulse	Time of occupancy (sec)
<0.4 sec	21	630	0.463 msec	0.292

§15.247 (b) (1) - POWER OUTPUT

(b) The maximum peak output power of the intentional radiator shall not exceed the following:
(1) For frequency hopping systems operating in the 2400-2483.5 MHz or 5725-5850 MHz band, and all direct sequence systems: 1 watt.

Spec limit: As specified above, 1W maximum.

Test result: No non-compliance noted.

Channel	Frequency (MHz)	Output Power (milliwatt)
low	2402	0.0537 (-12.70 dBm)
mid	2441	0.0912 (-10.40 dBm)
high	2480	0.1047 (-9.80 dBm)

§15.247 (c) – SPURIOUS EMISSION

(c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test result: No non-compliance noted. See section 9.6 and 9.7.

§15.247 (d) and §15.247 (f) - PEAK POWER SPECTRAL DENSITY

(d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

(f) The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

Spec limit: < 8dBm.

Test result: No non-compliance noted.

Channel	Frequency (MHz)	Results (dBm)
low	2402	-19.7
mid	2441	-21.0
high	2480	-18.2

§15.205- RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Spec limit: As specified above.

Test result: No non-compliance noted. See section 9.9 Radiated Emission.

§15.207- CONDUCTED LIMITS

(a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

FCC 15.207

FREQUENCY RANGE	FIELD STRENGTH (Microvolts)	FIELD STRENGTH (dBuV)/QP
450kHz-30MHz	250	48

Spec limit: As specified above.

Test result: EUT does not required 15.207 test. EUT is a battery powered unit.

§15.209- RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(b) In the emission table above, the tighter limit applies at the band edges.

FCC PART 15.209

MEASURING DISTANCE OF 3 METER

FREQUENCY RANGE (MHz)	FIELD STRENGTH (Microvolts/m)	FIELD STRENGTH (dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Spec limit: As specified above.

Test result: No non-compliance noted.

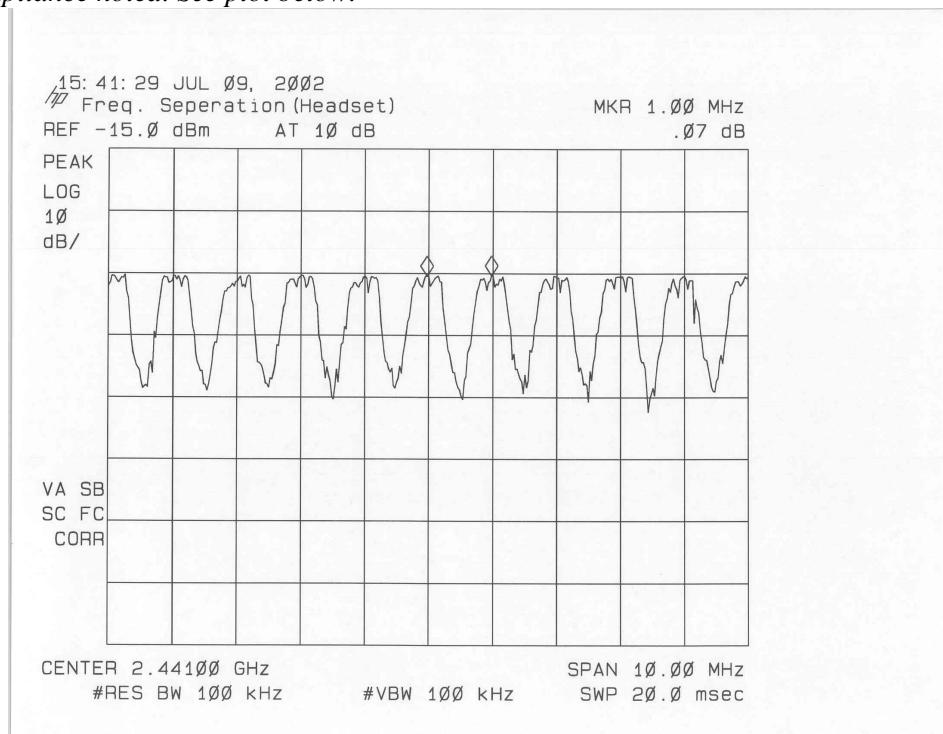
9. TEST SETUP, PROCEDURE AND RESULT

9.1. HOPPING FREQUENCY SEPARATION

TEST SETUP

Detector Function Setting of Test Receiver

Center Frequency (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
2441	<input checked="" type="checkbox"/> Peak	<input checked="" type="checkbox"/> 100 kHz	<input checked="" type="checkbox"/> 100 kHz


TEST PROCEDURE

Connect the Eut's antenna port to the Spectrum Analyzer's input port.

Set frequency span to at least 10 MHz. Let EUT to complete the pseudorandom hopping frequency then set marker delta to measure the separation between each hopping frequency.

RESULT

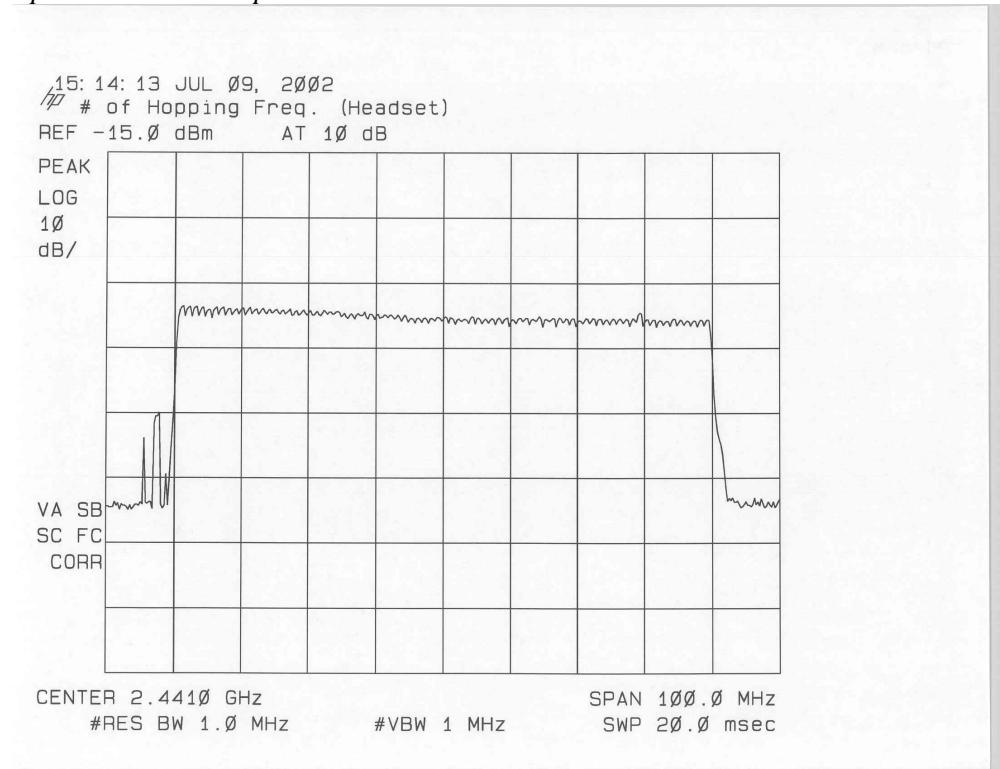
No non-compliance noted. See plot below.

9.2. NUMBER OF HOPPING FREQUENCIES

TEST SETUP

Detector Function Setting of Test Receiver

Center Frequency (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
2441	<input checked="" type="checkbox"/> Peak	<input checked="" type="checkbox"/> 1 MHz	<input checked="" type="checkbox"/> 1 MHz

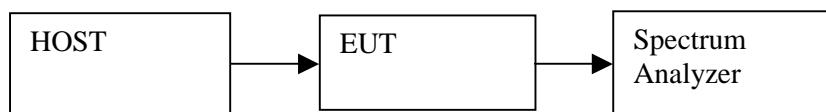

TEST PROCEDURE

Connect the Eut's antenna port to the Spectrum Analyzer's input port.

Set frequency span to at least 100 MHz. Let EUT to complete the pseudorandom hopping frequency then set trace A to maximum hold. Record data by plotting graph.

RESULT

No non-compliance noted. See plot below.

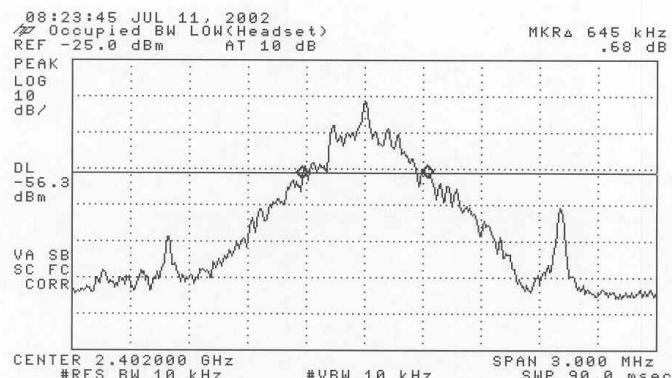


9.3. 20 dB BANDWIDTH MEASUREMENT

TEST SETUP

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	<input checked="" type="checkbox"/> Peak	<input checked="" type="checkbox"/> 10 kHz	<input checked="" type="checkbox"/> 10 kHz

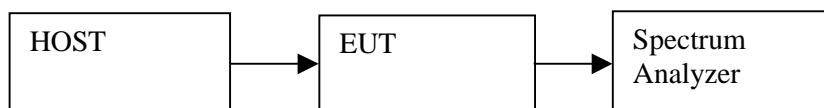


TEST PROCEDURE

Connect the Eut's antenna port to the Spectrum Analyzer's input port. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 10 kHz RBW and 10 kHz VBW.

RESULT

No non-compliance noted. See plots below.



9.4. TIME OF OCCUPANCY

TEST SETUP

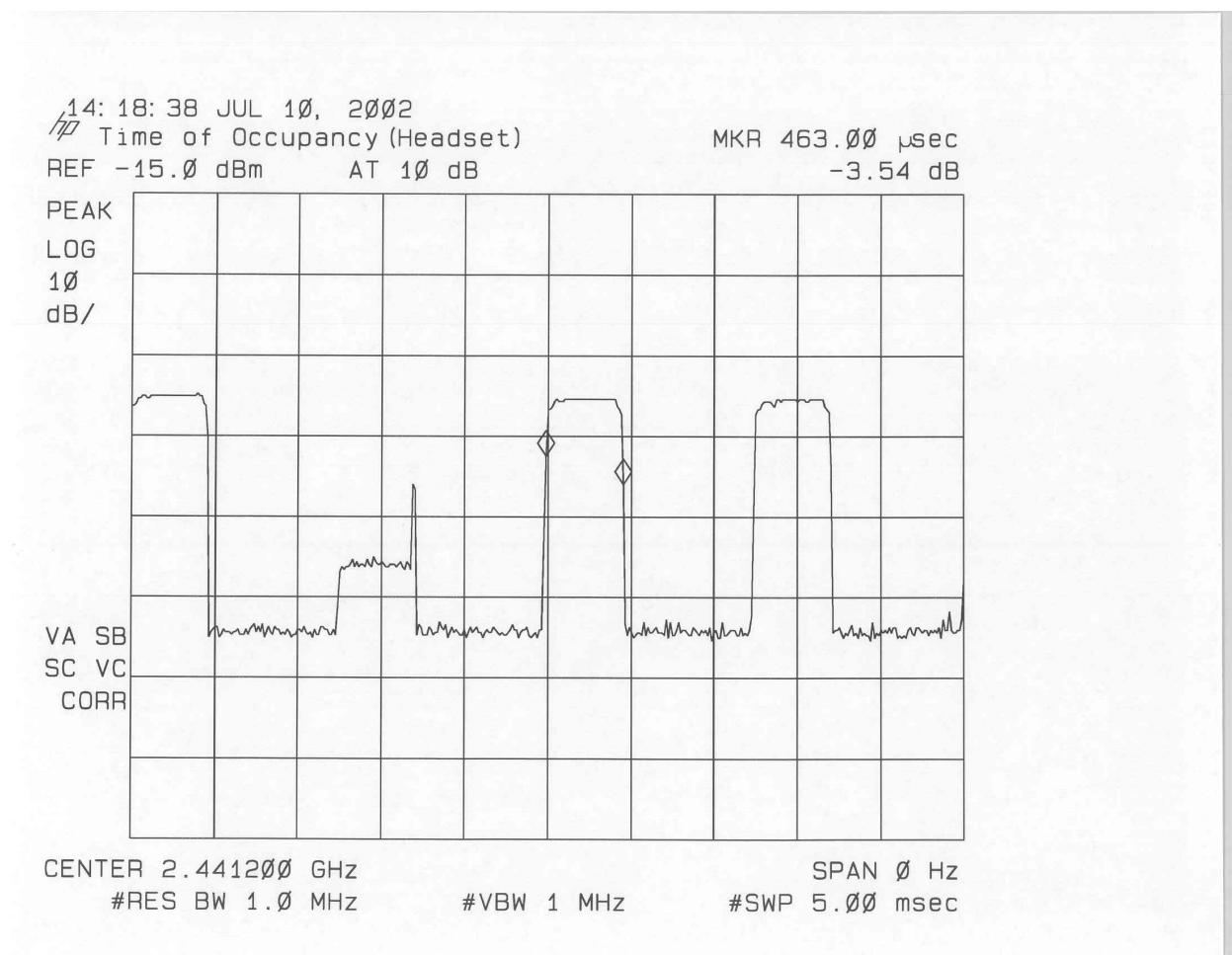
Detector Function Setting of Test Receiver

Center Frequency (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
2441	<input checked="" type="checkbox"/> Peak	<input checked="" type="checkbox"/> 1 MHz	<input checked="" type="checkbox"/> 1 MHz

TEST PROCEDURE

1. Set the transmitter to operate in its normal frequency hopping mode.
2. Set the spectrum analyzer CENTER FREQUENCY to one of the hopping channels, preferably near the center of the operating band. Set the SPAN to ZERO SPAN. Set the SWEEP TIME to 5msec. Then measure the duration of a single pulse.
3. Set the SWEEP TIME to 1 second and measure (plot).
4. Set the SWEEP TIME to 30 seconds and measure (plot).
5. Run a total of 10 different 30 second sweeps. The maximum time of channel occupancy is determined by the maximum number of transmissions detected in any 30 second period as appropriate, times the duration of each transmission.

RESULT


No non-compliance noted.

Time of Occupancy = (number of pulses in 1 sec period) * (30 sec) * (duration of a single pulse)

Limit	Number of Pulses in 1 sec	Multiply 30 sec and Number of Pulses in 1 sec	Duration of each pulse	Time of occupancy (sec)
<0.4 sec	21	630	0.463 msec	0.292

See plot below

DURATION OF EACH PULSE

