

## **Electromagnetic Emission**

## FCC MEASUREMENT REPORT

## CERTIFICATION OF COMPLIANCE

### **FCC Part 15 Certification Measurement**

PRODUCT : THERMAL PRINTER

MODEL/Serial No. : PORTI-SW40 / Proto type

Multi model : PORTI-SW45, NL1000

FCC ID : QDDPORTI-SW40

**APPLICANT** : Woosim System Inc.

#501, Daerung Technotown 3th, 448, Gasan-dong,

Geumcheon-gu, Seoul, Korea

Attn.: Moo-Seoung Lim / Assistant Manager

MANUFACTURER : Woosim System Inc.

#501, Daerung Technotown 3th, 448, Gasan-dong,

Geumcheon-gu, Seoul, Korea

FCC CLASSIFICATION : DTS: Digital Transmission System

RULE PART(S) : FCC Part 15 Subpart B & C Section 15.247

FCC PROCEDURE : ANSI C63.4-2003
TEST REPORT No. : ETLE070911.633

DATES OF TEST : November 05, 2007 – November 12, 2007

REPORT ISSUE DATE : November 13, 2007

**TEST LABORATORY** : ETL Inc. (FCC Registration Number : 95422)

This THERMAL PRINTER, Model PORTI-SW40 has been tested in accordance with the measurement procedures specified in ANSI C63.4-2003 at the ETL Test Laboratory and has been shown to be complied with the electromagnetic radiated emission limits specified in FCC Rule Part15 Subpart B & C section 15.247

I attest to the accuracy of data. All measurement herein was performed by me or was made under my supervision and is correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Hyung Seok, Lee / Chief Engineer

ETL Inc.



## **Table of Contents**

### **FCC Measurement Report**

- 1. Introduction
- 2. Product Information
- 3. Description of Tests
- 4. Test Condition
- 5. Test Results
  - 5.1 Summary of Test Results
  - 5.2 Peak Power
  - **5.3 Band Edges Measurement**
  - 5.4 Peak Power Spectral density
  - 5.5 Frequency Separation
  - **5.6 Number of Hopping Frequency**
  - 5.7 Time of Occupancy(Dwell time)
  - 5.8 Radio Frequency Exposure
  - **5.9 Spurious Emissions**
  - 5.10 Power line conducted Emissions
- 6. Sample Calculation
- 7. List of test Equipment used for Measurement
- Appendix A. FCC ID Label and Location
- **Appendix B. Test Setup Photographs**
- Appendix C. External Photographs
- **Appendix D. Internal Photographs**
- **Appendix E. Block Diagram**
- **Appendix F. Circuit Diagram**
- **Appendix G. User Manual**
- **Appendix H. Operational Description**
- **Appendix I. Part list**
- Appendix J. Antenna Requirement

Report no. ETLE070911.633, Page 2 of 43



## **FCC MEASUREMENT REPORT**

**Scope** – Measurement and determination of electromagnetic emission(EME) of radio frequency devices including intentional radiators and/or unintentional radiators for compliance with the technical rules and regulations of the U.S Federal Communications Commission(FCC)

#### **General Information**

Applicant Name : Woosim System Inc.

Address : #501, Daerung Technotown 3th, 448, Gasan-dong,

Geumcheon-gu, Seoul, Korea

Attention : Moo-Seoung Lim / Assistant Manager

EUT Type : THERMAL PRINTER

Model Number : PORTI-SW40

• S/N : Proto type

• Freq. Range : 2402 MHz – 2480 MHz

• Number of Channels : 79

Modulation Technique : FHSS (Frequency Hopping Spread Spectrum)

FCC Rule Part(s) : FCC Part 15 Subpart B & C Section 15.247

• Test Procedure : ANSI C63.4-2003

• FCC Classification : DTS: Digital Transmission System

Dates of Tests : November 05, 2007 – November 12, 2007

Place of Tests : ETL Inc. Testing Lab.

Radiated Emission test:

#584, Sangwhal-ri, Ganam-myeon, Yoju-gun,

Gyeonggi-do, 469-885, Korea

Conducted Emission test; ETL Inc. Testing Lab.

371-51, Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea

• Test Report No. : ETLE070911.633

Report no. ETLE070911.633, Page 3 of 43



## 1. INTRODUCTION

The measurement test for radiated and conducted emission test was conducted at the ETL Inc. The site is constructed in conformance with the requirements of the ANSI C63.4-2003 and CISPR Publication 16. The ETL has site descriptions on file with the FCC for 3 m and 10 m site configurations. Detailed description of test facility was found to be in compliance with FCC Rules according to the ANSI C63.4-2003 and registered to the Federal Communications Commission (FCC Registration Number: 95422).

The measurement procedure described in American National Standard for Method of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2003) was used in determining radiated and conducted emissions from the Woosim System Inc., Model: PORTI-SW40



## 2. PRODUCT INFORMATION

## 2.1 Equipment Description

The Equipment Under Test (EUT) is RF Transmitter by the Woosim Systems Inc. Model: PORTI-SM40. The PORTI-SM40 is the ideal solution for Mobile banking system, Retail, point of sales, credit card transaction, other traveling and mobile computing etc.

## 2.2 General Specification

| Item                | Specification                                              |                                  |  |
|---------------------|------------------------------------------------------------|----------------------------------|--|
| Printing method     | Direct thermal line printing                               |                                  |  |
| Characters per line | 64cpl                                                      |                                  |  |
| Character size      | Eng. : 9*24dots, 12*24d                                    | ots Kor.: 16*24dots, [24*24dots] |  |
| Resolution          | 203dpi, 8dots/mm                                           |                                  |  |
| Print width         | 3-inch (72mm, 576dots)                                     |                                  |  |
| Printing speed      | 40mm / sec                                                 |                                  |  |
| Dimensions          | 107.5 * 88.5 * 45 mm                                       |                                  |  |
| Weight              | 360g (Including batter                                     | y & roll paper)                  |  |
| Interface           | RS-232C or TTL / Blue                                      | tooth                            |  |
| Paper supplied      | Thermal roll paper (80m                                    | nm wide, 38ø)                    |  |
| Payanda supplied    | PDF417(2-dimension), 0                                     | Code128, Code39, I2/5, Code93    |  |
| Barcode supplied    | UPC, EAN, KAN, JAN, CODABAR                                |                                  |  |
| Receive buffer size | 10K bytes                                                  |                                  |  |
| Note                | Printing speed may be si                                   | lower, depending on the data     |  |
| Note                | transmission speed and the combination of control commands |                                  |  |
| Battery             | Rechargeable 7.4V DC, 1400mAh(Li-ion)                      |                                  |  |
| Battery duration    | 1 hour continuous printing                                 |                                  |  |
| Battery Charger     | Input (100~250VAC, 50                                      | ~60Hz)                           |  |
| Battery Charger     | Output(8.4VDC/0.8A),                                       | 4hours full charge time          |  |
|                     | Temperature                                                | -10°C ~ 40°C (operating)         |  |
| Environment         | Temperature                                                | -10°C ~ 70°C (storage)           |  |
| Conditions          | Humidity                                                   | 30% - 80% (operating)            |  |
|                     | 220222017                                                  | 10% - 90% (storage)              |  |
| MCBF (Mean Cycle    | Mechanical                                                 | 37,000,000 lines                 |  |
| Between failure)    | Head                                                       | Approximately 50 Km              |  |

| Category               | Specification                 |
|------------------------|-------------------------------|
| Bluetooth Spec.        | Bluetooth V1.1 / Class2 (10m) |
| Frequency Range        | 2.4GHz ISM BAND               |
| Data Transmission Rate | 57600bps Fixed.               |
| Data bit               | 8 Data bit Fixed.             |
| Parity bit             | No parity Fixed.              |
| Stop bit               | 1 Stop bit Fixed.             |

Report no. ETLE070911.633, Page 5 of 43



## 3. DESCRIPTION OF TESTS

The tests documented in this report were performed in accordance with ANSI C63.4-2003 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

### 3.1 Conducted Emission Measurement

Conducted emissions measurements were made in accordance with section § 13 in ANSI C63.4-2003 "measurement of intentional radiators" The measurements were performed over the frequency range of 0,15 MHz to 30 MHz using a 50  $\Omega$  / 50 uH LISN as the input transducer to a Spectrum Analyzer or a Test Receiver. The measurements were made with the detector set for "Peak" amplitude within a bandwidth of 9 kHz or for "quasi-peak" within a bandwidth of 9 kHz.

The line-conducted emission test is conducted inside a shielded anechoic chamber room with 1 m x 1,5 m x 0,8 m wooden table which is placed 0,4 m away from the vertical wall and 1,5 m away from the side wall of the chamber room. Two LISN are bonded to the shielded room. The EUT is powered from the LISN and the support equipment is powered from the other LISN. Power to the LISNs are filtered by a noise cut power line filters. All electrical cables are shielded by braided tinned steel tubing with inner  $\phi$  1,2 cm. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and these supply lines will be connected to the LISN. Non-inductive bundling to a 1 m length shortened all interconnecting cables more than 1 m. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the EMI Test Receiver to determine the frequency producing the maximum emission from the EUT. The frequency producing the maximum level was reexamined using to set Quasi-Peak mode by manual, after scanned by automatic Peak mode from 0,15 MHz to 30 MHz. The bandwidth of the spectrum analyzer was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission.

Photographs of the worst-case emission can be seen in photographs of conducted emission test setup in Appendix B.

Report no. ETLE070911.633, Page 6 of 43



#### 3.2 Radiated Emission Measurement

Radiated emission measurements were made in accordance with § 13 in ANSI C63.4-2003 "Measurement of Intentional radiators" The measurements were performed over the frequency range of 30 MHz to 40 GHz using antenna as the input transducer to a Spectrum analyzer or a Field Intensity Meter. The measurements were made with the detector set for "Peak, Quasi-peak, Average" within a bandwidth of 120 kHz and above 1GHz is 1 MHz.

Preliminary measurements were made at 3 m using broadband antennas, and spectrum analyzer to determine the frequency producing the maximum emission in shielded room. Appropriate precaution was taken to ensure that all emission from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth and height with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30 MHz to 1000 MHz using Log-Bicon antenna. Above 1 GHz, linearly polarized double ridge horn antennas were used. Final measurements were made open site at 3 m. The test equipment was laced on a wooden turn-table. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined by manual. The detector function was set to CISPR Quasi-peak mode and the bandwidth of the receiver was set to 120 kHz or 1 MHz depending on the frequency of type of signal. The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0,8 m high nonmetallic 1m x 1,5 m table. The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each emission. The turntable containing the system was rotated; the antenna height was varied 1 m to 4 m and stopped at the azimuth or height producing the maximum emission.

Varying the mode of operating frequencies of the EUT maximized each emission. The system was tested in all the three orthogonal planes and changing the polarity of the antenna. The worst-case emissions are recorded in the data tables. If necessary, the radiated emission measurement could be performed at a closer distance to ensure higher accuracy and the results were extrapolated to the specified distance using an inverse linear distance extrapolation factor (20 dB/decade) as per section 15.31(f).

Photographs of the worst-case emission can be seen in Photographs of the worst-case emission test setup can be seen in Appendix B.

Report no. ETLE070911.633, Page 7 of 43



## 3.3 FCC Part 15.205 Restricted Bands of Operations

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                                                                                                                                                                                                                                                                                                                                   | MHz                                                                                                                                                                                                                                                                                  | MHz                                                                                                                                                                                                                                                     | GHz                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.090 - 0.110<br>10.495 - 0.505<br>2.1735 - 2.1905<br>4.125 - 4.128<br>4.17725 - 4.17775<br>4.20725 - 4.20775<br>6.215 - 6.218<br>6.26775 - 6.26825<br>6.31175 - 6.31225<br>8.291 - 8.294<br>8.362 - 8.366<br>8.37625 - 8.38675<br>8.41425 - 8.41475<br>12.29 - 12.293<br>12.51975 - 12.52025<br>12.57675 - 12.57725<br>13.36 - 13.41 | 16.42 - 16.423<br>16.69475 - 16.69525<br>16.80425 - 16.80475<br>25.5 - 25.67<br>37.5 - 38.25<br>73 - 74.6<br>74.8 - 75.2<br>108 - 121.94<br>123 - 138<br>149.9 - 150.05<br>156.52475 - 156.52525<br>156.7 - 156.9<br>162.0125 - 167.17<br>167.72 - 173.2<br>240 - 285<br>322 - 335.4 | 399.9 - 410<br>608 - 614<br>960 - 1240<br>1300 - 1427<br>1435 - 1626.5<br>1645.5 - 1646.5<br>1660 - 1710<br>1718.8 - 1722.2<br>2200 - 2300<br>2310 - 2390<br>2483.5 - 2500<br>2690 - 2900<br>3260 - 3267<br>3332 - 3339<br>3345.8 - 3358<br>3600 - 4400 | 4.5 - 5.15<br>5.35 - 5.46<br>7.25 - 7.75<br>8.025 - 8.5<br>9.0 - 9.2<br>9.3 - 9.5<br>10.6 - 12.7<br>13.25 - 13.4<br>14.47 - 14.5<br>15.35 - 16.2<br>17.7 - 21.4<br>22.01 - 23.12<br>23.6 - 24.0<br>31.2 - 31.8<br>36.43 - 36.5<br>( <sup>2</sup> ) |

<sup>&</sup>lt;sup>1</sup>Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Report no. ETLE070911.633, Page 8 of 43

<sup>&</sup>lt;sup>2</sup> Above 38.6



## 4. TEST CONDITION

### 4.1 Test Configuration

The device was configured for testing in a typical fashion (as a customer would normally use it). During the tests, the following conditions and configurations were used.

### 4.2 Description of Test modes

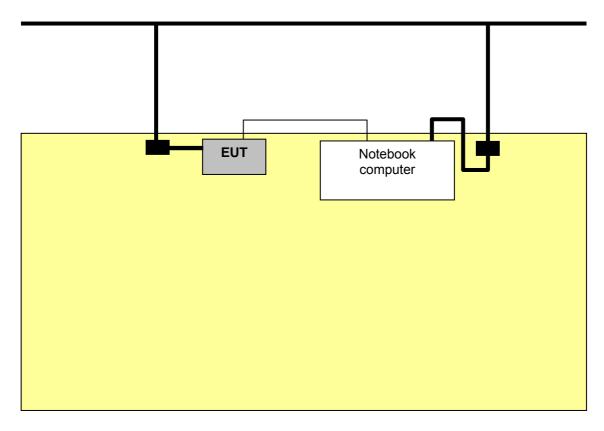
The EUT(model: PORTI-SW40) has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed. After verification, all tests carried out are with the worst-case test modes as shown below except radiated spurious emission below 1 GHz's worst case is in normal link mode.

Channel low (2 042 MHz), Mid (2 441 MHz) and High (2 480 MHz) were chosen for full testing.

### 4.3 Support Equipment Used

| Description                     | Model Name | Serial No.                  | Manufacturer                               |
|---------------------------------|------------|-----------------------------|--------------------------------------------|
| Notebook computer               | SV10       | 958291CT300126              | SAMSUNG                                    |
| Adapter (for Notebook computer) | AD-6019    | CNBA4400238AD2V<br>H77G8142 | Li Shin International Electronic Co., Ltd. |


## 4.4 Type of Cables Used

| Device from       | Device to         | Type of I/O port | Length(m) | Type of shield |
|-------------------|-------------------|------------------|-----------|----------------|
| EUT               | Notebook computer | RS-232           | 0,4       | Shielded       |
| EUT               | AC/DC adapter     | DC Input         | 0,8       | Shielded       |
| Notebook computer | Adapter           | DC Input         | 1,0       | Shielded       |
| Notebook computer | EUT               | RS-232           | 0.4       | Shielded       |

Report no. ETLE070911.633, Page 9 of 43



## 4.6 The setup drawing(s)



: Data Line

Power Line

: Adapter

Head Office: # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel: 82-2-858-0786 Fax: 82-2-858-0788 EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea



## 5. TEST RESULTS

## 5.1 Summary of Test Results

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum emission of the EUT are reported.

| Applied Standard : 47 CFR Part 15, Subpart C |                                     |                          |        |
|----------------------------------------------|-------------------------------------|--------------------------|--------|
| FCC Rule                                     | Measurement Required                | Limit                    | Result |
| 15.247(b)(1)                                 | Maximum peak conducted output power | < 1 W                    | Pass   |
| 15.247(d)                                    | Bandwidth of Frequency Band Edges   | More than<br>20 dBc      | Pass   |
| 15.247(e)                                    | Power Spectral density              | More than<br>8 dBm       | Pass   |
| 15.247(a)(1)                                 | Frequency Separation                | More than > 25 kHz       | Pass   |
| 15.247(a)(1)(iii)                            | Number of Hopping Channels          | More than<br>15 channels | Pass   |
| 15.247(a)                                    | Time of Occupancy(Dwell time)       | < 0.4 s                  | Pass   |
| 15.247(i)                                    | Radio Frequency Exposure            | < 20 cm                  | Pass   |
| 15.247(d)<br>15.209                          | Spurious Emissions                  | Various                  | Pass   |
| 15.207                                       | Power line conducted Emissions      | Various                  | Pass   |

The data collected shows that the **Woosim System Inc. / THERMAL PRINTER / PORTI-SW40** complied with technical requirements of above rules part 15.207, 15.209 and 15.247 Limits.

The equipment is not modified anything, mechanical or circuits to improve EMI status during a measurement. No EMI suppression device(s) was added and/or modified during testing.

Report no. ETLE070911.633, Page 11 of 43



## 5.2 Maximum peak conducted output power

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A)          |
|---------------------|-------------------------------------------------|
| Limit apply to      | FCC Part 15.247(b)(1)                           |
| Test Date           | November 05, 2007                               |
| Operating Condition | RF transmitting continuously during the tested. |
| Result              | Pass                                            |

#### Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

- For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

#### **Test Data**

| Channel | Frequency<br>(MHz) | Output Power (dBm) | Output Power<br>(W) | Limit               |
|---------|--------------------|--------------------|---------------------|---------------------|
| Low     | 2402               | -11.90             | 0.000065            |                     |
| Mid     | 2440               | -11.92             | 0.000064            | < 1 W<br>(< 30 dBm) |
| High    | 2480               | -11.67             | 0.000068            |                     |

#### NOTES:

1. The transmitter output is connected to the Power Meter.

Test Engineer : Kug Kyoung, Yoon

Report no. ETLE070911.633, Page 12 of 43



## 5.3 Bandwidth of Frequency Band Edges

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A)          |
|---------------------|-------------------------------------------------|
| Limit apply to      | FCC Part 15.247(d)                              |
| Test Date           | November 05, 2007                               |
| Operating Condition | RF transmitting continuously during the tested. |
| Result              | Pass                                            |

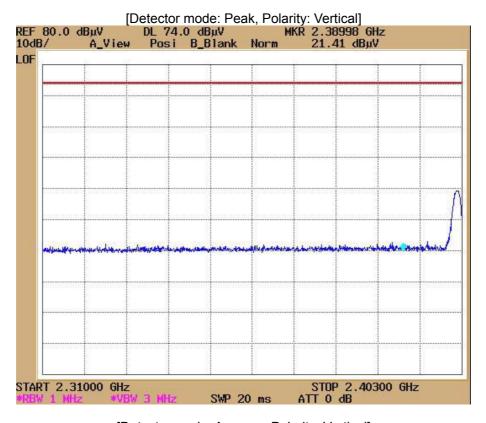
#### Limit

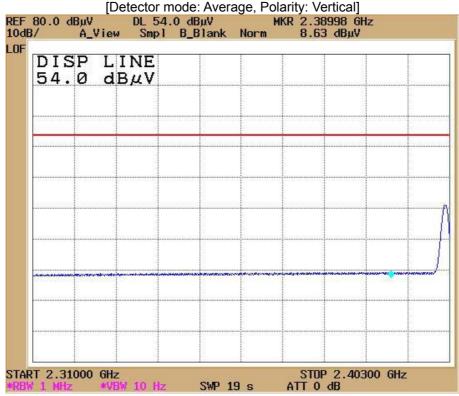
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

#### **Test Results**

- Refer to see the measured plot in next page.

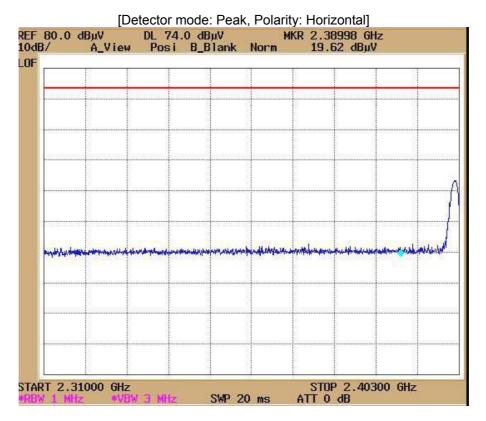
#### NOTES:

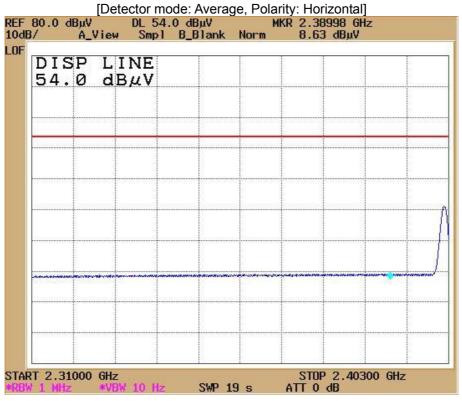

- 1. The test was performed to make a direct field strength measurement at the band edge frequencies.
- 2. Set the spectrum analyzer in the following setting in order to capture the lower and upper band edges of the emission: (a)Peak: RBW 1 MHz, VBW 1 MHz, Sweep time Auto; (b) Average: RBW 1 MHz, VBW 10 Hz, Sweep time Auto.
- 3. Repeat the procedures until all the Peak and Average versus Polarization are measured.


Test Engineer: Kug Kyoung, Yoon

Report no. ETLE070911.633, Page 13 of 43



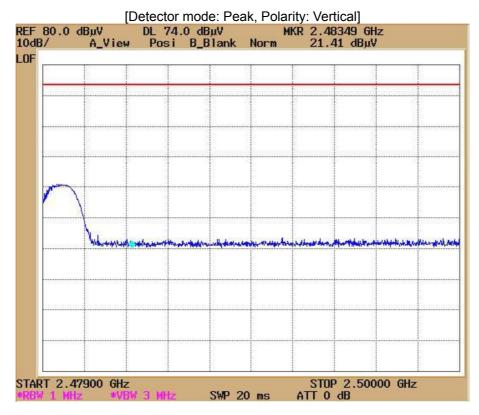

## Bandwidth of Frequency Band Edges(CH Low)






Report no. ETLE070911.633, Page 14 of 43

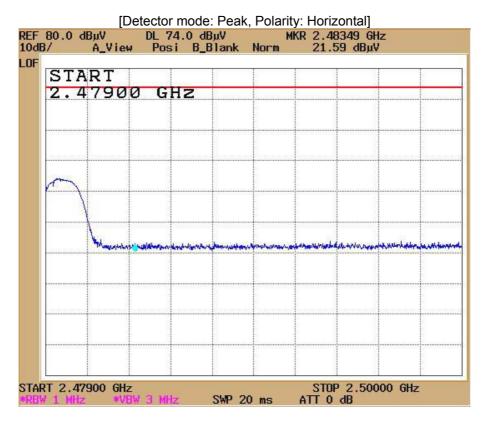







Report no. ETLE070911.633, Page 15 of 43




## **Bandwidth of Frequency Band Edges(CH High)**





Report no. ETLE070911.633, Page 16 of 43







Report no. ETLE070911.633, Page 17 of 43



## 5.4 Power Spectral Density

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A)          |
|---------------------|-------------------------------------------------|
| Limit apply to      | FCC Part 15.247(e)                              |
| Test Date           | November 05, 2007                               |
| Operating Condition | RF transmitting continuously during the tested. |
| Result              | Pass                                            |

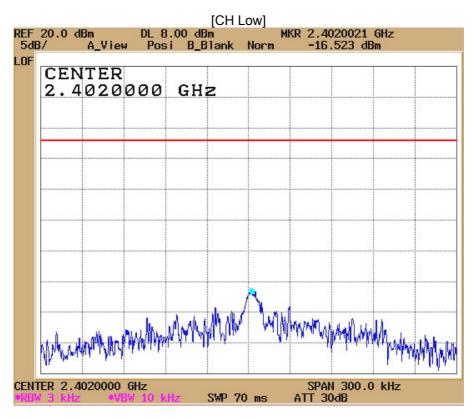
#### Limit

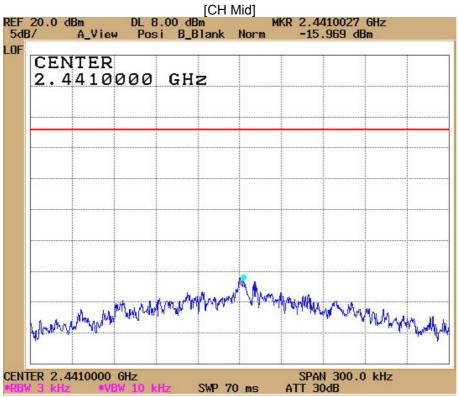
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

#### **Test Data**

| Channel | Frequency<br>(MHz) | PSD<br>(dBm) | Limit |
|---------|--------------------|--------------|-------|
| Low     | 2402               | -16.532      |       |
| Mid     | 2440               | -15.969      | 8 dBm |
| High    | 2480               | -16.203      |       |

#### NOTES:


- 1. Measure power spectral density of relevant channel using spectrum analyzer.
- 2. RBW 3 kHz, VBW 10 kHz, span 300 kHz, Sweep time Auto.
- 3. Please see the measured plot in next page.

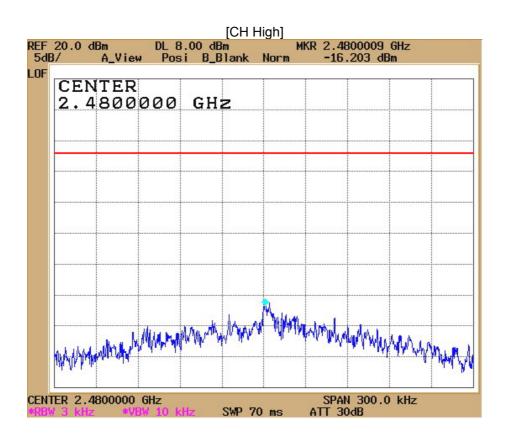

Test Engineer: Kug Kyoung, Yoon

Report no. ETLE070911.633, Page 18 of 43



## **Power Spectral Density**






Report no. ETLE070911.633, Page 19 of 43

Head Office: # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel: 82-2-858-0786 Fax: 82-2-858-0788

EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea







## 5.5 Frequency Separation

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A)          |
|---------------------|-------------------------------------------------|
| Limit apply to      | FCC Part 15.247(a)(1)                           |
| Test Date           | November 05, 2007                               |
| Operating Condition | RF transmitting continuously during the tested. |
| Result              | Pass                                            |

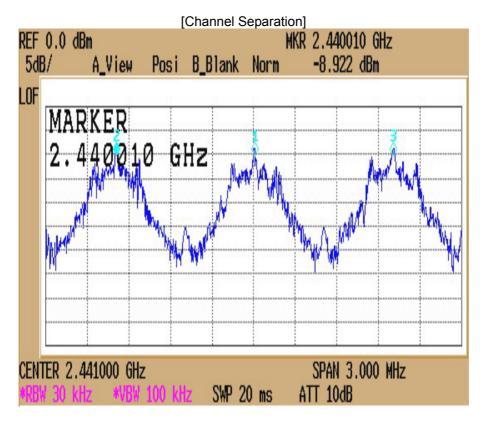
#### Limit

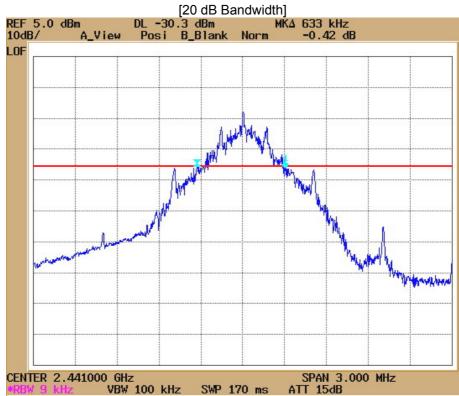
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

#### **Test Data**

| EUT Channel Separation (MHz) | 20 dB bandwith<br>(kHz) | Limit    |
|------------------------------|-------------------------|----------|
| 1.00                         | 633                     | > 25 kHz |

#### NOTES:


- 1. Measure frequency separation of relevant channel using spectrum analyzer.
- 2. RBW 30 kHz, VBW 100 kHz, span 3 MHz, Sweep time Auto.
- 3. Please see the measured plot in next page.


Test Engineer: Kug Kyoung, Yoon

Report no. ETLE070911.633, Page 21 of 43



## **Frequency Separation**





Report no. ETLE070911.633, Page 22 of 43



## 5.6 Number of Hopping Channels

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A)          |
|---------------------|-------------------------------------------------|
| Limit apply to      | FCC Part 15.247(a)(1)(iii)                      |
| Test Date           | November 05, 2007                               |
| Operating Condition | RF transmitting continuously during the tested. |
| Result              | Pass                                            |

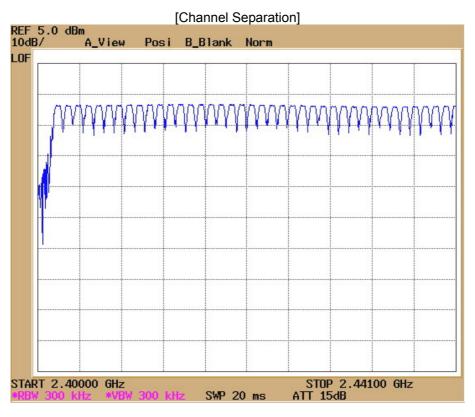
#### Limit

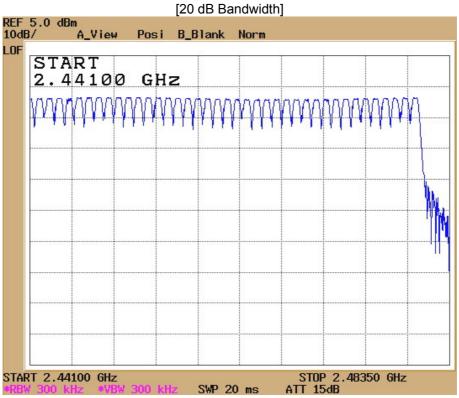
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

#### **Test Data**

| Result | Limit        |  |
|--------|--------------|--|
| 79     | > 15 Channel |  |

#### NOTES:


- 1. Measure number of hopping channel of relevant channel using spectrum analyzer.
- 2. Set spectrum analyzer Start 2 400 MHz at 2 4835 MHz.
- 3. RBW 300 kHz, VBW 300 kHz.
- 4. Please see the measured plot in next page.


Test Engineer : Kug Kyoung, Yoon

Report no. ETLE070911.633, Page 23 of 43



## **Number of Hopping Channels**





Report no. ETLE070911.633, Page 24 of 43

Head Office: # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel: 82-2-858-0786 Fax: 82-2-858-0788

EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea



## 5.7 Time of Occupancy

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A)          |
|---------------------|-------------------------------------------------|
| Limit apply to      | FCC Part 15.247(a)(1)(iii)                      |
| Test Date           | November 05, 2007                               |
| Operating Condition | RF transmitting continuously during the tested. |
| Result              | Pass                                            |

#### Limit

Frequency hopping systems in the 2400-2483.5 MHz band. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### The average time of occupancy;

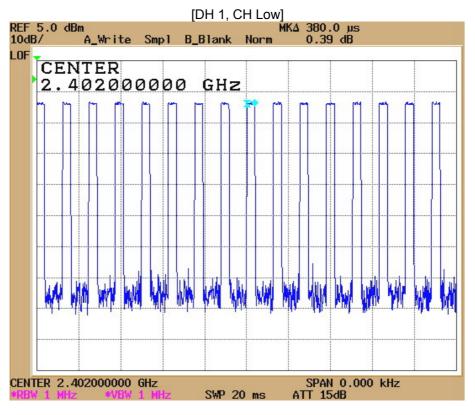
## a(ms)\*(1600/b)c\*d = e(ms)

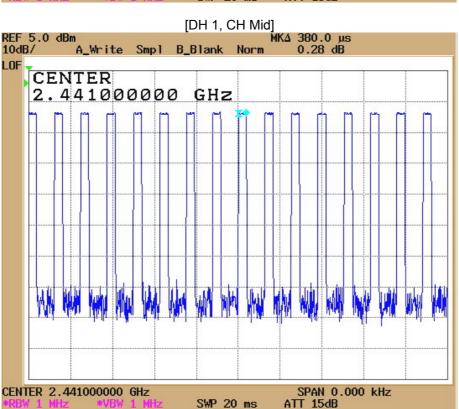
(a=pulse time, b=DH packet size type, c=total channel, d=period time, e=total of dwell)

#### **Test Data**

| Packet size | СН   | Pulse Time<br>(ms) | Total of Dwell (ms) | Period Time<br>(s) | Limit<br>(ms) |
|-------------|------|--------------------|---------------------|--------------------|---------------|
|             | Low  | 0.38               | 121.60              | 31.60              |               |
| DH 1        | Mid  | 0.38               | 121.60              | 31.60              |               |
|             | High | 0.38               | 121.60              | 31.60              |               |
|             | Low  | 1.64               | 262.40              | 31.60              |               |
| DH 3        | Mid  | 1.64               | 262.40              | 31.60              | 400.00        |
|             | High | 1.66               | 267.20              | 31.60              |               |
|             | Low  | 2.92               | 311.47              | 31.60              |               |
| DH 5        | Mid  | 2.92               | 311.47              | 31.60              |               |
|             | High | 2.92               | 311.47              | 31.60              |               |

#### NOTES:


- 1. Measure time of occupancy of relevant channel using spectrum analyzer.
- 2. RBW 1 MHz, VBW 1 MHz, Span 0 Hz, Sweep time Auto.
- 3. Please see the measured plot in next page.

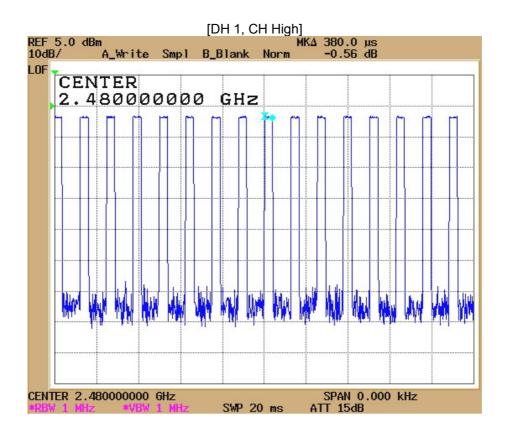

Test Engineer: Kug Kyoung, Yoon

Report no. ETLE070911.633, Page 25 of 43



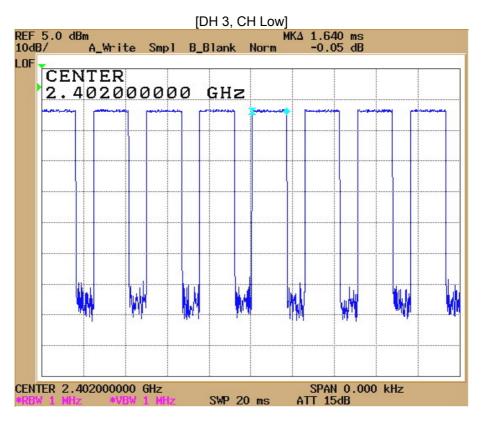
## **Time of Occupancy**

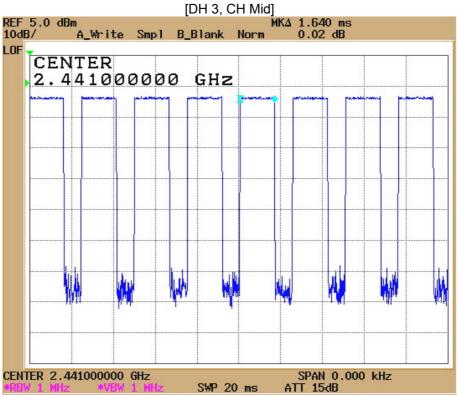





Report no. ETLE070911.633, Page 26 of 43

Head Office: # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel: 82-2-858-0786 Fax: 82-2-858-0788

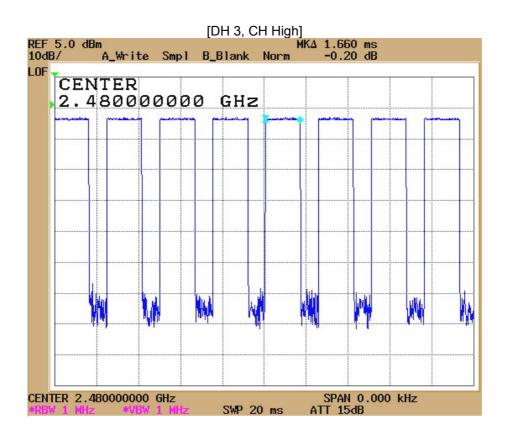

EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea

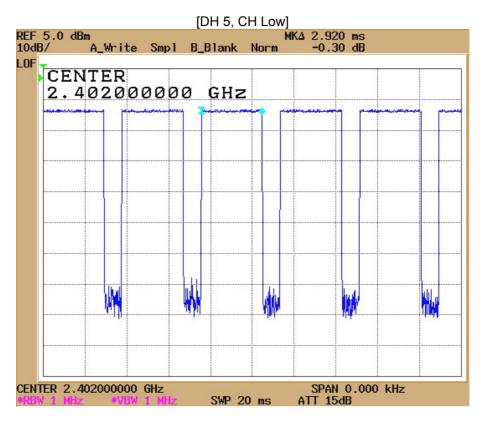


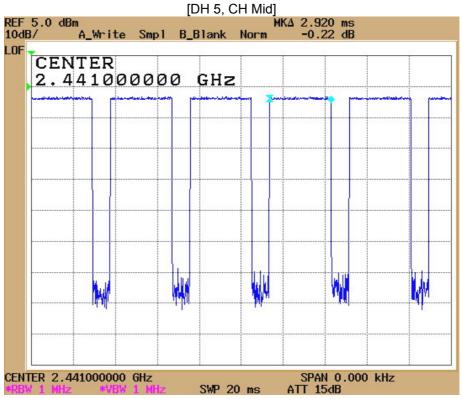



**Head Office:** # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel : 82-2-858-0786 Fax : 82-2-858-0788

EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea



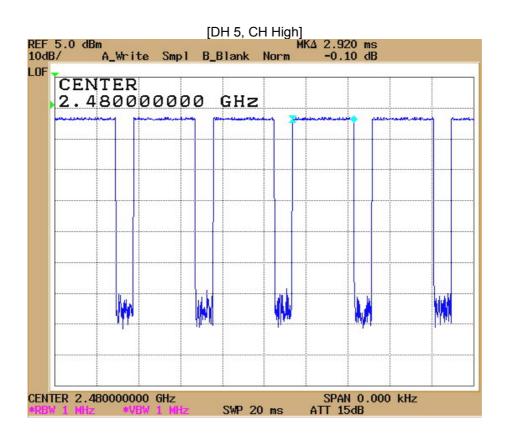





Report no. ETLE070911.633, Page 28 of 43

Head Office: # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel: 82-2-858-0786 Fax: 82-2-858-0788 EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea










Report no. ETLE070911.633, Page 30 of 43

Head Office: # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel: 82-2-858-0786 Fax: 82-2-858-0788 EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea







## 5.8 Radio Frequency Exposure

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

#### Limit

Limits for general population/Uncontrolled exposure

| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength (E)<br>(V/m) | Magnetic Field<br>Strength (H)<br>(A/m) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Averaging Time $ E ^2$ , $ H ^2$ or S (minutes) |
|-----------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------------|
| 0.3-1.34                    | 614                                     | 1.63                                    | (100)                                         | 30                                              |
| 1.34-30                     | 824/f                                   | 2.19/f                                  | $(180/f^2)$                                   | 30                                              |
| 30-300                      | 27.5                                    | 0.073                                   | Ò.2                                           | 30                                              |
| 300-1500                    |                                         |                                         | f/1500                                        | 30                                              |
| 1500-100 000                |                                         |                                         | 1.0                                           | 30                                              |

f = frequency in MHz

#### MPE Prediction

Predication of MPE limit at a given distance.

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4\pi R^2$ 

Where: S = power density (in appropriate units, e.g. mW/cm<sup>2</sup>)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Maximum peak output power at antenna input : -11.67 dBm (0.065 mW)

Prediction distance : 20 cm

Predication frequency : 2 480 MHz

Antenna gain(Max) : 1.84 dBi (1.53 numeric)

: 0.00002 mW/cm<sup>2</sup> Power density at predication frequency at 20 cm

: 1.0 mW/cm<sup>2</sup> MPE Limit for

#### **Test Result**

The EUT is a portable device. The power density level at 20 cm is 0.00002 mW/cm<sup>2</sup>, which is below the uncontrolled exposure limit of 1.0 mW/cm<sup>2</sup> at 2 480 MHz.

Report no. ETLE070911.633, Page 32 of 43

<sup>\*</sup>Plane-wave equivalent power density



## 5.9 Spurious Emissions

#### 5.9.1 Conducted Measurement

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A)          |
|---------------------|-------------------------------------------------|
| Limit apply to      | FCC Part 15.247(d)                              |
| Test Date           | November 12, 2007                               |
| Operating Condition | RF transmitting continuously during the tested. |
| Result              | Pass                                            |

#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

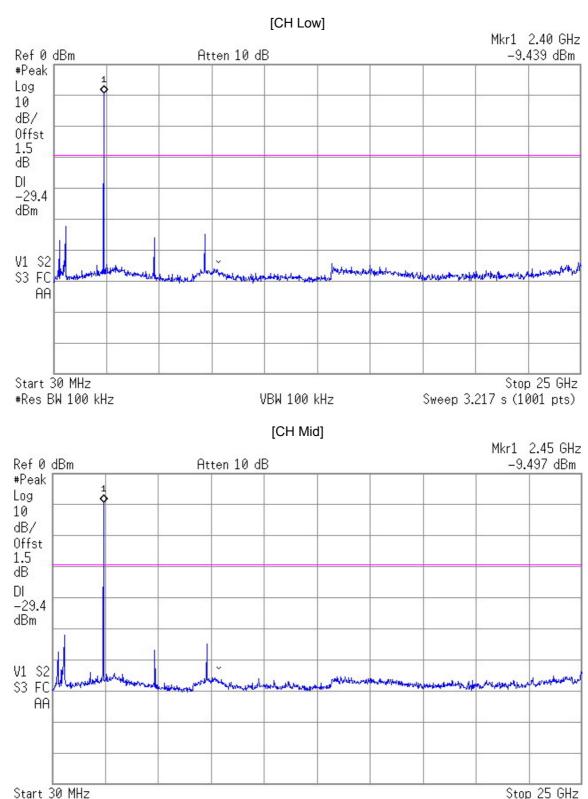
#### **Test Results**

- Refer to see the measured plot in next page.

#### NOTES:

- 1. Measure conducted measurement channel using spectrum analyzer.
- 2. RBW 100 kHz, VBW 100 kHz, Frequency range 30 MHz to 25 GHz.

Test Engineer: Kug Kyoung, Yoon


Report no. ETLE070911.633, Page 33 of 43

EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea

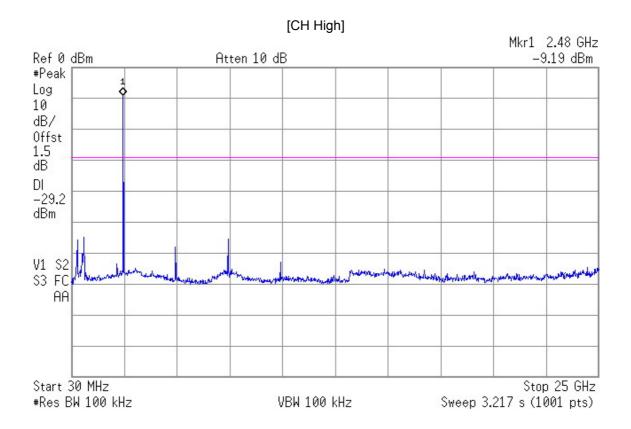
ETLQP-21-F22-0



## **Spurious Emissions (Conducted Measurement)**



Report no. ETLE070911.633, Page 34 of 43


VBW 100 kHz

**Head Office:** # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel : 82-2-858-0786 Fax : 82-2-858-0788

#Res BW 100 kHz

Sweep 3.217 s (1001 pts)





Head Office: # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel: 82-2-858-0786 Fax: 82-2-858-0788

EMC Lab : #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea



#### 5.9.2 Radiated Emissions

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A) |
|---------------------|----------------------------------------|
| Limit apply to      | FCC Part 15.209                        |
| Test Date           | November 12, 2007                      |
| Operating Condition | Normal Link                            |
| Result              | Pass                                   |

#### Limit

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequencies<br>(MHz) | Field Strength<br>(uV/m) | Field Strength<br>(dBuV/m) | Measurement Distance (m) |
|----------------------|--------------------------|----------------------------|--------------------------|
| 30 – 88              | 100*                     | 40                         | 3                        |
| 88 – 216             | 150*                     | 43.5                       | 3                        |
| 216 – 960            | 200*                     | 46                         | 3                        |
| Above 960            | 500                      | 54                         | 3                        |

<sup>\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

### **Test Results**

- Refer to see the measured plot in next page.

Test Engineer: Kug Kyoung, Yoon

ETLQP-21-F22-0

Report no. ETLE070911.633, Page 36 of 43



### **Radiated Emissions Test data**

#### **Below 1 GHz**

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical. Detector mode: CISPR Quasi – Peak mode (6 dB Bandwidth: 120 kHz)

| Frequency<br>[MHz] | Reading [dB   [dB | Polarization<br>(*H/**V) | Ant. Factor<br>[dB/m] | Cable Loss<br>[dB] | Result<br>[dBμV/m] | Limit<br>[dB $\mu$ V/m] | Margin<br>[dB] |
|--------------------|-------------------|--------------------------|-----------------------|--------------------|--------------------|-------------------------|----------------|
| 47.72              | 17.81             | V                        | 9.63                  | 2.05               | 29.49              | 40.0                    | 10.51          |
| 126.13             | 12.37             | V                        | 10.74                 | 3.19               | 26.30              | 43.5                    | 17.20          |
| 156.12             | 11.01             | Н                        | 11.35                 | 3.64               | 26.00              | 43.5                    | 17.50          |
| 168.40             | 11.91             | Н                        | 10.81                 | 3.78               | 26.50              | 43.5                    | 17.00          |
| 182.03             | 11.35             | Н                        | 10.04                 | 3.91               | 25.30              | 43.5                    | 18.20          |
| 216.11             | 13.70             | Н                        | 10.29                 | 4.40               | 28.40              | 46.0                    | 17.60          |
| 240.00             | 12.62             | Н                        | 10.98                 | 4.70               | 28.30              | 46.0                    | 17.70          |
| 288.38             | 11.74             | Н                        | 12.38                 | 5.38               | 29.50              | 46.0                    | 16.50          |
| 360.10             | 14.49             | Н                        | 13.71                 | 6.20               | 34.40              | 46.0                    | 11.60          |
| 372.46             | 10.07             | Н                        | 13.91                 | 6.32               | 30.30              | 46.0                    | 15.70          |
| 409.58             | 12.26             | Н                        | 14.63                 | 6.71               | 33.60              | 46.0                    | 12.40          |
| 443.17             | 8.91              | Н                        | 15.57                 | 7.12               | 31.60              | 46.0                    | 14.40          |

#### NOTES:

- 1. \* H : Horizontal polarization, \*\* V : Vertical polarization
- 2. Result = Reading + Antenna factor + Cable loss
- 3. Margin value = Limit Result
- 4. The measurement was performed for the frequency range above 30 MHz according to FCC Part 15.209.

**Head Office:** # 371-51 Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel : 82-2-858-0786 Fax : 82-2-858-0788

EMC Lab: #584 Sangwhal-ri, Ganam-myeon, Yoju-gun, Gyounggi-do, 469-885, Korea



#### **Above 1 GHz**

- Operating mode: Tx, Rx / CH: Low, Mid, High

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Result: All emissions below noise floor of 20 dBuV/m

#### NOTES:

- 1. \* H : Horizontal polarization, \*\* V : Vertical polarization
- 2. Result = Reading + Antenna factor + Cable loss
- 3. Margin value = Limit Result
- 4. Measuring frequencies from 1GHz to the 10<sup>th</sup> harmonic of highest fundamental frequency.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded(ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Spectrum setting:
  - a. Peak Setting 1 GHz to 10<sup>th</sup> harmonics of fundamental, RBW = 1 MHz, VBW = 1 MHz, Sweep = Auto
  - b. AV Setting 1 GHz to 10<sup>th</sup> harmonics of fundamental, RBW = 1 MHz, VBW = 10 Hz, Sweep = Auto

Report no. ETLE070911.633, Page 38 of 43



#### 5.10 Power line Conducted Emissions

| EUT                 | THERMAL PRINTER / PORTI-SW40 (SN: N/A)          |
|---------------------|-------------------------------------------------|
| Limit apply to      | FCC Part 15.207                                 |
| Test Date           | November 12, 2007                               |
| Operating Condition | RF transmitting continuously during the tested. |
| Result              | Pass                                            |

#### Limit

for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

| Frequency of Emission (MHz) | Conducted limit (dBuV) |           |  |
|-----------------------------|------------------------|-----------|--|
|                             | Quasi-peak             | Average   |  |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |  |
| 0.5-5                       | 56                     | 46        |  |
| 5-30                        | 60                     | 50        |  |

<sup>\*</sup> Decreases with the logarithm of the frequency.

#### **Test Results**

- Refer to see the measured plot in next page.

Test Engineer: Kug Kyoung, Yoon

Report no. ETLE070911.633, Page 39 of 43



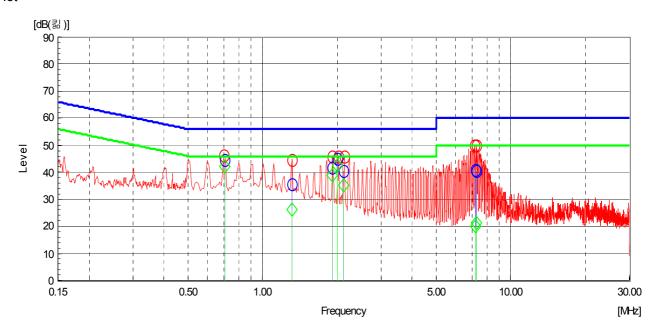
### **Power line Conducted Emissions**

#### Test data

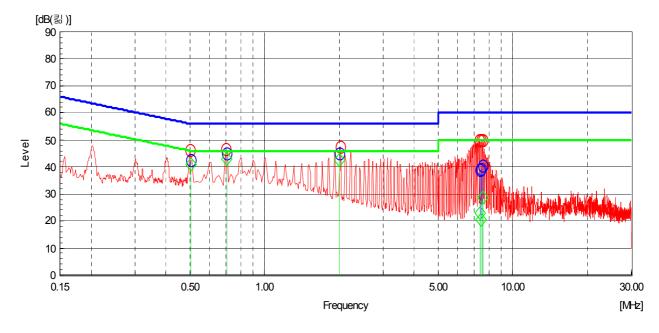
The following table shows the highest levels of conducted emissions on both polarizations of hot and neutral line. Detector mode: CISPR Quasi-Peak mode ( 6 dB Bandwidth : 9 kHz )

| Frequency<br>[MHz] | Result [dB <sub>/l</sub> N] |         | Phase    | Limit [dB $\mu$ V] |         | Margin<br>[dB] |         |
|--------------------|-----------------------------|---------|----------|--------------------|---------|----------------|---------|
|                    | Quasi-peak                  | Average | (*H/**N) | Quasi-peak         | Average | Quasi-peak     | Average |
| 0,504              | 42,7                        | _       | Ν        | 56,0               | 46,0    | 13,3           | -       |
| 0,704              | 45,0                        | _       | Ν        | 56,0               | 46,0    | 11,0           | _       |
| 1,312              | 35,6                        | _       | Н        | 56,0               | 46,0    | 20,4           | -       |
| 1,913              | 41,7                        | _       | Н        | 56,0               | 46,0    | 14,3           | _       |
| 2,116              | 35,3                        | ı       | Н        | 56,0               | 46,0    | 10,9           | ı       |
| 7,187              | 40,8                        | 1       | Н        | 60,0               | 50,0    | 19,2           | -       |
| 7,468              | 39,4                        | 1       | N        | 60,0               | 50,0    | 20,6           | _       |

NOTES: 1. \* H: HOT Line, \*\*N: Neutral Line


- 2. Margin value = Limit Result
- 3. Measurement were performed at the AC Power Inlet in the frequency band of 150 kHz  $\sim$  30 MHz according to the FCC Part 15.207

Report no. ETLE070911.633, Page 40 of 43




### **Test plots**

Hot



#### Neutral



Quasi-peak Average Average

Report no. ETLE070911.633, Page 41 of 43



## 6. SAMPLE CALCULATION

### **Sample Field Strength Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF

Where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

 $dB(\mu V) = 20 \log_{10} (uV)$ : Equation

Example : @ 47,72 MHz

Class B Limit = 40,00 dBuV/m

Reading = 17,81 dBuV

Antenna Factor + Cable Loss = 9,63 + 2,05 = 11,68 dBuV/m

Total = 29,49 dBuV/m

Margin = 40,00 - 29,49 = 10,51 dB

= 10,51 dB below Limit

Report no. ETLE070911.633, Page 42 of 43



# 7. List of test equipments used for measurements

| Test Equipment |                         | Model      | Mfg.         | Serial No. | Cal. Due Date |  |
|----------------|-------------------------|------------|--------------|------------|---------------|--|
| $\boxtimes$    | EMI TEST Receiver       | ESVS10     | R&S          | 835165/001 | 08.05.03      |  |
| $\boxtimes$    | EMI TEST Receiver       | ESPI3      | R&S          | 100478     | 08-10-04      |  |
| $\boxtimes$    | Spectrum Analyzer       | E7405A     | H.P          | US41160290 | 08-10-05      |  |
| $\boxtimes$    | Spectrum Analyzer       | R3132      | Advantest    | 110401685  | 08-10-05      |  |
| $\boxtimes$    | LogBicon Antenna        | VULB9165   | Schwarz Beck | 2023       | 08.08.28      |  |
| $\boxtimes$    | Broad band Horn antenna | BBHA 9120D | Schwarz Beck | 227        | 08-03-15      |  |
| $\boxtimes$    | Broad band Horn antenna | BBHA 9120D | Schwarz Beck | 285        | 08-03-15      |  |
| $\boxtimes$    | Preamplifier            | 8447D      | H.P          | 3307A02865 | 08-10-05      |  |
| $\boxtimes$    | LISN                    | 3816-2     | EMCO         | 1001       | 08-10-05      |  |
| $\boxtimes$    | LISN                    | 3816-2     | EMCO         | 1002       | 08-10-05      |  |
| $\boxtimes$    | Turn-Table              | DETT-03    | Daeil EMC    | -          | N/A           |  |
|                | Antenna Master          | DEAM-03    | Daeil EMC    | -          | N/A           |  |

End of test report

Report no. ETLE070911.633, Page 43 of 43