

TEST REPORT

Ref. Report No.

02-341-013-01

This test report only responds to the tested sample and shall not be reproduced except

Name and address of the applicant

VESSCO Inc.
506, Jungwoo APT. Factory, 223-271, Suknam-dong, Seo-gu,
Inchon-shi, 404-824, Korea

Standard / Test regulation

FCC Part 15, Subpart B

Test result

Pass

Incoming date : April 19, 2002

Test date : October 16, 2002

Test item(s) :

Communication Receiver used with
Part 15 Tx (Voice Dialer)

Model/type ref. :

Secuman

Manufacturer :

VESSCO Inc.

Additional information :

-Required Authorization : Certification

-FCC ID. : QCZSECUMAN

-Note : Test report(Certification) of
Transmitter portions of this System are
issued on Ref. Report No. 02-341-013-02 and
02-341-013-03 respectively.

Issue date : October 21, 2002

in full without written approval of the Korea Testing Laboratory.

Tested and reported by

Jeong-Min Kim, Senior Engineer

Reviewed by

Hee-Soo Kim, Telecommunication
Team Manager

**KOREA TESTING
LABORATORY**

TABLE OF CONTENTS

I. GENERAL INFORMATION.....	3
1. Grantee's Name and Mailing Address	
2. Manufacturer's Name and Mailing Address	
3. Equipment Descriptions	
4. Rules and Regulations	
5. Measuring Procedure	
6. Place of Measurement	
7. Date of Measurement	
□. GENERAL REQUIREMENTS OF THE EUT.....	4
1. Labeling Requirement (Section 15.19)	
2. Information to User (Sections 15.21)	
3. Special Accessories (Section 15.27)	
□. CONDUCTED EMISSION MEASUREMENT (Section 15.107).....	5
1. Test Procedure	
2. Photograph for the test configuration	
3. Sample Calculation	
4. Measurement Data	
□. RADIATED EMISSION MEASUREMENT (Section 15.109).....	9
1. Test Procedure	
2. Photograph for the test configuration	
3. Sample Calculation	
4. Measurement Data	
□. TEST EQUIPMENTS USED FOR MEASUREMENT.....	12

□. GENERAL INFORMATION

1. Grantee's Name and Mailing Address : VESSCO Inc.
506 Jungwoo APT. Factory, 223-271, Suknam-dong, Seo-gu, Inchon, 404-824, Korea

2. Manufacturer's Name and Mailing Address : VESSCO Inc.
506 Jungwoo APT. Factory, 223-271, Suknam-dong, Seo-gu, Inchon, 404-824, Korea

3. Equipment Descriptions

3.1 Operating Frequency : 447.35 MHz
3.2 Detect Method : Superheterodyne Detector
3.3 Local Oscillator : Local Osc. Frequency = Operating Frequency – 10.7 MHz (IF)
3.4 Power Supply : DC 12 V Adapter or DC 9V Battery

4. Rules and Regulations : FCC Part 15, Subpart B

5. Measuring Procedure : ANSI C63.4-2001

6. Place of Measurement : Absorber-lined Room (KTL)

7. Date of Measurement

7.1 Conducted Emission : October 16, 2002
7.2 Radiated Emission : October 15, 2002

□. GENERAL REQUIREMENTS OF THE EUT**1. Labeling Requirement (Section 15.19)**

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

1.1 Location of Label : User's Guide Manual

1.2 How Applied : Printed

2. Information to User (Section 15.21)

The following or similar statements were provided in the manual for user instruction.

Please refer page 11 of the attached manual for details.

CAUTION : Any changes or modifications in construction of this device which are not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

3. Special Accessories (Section 15.27)

3.1 Were the special Accessories provided? [] yes, [] no

3.2 If yes, details for the special accessories are as follows :

3.3 If yes, were the appropriate instructions provided on the first page of the text concerned with the device?

[] yes, [] no

3.4 Are these accessories provided of the type which can be readily obtained from multiple retail outlets ?

[] yes, [] no

And therefore does the manual specify what additional components or accessories are required to be used in order to comply with the Rules?

[] yes, [] no

□. CONDUCTED EMISSION MEASUREMENT (Section 15.107)**1. Test Procedure**

Conducted emission measurements on the EUT were performed by "AC Power Line Conducted Emissions Testing" procedure as per ANSI C63.4. The EUT was set up on a wooden table 0.8 meters height, 1.0 by 1.5 meters in size, placed in the shielded enclosed with a side of wall of which constituted a vertical conducting surface of 2.2 m x 3.1 m in size to maintain 40 cm from the rear of EUT

LISN(Line Impedance Stabilization Network, EMCO, 3825/2, 50 ohm / 50 μ H) was installed and electrically bonded to the conducting ground plane. The EUT was connected to the LISN.

One of two 50 ohm output terminals of the LISN was connected to the EMI Receiver(ROHDE & SCHWARZ, ESI7, 20 Hz to 7 GHz) and the other was terminated in 50 ohms. Measurements were again performed after interchanging such a connection oppositely.

The frequency range from 150 kHz to 30 MHz was examined and the remarkable frequencies were measured with Quasi-peak and Average values using the EMI receiver instrument (ROHDE & SCHWARZ, ESI7, 20 Hz to 7 GHz ; Detector Function ; CISPR Quasi-Peak & Average). The 6 dB bandwidth of the Receiver was set to 9 kHz

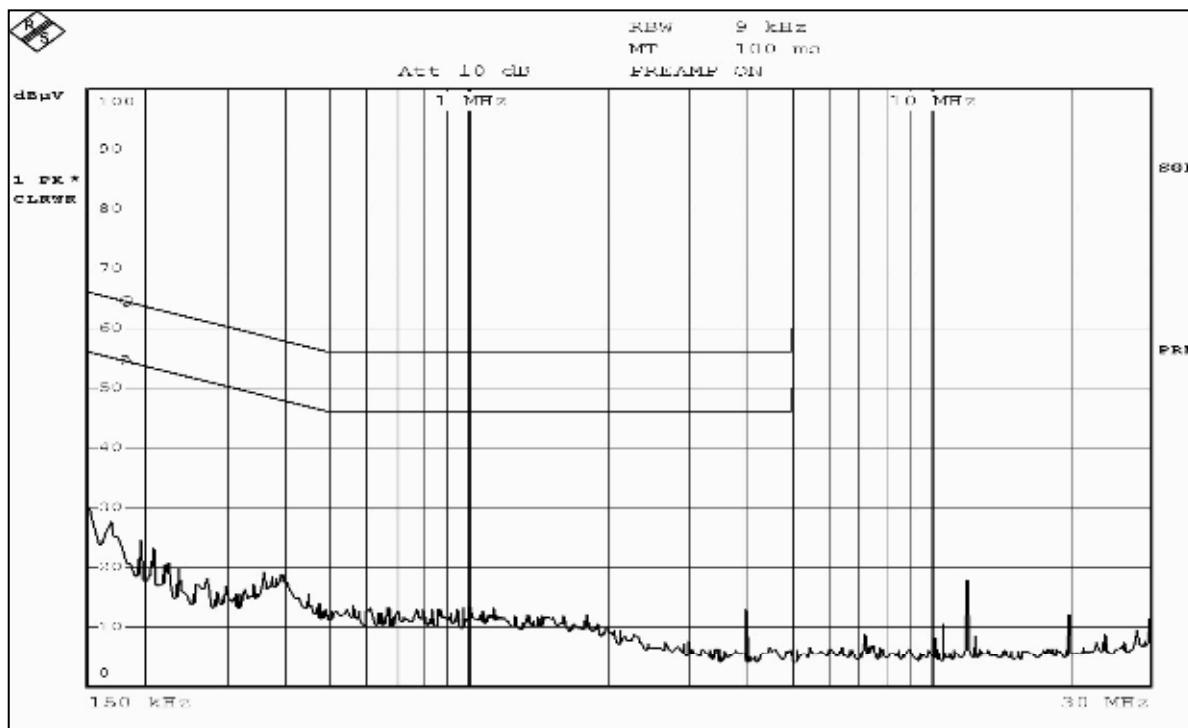
The position of connecting cables of the EUT was changed to find the worst case configuration during measurements. The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

2. Photograph for the test configuration

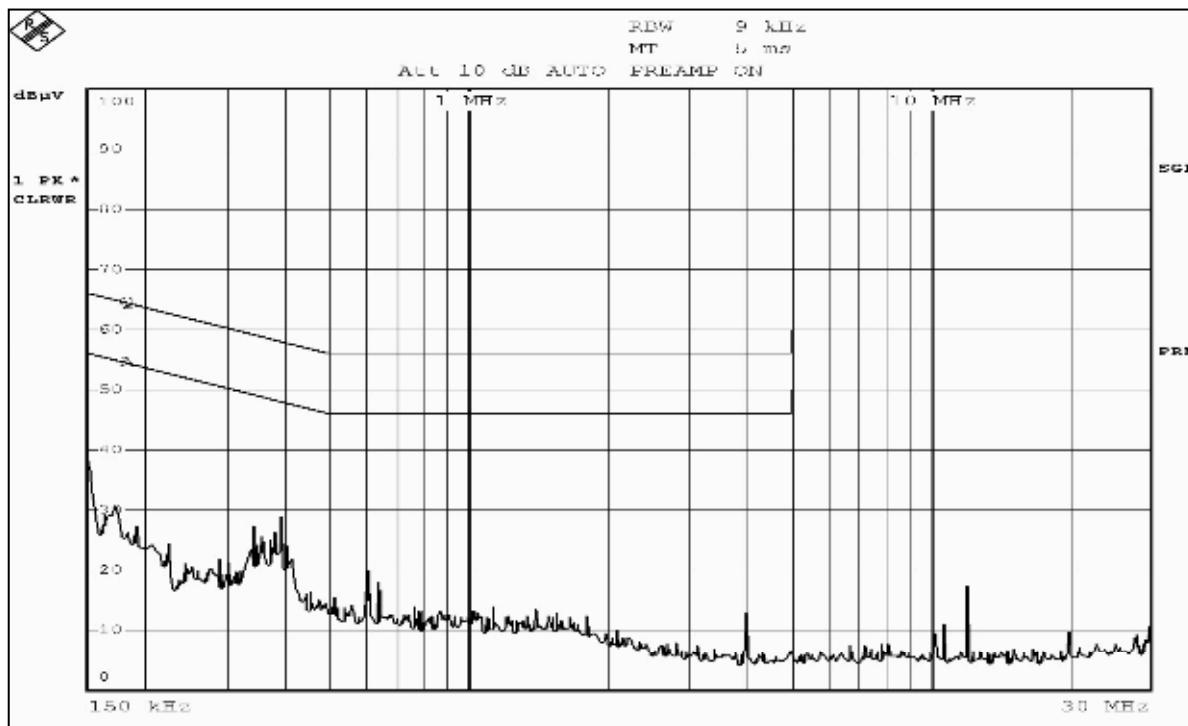
3. Sample Calculation

The emission level measured in decibels above one microvolt ($\text{dB} \square$) was converted into microvolt (\square) as shown in following sample calculation.

For example :


$$\begin{array}{l} \text{Measured Value at } 0.382 \text{ MHz} \quad 19.3 \text{ dB} \square @ \text{average mode} \\ + \text{ Cable Losses * } \quad \quad \quad 0.0 \text{ dB} \\ \hline = \text{ Conducted Emission} \quad \quad \quad 19.3 \text{ dB} \square \\ \quad \quad \quad (= 9.2 \square) \end{array}$$

* In case of RG214/ RF cable 15 Ft, the loss is about 0.17 dB at the frequency of 30 MHz which is negligible.


4. Measurement Data

- Resolution Bandwidth : CISPR Quasi-Peak (6dB Bandwidth : 9 kHz)
- Average (6dB Bandwidth : 9 kHz)

Power Lead Tested	Frequency (MHz)	Emission Level		Limit		(*) Margin	
		Q-Peak (dB□)	Average (dB□)	Q-Peak (dB□)	Average (dB□)	Q-Peak (dB□)	Average (dB□)
Live to Ground	0.150	30.4	24.2	66.0	56.0	- 35.6	- 31.8
	0.166	23.2	13.9	65.0	55.0	- 41.8	- 41.1
	0.394	13.7	9.4	58.1	48.1	- 44.4	- 38.7
	12.000	16.5	16.4	60.0	50.0	- 43.5	- 33.6
	-	-	-	-	-	-	-
Neutral to Ground	0.166	31.3	21.2	65.0	55.0	- 33.7	- 33.8
	0.382	25.2	19.3	58.3	48.3	- 33.1	- 29.0
	12.000	16.2	16.2	60.0	50.0	- 43.8	- 33.8
	-	-	-	-	-	-	-
Note : Refer to measured graphs on next page.							
* Margin(dB) : Emission Level (dB) - Limit (dB)							

(Test side: Live-Ground side)

(Test side: Neutral-Ground side)

□. RADIATED EMISSION MEASUREMENT (Section 15.109)**1. Test Procedure****1.1 Preliminary Testing for Reference**

Preliminary testing was performed in a KTL absorber-lined room to determine the emission characteristics of the EUT. The EUT was placed on the wooden table which has dimensions of 0.8 meters in height, 1 meter in length and 1.5 meters in width. Receiving antenna (Biconical antenna : 30 to 300 MHz, Log-periodic antenna : 200 to 1000 MHz or Horn Antenna : 1 to 18 GHz) was placed at the distance of 1 meter from the EUT.

An attempt was made to maximize the emission level with the various configurations of the EUT while rotating the table and varying antenna height.

Emission levels from the EUT with various configurations were examined on a Spectrum Analyzer connected with a RF amplifier and graphed by a plotter.

1.2 Final Radiated Emission Test at an Absorber-Lined Room

The final measurement of radiated field strength was carried out in a KTL Absorber-Lined Room that was listed up at FCC according to the "Radiated Emissions Testing" procedure specified by ANSI C63.4.


Based on the test results in preliminary test, measurement was made in same test set up and configuration which produced maximum emission level. Receiving antenna was installed at 3-meter distance from the EUT, and was connected to an EMI receiver or spectrum analyzer with a RF amplifier.

Turntable was rotated through 360 degrees and receiving antenna height was varied from 1 to 4 meters above the ground plane to read maximum emission level.

If necessary, the radiated emission measurements could be performed at a closer distance than specified distance to ensure higher accuracy and their results were extrapolated to the specified distance using an inverse linear distance extrapolation factor (20 dB/decade) as per Section 15.31(f).

The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

2. Photograph for the test configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt ($\text{dB } \square$) was converted into microvolt per meter (\square/m) as shown in following sample calculation.

For example :

Measured Value at	<u>873.31 MHz</u>	5.0 $\text{dB } \square/\text{m}$
+	Antenna Factor	23.0 dB
+	Cable Loss	5.3 dB
-	Preamplifier	0.0 dB
-	Distance Correction Factor *	0.0 dB
=	Radiated Emission	33.3 $\text{dB } \square/\text{m}$
		(= 46.2 \square/m)

* Extrapolated from the measured distance to the specified distance by an inverse linear distance extrapolation.

4. Measurement Data

- Detect Mode and Resolution Bandwidth

CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz for ranges below 1 GHz)

Average & Peak (6 dB Bandwidth: 1 MHz for ranges over 1 GHz)

- Measurement Distance : 3 Meter

Note

The upper frequency range of this test was 2 GHz. The observed EMI Test Receiver's noise floor level with RF preamplifier was 35.0 dB \square . And all other emissions not reported on data were more than 20 dB below the permitted level.

* D.M. : Detect Mode (P : Peak, Q : Quasi-Peak, A : Average)

A.P. : Antenna Polarization (H : Horizontal, V : Vertical)

A.F. : Antenna Factor

C.L. : Cable Loss

C.L. : Cable Loss
A.G. : Amplifier Gain

A.G. : Amplifier Gain
D.C.F. : Distance Correction Factor

D.C.F. : Distance
≤ : Less than

** Margin (dB) = Emission Level (dB) - Limit (dB)

□. TEST EQUIPMENT USED FOR MEASUREMENTS

<u>Equipment</u>	<u>Model No.</u>	<u>Manufacturer</u>	<u>Serial No.</u>	<u>Effective Cal. Duration</u>
[x] EMI Receiver (20 MHz-1 GHz)	ESVS30	R & S	830516/002	06/13/02-06/13/03
[x] EMI Receiver (20 Hz-7 GHz)	ESI	R & S	835571/004	09/05/02-09/05/03
[x] Spectrum Analyzer (9 kHz-26.5 GHz)	8563A	H. P.	3222A02069	03/27/02-03/27/03
[x] Spectrum Analyzer (100 Hz-22 GHz)	8566B	H. P.	3014A07057	05/26/02-05/26/03
[x] Quasi-Peak Adapter (10 kHz-1 GHz)	85650A	H. P.	3107A01511	05/26/02-05/26/03
[x] RF-Preselector (20 Hz-2 GHz)	85685A	H. P.	3010A01181	05/26/02-05/26/03
[] Test Receiver (9 kHz-30 MHz)	ESH3	R & S	860905/001	06/13/02-06/13/03
[x] Pre-Amplifier (0.1-3000 MHz, 30 dB)	8347A	H. P.	2834A00543	05/26/02-05/26/03
[x] Pre-Amplifier (1-26.5 GHz, 35 dB)	8449B	H. P.	3008A00302	05/26/02-05/26/03
[x] LISN(50 Ω, 50 µH) (10 kHz-100 MHz)	3825/2	EMCO	9010-1710	05/26/02-05/26/03
[x] Plotter	7470A	H. P.	3104A21292	-
[] Tuned Dipole Ant. (30 MHz-300 MHz)	VHA 9103	Schwarzbeck	-	*
[] Tuned Dipole Ant. (300 MHz-1 GHz)	UHA 9105	Schwarzbeck	-	*
[x] Biconical Ant. (30 MHz-300 MHz)	BBA 9106	Schwarzbeck	-	*
[x] Log Periodic Ant. (200 MHz-1 GHz)	3146	EMCO	-	*
[x] Horn Ant. (1 GHz-18 GHz)	3115	EMCO	-	*
[] Active Loop Ant. (9 kHz-30 MHz)	6502	EMCO	2532	*
[] DC Power Supply	6260B	H.P.	1145A04822	-
[x] Shielded Room (5.0 m x 4.5 m)	-	SIN-MYUNG	-	-

* Each set of antennas has been calibrated to ensure correlation with ANSI C63.5 standard. The calibration of antennas is traceable to Korea Standard Research Institute(KSRI).