

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power input to the antenna

G = antenna gain

R = distance

EIRP	28.00	(dBm)
EIRP	0.631	(W)
ERP	0.386	(W)
Distance:	20	(cm)
Duty Cycle:	100	(%)
Frequency:	5500	(MHz)
MPE Limit:	1	(mW/cm ²)
Power density:	0.126	(mW/cm ²)
Power density:	1.26	(W/m ²)
Margin	9.0	(dB)