ENGINEERING TEST REPORT

4G FingerVein Station **Model No.: 4GFVSTHW**

FCC ID: QC4-4GFVSTHW

Applicant:

Bioscrypt, Inc. 505 Cochrane Drive

Markham, Ontario Canada L3R 8E3

In Accordance With

Federal Communications Commission (FCC) Part 15, Subpart C Unlicensed Low Power Transmitter Operating in the Band 13.110-14.010 MHz

UltraTech's File No.: MYT-167F15C225

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: May 18, 2010

Report Prepared by: Dan Huynh

Issued Date: May 18, 2010

Tested by: Hung Trinh, EMC/RFI Technician

Test Dates: March 10, 28 & 29, 2009

April 5 & 9, 2010

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

 $ar{L}$

91038

1309

46390-2049

NvLap Lab Code 200093-0

SL2-IN-E-1119R

CA2049

TABLE OF CONTENTS

FXHIBII	I. INTRODUCTION	1
1.1. 1.2. 1.3.	SCOPERELATED SUBMITTAL(S)/GRANT(S)NORMATIVE REFERENCES	1
EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT INFORMATION EQUIPMENT UNDER TEST (EUT) INFORMATION EUT'S TECHNICAL SPECIFICATIONS. LIST OF EUT'S PORTS. ANCILLARY EQUIPMENT. GENERAL TEST SETUP.	3 3 3
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	6
3.1. 3.2.	CLIMATE TEST CONDITIONSOPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	6
EXHIBIT	4. SUMMARY OF TEST RESULTS	7
4.1. 4.2. 4.3.	LOCATION OF TESTS APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	7
EXHIBIT	5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	8
5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	TEST PROCEDURES	8 8 9
5.8.	POWERLINE CONDUCTED EMISSIONS [47 CFR 15.107(a) & 15.207]	5
EXHIBIT	5. TEST EQUIPMENT LIST2	20
EXHIBIT	7. MEASUREMENT UNCERTAINTY2	!1
7.1. 7.2	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Sec. 15.225 - Operation within the band 13.110 – 14.010 MHz.
Title:	Title 47, Code of Federal Regulations (CFR), Part 15, Subpart C
Purpose of Test:	To gain FCC Certification Authorization for Section 15.225 - Operation within the Band 13.110 - 14.010 MHz.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, industrial or business environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC 47 CFR 15	2009	Code of Federal Regulations – Telecommunication
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
CISPR 22 EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Bioscrypt, Inc.	
Address:	505 Cochrane Drive Markham, Ontario Canada L3R 8E3	
Contact Person: Shiraz Kapadia Phone #: 905-940-7750 Fax #: 905-940-7642 Email Address: SKapadia@L1ID.com		

MANUFACTURER		
Name:	Knight Wah Technology Ltd.	
Address:	Unit 16 - 19, 3/F Tower B,Regent Centre, 63-73 Wo Yi Hop Road, Kwai Chung, N. T. Hong Kong	
Contact Person:	Y.H. Chan Phone #: (852) 2619 0162 Fax #: (852) 2619 0132 Email Address: yhchan@knightwah.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Bioscrypt, Inc.
Product Name:	4G FingerVein Station
Model Name or Number:	4GFVSTHW
Serial Number:	Test sample
Type of Equipment:	Low Power Communication Device Transmitter
Input Power Supply Type:	12 VDC on DC Line or 48 VDC on PoE
Primary User Functions of EUT:	Enroll, verification, communication output

2.3. EUT'S TECHNICAL SPECIFICATIONS

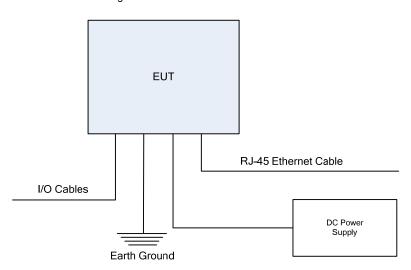
Transmitter		
Equipment Type:	Mobile	
Intended Operating Environment:	Commercial, light industry & heavy industry	
Power Supply Requirement:	5 – 16 VDC	
Field Strength:	57.22 dBμV/m at 10 m	
Operating Frequency Range:	13.56 MHz	
RF Output Impedance:	50 Ω	
20 dB Bandwidth:	5.31 kHz	
Modulation Type:	ASK	
Oscillator Frequencies:	27.12MHz	
Antenna Connector Type:	Integral	

2.4. LIST OF EUT'S PORTS

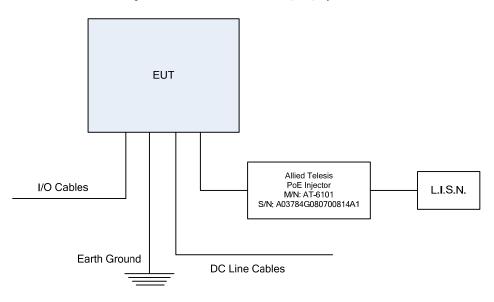
Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Ethernet 100-Base TX	1	RJ45	Non shielded
2	Host RS-485	1	Header	Non shielded
3	Host RS-232	1	Header	Non shielded
4	Power	2	Bullet and Header	Non shielded
5	Wiegand I/O (8 Lines)	1	Header	Non shielded
6	General Purpose I/O (3 Inputs & 6 Outputs)	1	Header	Non shielded
7	Relay Control (NC, NO & COM)	1	Header	Non shielded
8	USB OTG (Auxiliary Port)*	1	USB-Micro-AB	Shielded

^{*} Note: Secured and used by service personnel only

2.5. ANCILLARY EQUIPMENT

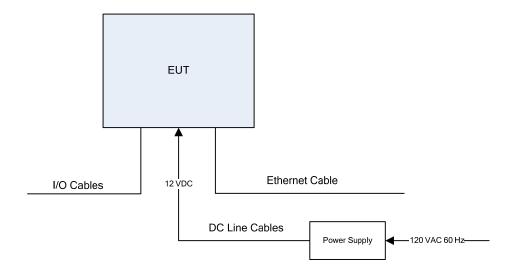

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	PoE Injector	
Brand Name:	Allied Telesis	
Model Name or Number:	AT-6101	
Serial Number:	A03784G080700814A1	
Cable Length & Type:	> 3 m, Non-shielded	
Connected to EUT's Port:	Ethernet	


2.6. **GENERAL TEST SETUP**

2.6.1. Power Line Conducted Emission Test Setup

Test Configuration 1: External 12 VDC Power Source



Test Configuration 2: Power Over Ethernet (PoE) Injector

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

2.6.2. Radiated Emission Test Setup

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	12 VDC 48 VDC (from PoE)

3.2. OPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The EUT was configured for continuous transmission for the duration of testing.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT was tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.

Transmitter Test Signals:			
Frequency:	13.56 MHz		
Transmitter Wanted Output Test Signals:			
RF Power Output (measured maximum output power):	57.22 dBµV/m at 10 m		
Normal Test Modulation:	ASK		
Modulating signal source:	Internal		

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2011-05-01.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Regulations	Test Requirements	Compliance (Yes/No)
15.203 & 15.204	The transmitter shall use a transmitting antenna that is an integral part of the device	Yes
15.215	20 dB & 99% Bandwidth	Yes
15.225(a) – (d)	Field Strength of Emissions Inside and Outside the Permitted Band 13.110 - 14.010 MHz	Yes
15.225(e)	Frequency Stability	Yes
15.107 & 15.207	Class B - Power Line Conducted Emissions	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

The following modifications were made for compliance:

Ferrite material added outside device on cables:

4G FingerVein Station required the addition of a Steward Ferrite P/N: 28A4155-0A2, requiring 1 turn on the IO and Unit Power lines close to the unit.

4G FingerVein Station required the addition of a Steward Ferrite P/N: 28A2432-0A2, requiring 1 turn on the Ethernet lines close to the unit RJ45 port.

Ferrite material added inside device:

4G FingerVein Station required the addition of two Steward Ferrites, P/N: 28B0562-000, and each ferrite required 2 turns on the internal LVDs cable. One ferrite closes to one end of the LVDs cable and another ferrite closes to another end of the LVDs cable.

4G FingerVein Station required the addition of two Steward Ferrites, P/N: 28B0562-000, and each ferrite required 1 turn on the internal FingerVein Sensor cable. One ferrite closes to one end of the FingerVein Sensor cable and another ferrite closes to another end of the FingerVein Sensor cable.

4G FingerVein Station also required Nickel Paint – MG Chemicals, Super Shield Nickel Conductive Coating, UL E202609, CAT/PN: 841-3406, applied to the unit plastic case internal surface which encloses the Hitachi FingerVein Sensor.

ULTRATECH GROUP OF LABS

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4 and ULTR-P001-2004.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

5.4. COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS

FCC Section	FCC Rules	
15.203	Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.	Integral PCB antenna
	The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed: The application (or intended use) of the	
	 EUT The installation requirements of the EUT The method by which the EUT will be marketed 	
15.204	Provided the information for every antenna proposed for use with the EUT: (a) type (e.g. Yagi, patch, grid, dish, etc), (b) manufacturer and model number (c) gain with reference to an isotropic radiator	Only furnished integral antenna will be used in the EUT.

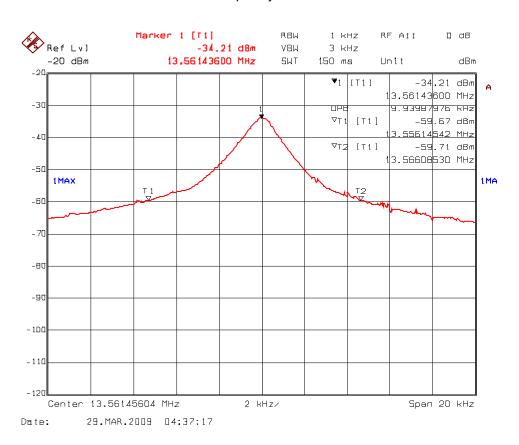
5.5. OCCUPIED BANDWIDTH

5.5.1. Limits

The 20 dB bandwidth of the emission shall be contained within the band 13.110–14.010 MHz.


5.5.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods


5.5.3. Test Data

Test Frequency (MHz)	Occupied Bandwidth (kHz)		
rest Frequency (MHZ)	20 dB BW	99 % BW	
13.56	5.31	9.94	

Plot 5.5.3.1 20 dB Bandwidth Test Frequency: 13.56 MHz

Plot 5.5.3.2 99% Occupied Bandwidth Test Frequency: 13.56 MHz

5.6. FIELD STRENGTH OF EMISSIONS INSIDE & OUTSIDE THE PERMITTED BAND 13.110-14.010 MHz [47 CFR 15.225 (a) to (d)]

5.6.1. Limits

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

47 CFR 15.209(a) - Radiated Emission Limts; general requirements

Frequency (MHz)	Field Strength Limits (microvolts/m)	Distance (Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

5.6.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

Applies to harmonics/spurious that fall in the restricted bands listed in Section 15.205. the maximum permitted average field strength is listed in Section 15.209. A Pre-Amp and high-pass filter are used for this measurement.

- For measurements from 9 KHz to 150 KHz, set RBW = 200 Hz, VBW > RBW, SWEEP=AUTO.
- For measurements from 150 KHz to 30 MHz, set RBW = 10 KHz, VBW > RBW, SWEEP=AUTO.
- For measurements from 30 MHz to 1 GHz, set RBW = 100 KHz, VBW > RBW, SWEEP=AUTO.
- For measurement above 1 GHz, set RBW = 1 MHz, VBW = 1 MHz, SWEEP=AUTO.

If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

File #: MYT-167F15C225

May 18, 2010

5.6.3. Test Data

Remarks:

- Radiated spurious emissions measurements were performed at 10 m distance, from 10 kHz 10th harmonic of the fundamental and all spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- For frequencies below 30 MHz, the results measured at 10 m distance shall be extrapolated to the specified distance using an extrapolation factor of 40 dB/decade.
- For frequencies at or above 30 MHz, the results measured at 10 m distance shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade.
- The 13.56 MHz radio and the 2.4 GHz radio were set to transmit continuously during radiated emission tests.

5.6.3.1. Field Strength of Emissions Inside the Permitted Band

Frequency (MHz)	Measured Field Strength @ 10 m (dBμV/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	Field Strength Extrapolated Value (dBµV/m)	§ 15.225 Field Strength Limits	Margin (dB)
13.56	45.02	Peak	V	25.9	84.0	-58.1
13.56	57.22	Peak	Н	38.1	84.0	-45.9

5.6.3.2. Field Strength of Emissions Outside the Permitted Band

Frequency (MHz)	Measured Field Strength @ 10 m (dBμV/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	Field Strength Extrapolated Value (dBµV/m)	§ 15.209 Field Strength Limits	Margin (dB)
All spurious emissions are more than 20 dB below the specified limit.						

File #: MYT-167F15C225

May 18, 2010

5.7. FREQUENCY STABILITY [47 CFR 15.225(e)]

5.7.1. Limits

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.7.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004.

5.7.3. Test Data

Frequency Band:	13.56 MHz
Center Frequency:	13.56 MHz
Frequency Tolerance Limit:	<u>+</u> 0.01% (<u>+</u> 1356 Hz)
Max. Frequency Tolerance Measured:	+250 Hz
Input Voltage Rating:	12-24 VDC on DC input
input voitage Nating.	48 VDC on PoE

	Frequency Drift (Hz)				
Ambient Temperature (°C)	Supply Voltage (Nominal) 12 VDC	Supply Voltage (85 % of Nominal) 10.2 VDC	Supply Voltage (115% of Nominal) 27.6 VDC		
-30	+200				
-20	+200				
-10	+150				
0	+100				
+10	+50				
+20	0	0	0		
+30	+100				
+40	+50				
+50	-50				
+60	+50				

	Frequency Drift (Hz)					
Ambient Temperature (°C)	Supply Voltage (Nominal) 48 VDC	Supply Voltage (85 % of Nominal) 40.8 VDC	Supply Voltage (115% of Nominal) 55.2 VDC			
-30	+250					
-20	+250					
-10	+200					
0	+150					
+10	+100					
+20	0	0	0			
+30	+150					
+40	+100					
+50	0					
+60	+100		<u></u>			

5.8. POWERLINE CONDUCTED EMISSIONS [47 CFR 15.107(a) & 15.207]

5.8.1. Limits

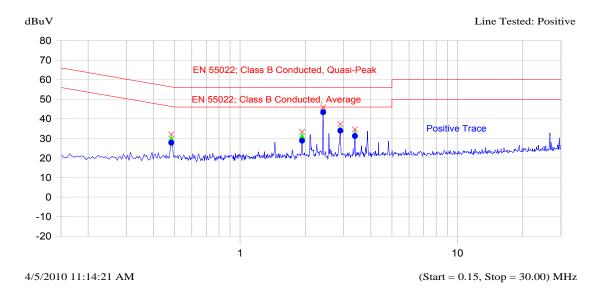
The equipment shall meet the limits of the following table:

Test Frequency Range	Class B Li	mits (dBμV)	Magazzina Bandwidth
(MHz)	Quasi-Peak	Average	Measuring Bandwidth
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 kHz VBW <u>></u> 9 kHz for QP VBW = 1 Hz for Average
0.5 to 5	56	46	RBW = 9 kHz VBW <u>></u> 9 kHz for QP VBW = 1 Hz for Average
5 to 30	60	50	RBW = 9 kHz VBW <u>></u> 9 kHz for QP VBW = 1 Hz for Average

^{*} Decreasing linearly with logarithm of frequency

5.8.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

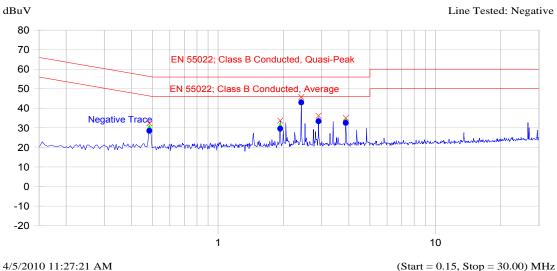

File #: MYT-167F15C225

May 18, 2010

5.8.3. Test Data

Plot 5.8.3.1. Power Line Conducted Emission
Test Configuration 1: External 12 VDC Power Source
Line Voltage: 12 VDC
Line Tested: Positive

Current Graph

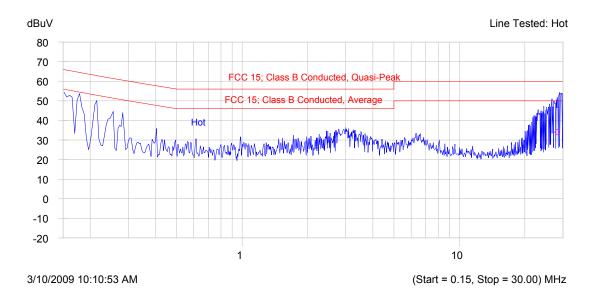


Current List

Frequency MHz	Peak dBuV		Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.483	31.9	29.7	-26.8	27.7	-18.7	Positive Trace
1.931	33.3	31.2	-24.8	28.8	-17.2	Positive Trace
2.414	45.9	43.9	-12.1	43.4	-2.6	Positive Trace
2.896	37.3	34.7	-21.3	33.9	-12.1	Positive Trace
3.380	34.5	32.3	-23.7	31.2	-14.8	Positive Trace

Plot 5.8.3.2. Power Line Conducted Emission Test Configuration 1: External 12 VDC Power Source Line Voltage: 12 VDC Line Tested: Negative

Current Graph

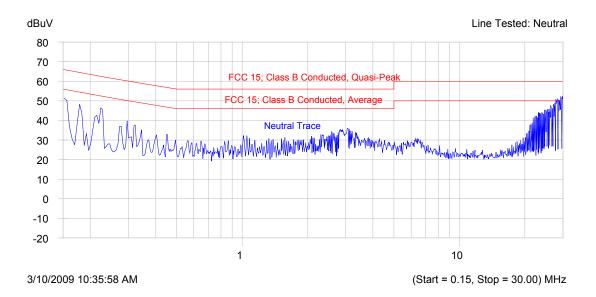


Current List

Frequency MHz	Peak dBuV	QP dBuV	Delta QP-QP Limit dB	Avg dBu\	Delta Avg-Avg Limit dB	Trace Name
0.483	32.3	30.2	-26.3	28.5	-18.0	Negative Trace
1.933	33.7	31.0	-25.0	29.5	-16.5	Negative Trace
2.417	45.7	43.6	-12.4	43.0	-3.0	Negative Trace
2.903	36.2	34.0	-22.0	33.4	-12.6	Negative Trace
3.870	35.1	33.6	-22.4	32.5	-13.5	Negative Trace

Plot 5.8.3.3. Power Line Conducted Emission
Test Configuration 2: Power over Ethernet (PoE) Injector
Line Voltage: 120VAC 60Hz
Line Tested: Hot

Current Graph



Current List

Frequency MHz	Peak dBuV	QP dBuV	Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit ' dB	Trace Name
0.186	53.7	45.7	-18.5	29.7	-24.6	Hot Trace
0.214	50.9	43.1	-20.0	28.2	-24.9	Hot Trace
0.276	45.8	39.0	-22.0	29.9	-21.0	Hot Trace
26.702	49.6	47.3	-12.7	43.6	-6.4	Hot Trace
28.893	34.5	27.7	-32.3	19.8	-30.2	Hot Trace
28.170	34.1	29.9	-30.1	24.3	-25.7	Hot Trace

Plot 5.8.3.4. Power Line Conducted Emission Test Configuration 2: Power over Ethernet (PoE) Injector Line Voltage: 120VAC 60Hz Line Tested: Neutral

Current Graph

Current List

Frequency MHz	Peak dBuV		Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.184	52.9	45.9	-18.4	29.9	-24.4	Neutral Trace
0.215	48.7	41.4	-21.6	26.2	-26.8	Neutral Trace
26.282	42.0	47.2	-12.8	43.8	-6.2	Neutral Trace
28.239	51.5	48.7	-11.3	37.9	-12.1	Neutral Trace
29.226	52.7	50.3	-9.7	46.3	-3.7	Neutral Trace

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Operating Range
EMI Receiver System/ Spectrum Analyzer with built-in Amplifier	Hewlett Packard	HP 8546A	3520A00248	9KHz-5.6GHz, 50 Ohms
Transient Limiter	Hewlett Packard	11947A	310701998	9 kHz – 200 MHz 10 dB attenuation
L.I.S.N.	EMCO	3825/2	89071531	9 kHz – 200 MHz 50 Ohms / 50 μH
12'x16'x12' RF Shielded Chamber	RF Shielding			
EMI-Test Receiver	Rohde & Schwarz	ESU40	100037	20 Hz- 40 GHz Build in amplifier
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz- 40 GHz
Loop Antenna	Emco	6502	2611	10 kHz – 30 MHz
Biconilog Anenna	Emco	3142	10005	26 – 3000 MHz
Biconilog Anenna	Emco	3142B	1575	26 – 2000 MHz
Log Periodic	Emco	93148	1101	0.2 – 2 GHz
Log Periodic	Emco	3148	23845	0.2 – 2 GHz
Horn Antenna	Emco	3115	6570	1 – 18 GHz
Horn Antenna	Emco	3115	5955	1 – 18 GHz
RF Amplifier	Com-Power	PA-103A	161243	10 MHz – 1000 MHz
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz
Temperature & Humidity Chamber	Tenney	T5	9723B	-40°C - +80°C range

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)		
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
Mismatch: Receiver VRC Γ_1 = 0.03 LISN VRC Γ_R = 0.8(9 kHz) 0.2 (30 MHz) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3	
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05	
Repeatability of EUT				
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30	
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60	

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

$$u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)} = \pm \sqrt{(1.5^2 + 1.5^2)/3 + (0.5/2)^2 + (0.05/2)^2 + 0.35^2} = \pm 1.30 \text{ dB}$$

$$U = 2u_c(y) = + 2.6 dB$$

RADIATED EMISSION MEASUREMENT UNCERTAINTY 7.2.

CONTRIBUTION	PROBABILITY	UNCERTAINTY (± dB)		
(Radiated Emissions)	DISTRIBUTION	3 m	10 m	
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0	
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Antenna Directivity	Rectangular	+0.5	+0.5	
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5	
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2	
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25	
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4	
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0	
Mismatch: Receiver VRC Γ_1 = 0.2 Antenna VRC Γ_R = 0.67(Bi) 0.3 (Lp) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	+1.1 -1.25	<u>+</u> 0.5	
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5	
Repeatability of EUT		-	-	
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72	
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44	

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$$
 And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$