

## TEST REPORT For FCC

Test Report No. : TK-FI9019  
Date of Issue : 06/24/2009  
FCC ID : QBTLTK-2000M  
Description of Product : Multicall Charger Paging System  
Model No. : LTK-2000MC  
Applicant : **Lee Technology Korea Co., Ltd.**  
3<sup>rd</sup> Floor # 499-2 Sang 3-Dong, Wonmi-Gu  
Bucheon-City, Kyungki-Do, Korea  
Manufacturer : **Lee Technology Korea Co., Ltd.**  
3<sup>rd</sup> Floor # 499-2 Sang 3-Dong, Wonmi-Gu  
Bucheon-City, Kyungki-Do, Korea  
Standards : FCC Part15  
Test Date : 06/22/2009 – 06/24/2009

Test Results :  PASS  FAIL

The test results relate only to the items tested.

Tested by:

  
Kyoung-Moon Choi  
Test Engineer  
Date: 06/24/2009

Reviewed by:

  
K. T. Kang  
Technical Manager  
Date: 06/25/2009

**THRU-KES**  
Testing & Certification Partners  
477-6, Hager-Ri, Yoju-Up, Yoju-Gun Kyunggi-Do, 469-803, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450

## TABLE OF CONTENTS

|       |                                                             |    |
|-------|-------------------------------------------------------------|----|
| 1.0   | General Product Description .....                           | 3  |
| 1.1   | Device Modifications .....                                  | 3  |
| 1.2   | Peripheral Devices .....                                    | 3  |
| 1.3   | Calibration Details of Equipment Used for Measurement ..... | 4  |
| 1.4   | Test Facility.....                                          | 4  |
| 1.5   | Laboratory Accreditations and Listings .....                | 4  |
| 2.0   | Summary of tests .....                                      | 5  |
| 2.1   | Technical Characteristic Test.....                          | 6  |
| 2.1.0 | Test Procedure .....                                        | 6  |
| 2.1.1 | Radiated Spurious Emissions .....                           | 8  |
| 2.1.2 | Power Line Conducted Interference .....                     | 9  |
|       | APPENDIX A – Test Equipment Used For Tests .....            | 12 |
|       | Test Setup Photo and Configurationb-(Part 15B) .....        | 13 |

## 1.0 General Product Description

|                         |   |                                         |
|-------------------------|---|-----------------------------------------|
| EUT Type                | : | Paging Transmitter with Charging cradle |
| FCC Rule Part(s)        | : | §2; §15; §90                            |
| Model name              | : | LTK-2000MC                              |
| Serial number           | : | Identical prototype                     |
| Tx Freq. Range          | : | 450.0250 ~ 469.9975 MHz                 |
| Channel Space Bandwidth | : | 12.5kHz                                 |
| Type of Modulation      | : | 10K2F1D                                 |
| Frequency Tolerance:    | : | ± 0.00025 % (2.5ppm)                    |
| Maximum Output Power    | : | Conducted: 1.766W                       |
| Power Source            | : | 12 Vdc                                  |
| Antenna type            | : | Helical antenna      Gain: -2dBi        |

Note: EUT is equipped with a USB port for serial communication with Hyper terminal of Notebook.

### 1.1 Device Modifications

The following modifications were necessary for compliance:  
Not applicable

### 1.2 Peripheral Devices

| Device        | Manufacturer                  | Model No.  | Serial No.     |
|---------------|-------------------------------|------------|----------------|
| E U T         | Lee Technology Korea Co.,Ltd. | LTK-2000MI | -              |
| AC Adaptor    | HJC Hua Jung Comp.Co., Ltd.   | HASU11FB42 | 662401200738 4 |
| Notebook      | ASUSTek Computer Inc.         | EeePC901   | 860AAQ326043   |
| AD/DC Adaptor | Enertronix.iNC.               | EXA0801XA  |                |

### 1.3 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to RRA & HCT, therefore, all test data recorded in this report is traceable to RRA & HCT.

### 1.4 Test Facility

The measurement facility is located at 477-6, Hager-Ri, Yaju-Up, Yaju-Gun Kyunggi-Do, 469-803, Korea. Tel: +82-31-883-5092/Fax: +82-31-883-5169. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

### 1.5 Laboratory Accreditations and Listings

| Country | Agency | Scope of Accreditation                                                                                                        | Logo                                                                                             |
|---------|--------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| USA     | FCC    | 3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.                              | <br>343818   |
| KOREA   | KCC    | EMI (10 meter Open Area Test Site and two conducted sites)<br>Radio(3 & 10 meter Open Area Test Sites and one conducted site) | <br>KR100   |
| Canada  | IC     | 3 & 10 meter Open Area Test Sites and one conducted site                                                                      | <br>4769B-1 |

## 2.0 Summary of tests

| FCC Part Section(s) | Parameter  | Test Condition | Status (note 1) |
|---------------------|------------|----------------|-----------------|
| 15.109(a)           | Radiated   | Radiated       | C               |
| 15.107              | Power Line | Conducted      | C               |

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

The sample was tested according to the following specification:

## 2.1 Technical Characteristic Test

### 2.1.0 Test Procedure

**GENERAL:** USB port of EUT is used for communication with Hyper terminal of Notebook. The serial program signal from notebook registers/corrects the register informations in CPU's(18F4620 and PIC18F8722) of EUT via CP2102 chip(serial to USB)<Baud rate : 9600> EUT USB port connects to PC USB Port and then Hyper Terminal of PC access to work between EUT' CPU and PC Program(Hyper terminal) with data.

The data is that EUT's CPU register reads or writes data with PC program(Hyper terminal). So we tested When These was interaction.

**RADIATION INTERFERENCE:** The test procedure used was ANSI STANDARD C63.4-2003 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz. The ambient temperature of the UUT was 28°C with a humidity of 56%.

**FORMULA OF CONVERSION FACTORS:** The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

**Example:**

|            |                                        |
|------------|----------------------------------------|
| Freq (MHz) | METER READING + ACF = FS               |
| 33         | 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m |

**ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES:** The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in a manner that was representative of the way the EUT would be used. If the EUT had any

---

peripherals, they were attached and placed in a similar manner. The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes. In addition, in the event of the test being for a computer set up, the modem and printer positions were swapped and cables were manipulated as much as possible. The monitor was not moved, as that would not represent a typical situation configuration.

The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSIC63.4-2003 with the EUT 40 cm from the vertical ground wall.

### 2.1.1 Radiated Spurious Emissions

15.109(a) :

|               |                                  |
|---------------|----------------------------------|
| 30-88 MHz     | 40.0 dBuV/m measured at 3 meters |
| 88-216 MHz    | 43.5 dbuV/m                      |
| 216-960 MHz   | 46.0 dbuV/m                      |
| ABOVE 960 MHz | 54.0 dbuV/m                      |

### TEST

**CONFIGURATION:** Asus Notebook      **MODEL:** Eee PC 901

**Test Results:**

| No | Emission Frequency (MHz) | Meter Reading dBuV/m | Ant. Polaritry | Correction Factor dB | Cable Loss dB | Field Strength (dBuv/m) | Margin (dBuv) | Limit (dBuv/m) |
|----|--------------------------|----------------------|----------------|----------------------|---------------|-------------------------|---------------|----------------|
| 1  | 83.51                    | 11.8                 | H              | 8.9                  | 1.4           | 22.1                    | -17.9         | 40.0           |
| 2  | 115.74                   | 8.1                  | V              | 10.9                 | 1.8           | 20.8                    | -22.7         | 43.5           |
| 3  | 141.42                   | 9.6                  | H              | 15.3                 | 2.0           | 26.9                    | -16.6         | 43.5           |
| 4  | 130.30                   | 10.5                 | H              | 12.8                 | 1.9           | 25.2                    | -18.3         | 43.5           |
| 5  | 141.42                   | 7.5                  | V              | 15.3                 | 2.0           | 24.8                    | -18.7         | 43.5           |
| 6  | 142.63                   | 15.1                 | H              | 15.5                 | 2.0           | 32.7                    | -10.8         | 43.5           |
| 7  | 172.84                   | 7.1                  | H              | 15.7                 | 2.3           | 25.1                    | -18.4         | 43.5           |
| 8  | 292.32                   | 8.4                  | H              | 17.4                 | 3.4           | 29.2                    | -16.8         | 46.0           |

**TEST PROCEDURE:** ANSI STANDARD C63.4-2003. The spectrum was scanned from 30 to 1000 MHz. The unit was measured at THRU-KES 477-6, Hager-Ri, Yoju-Up, Yoju-GunKyunggi-Do, 469-803, Korea

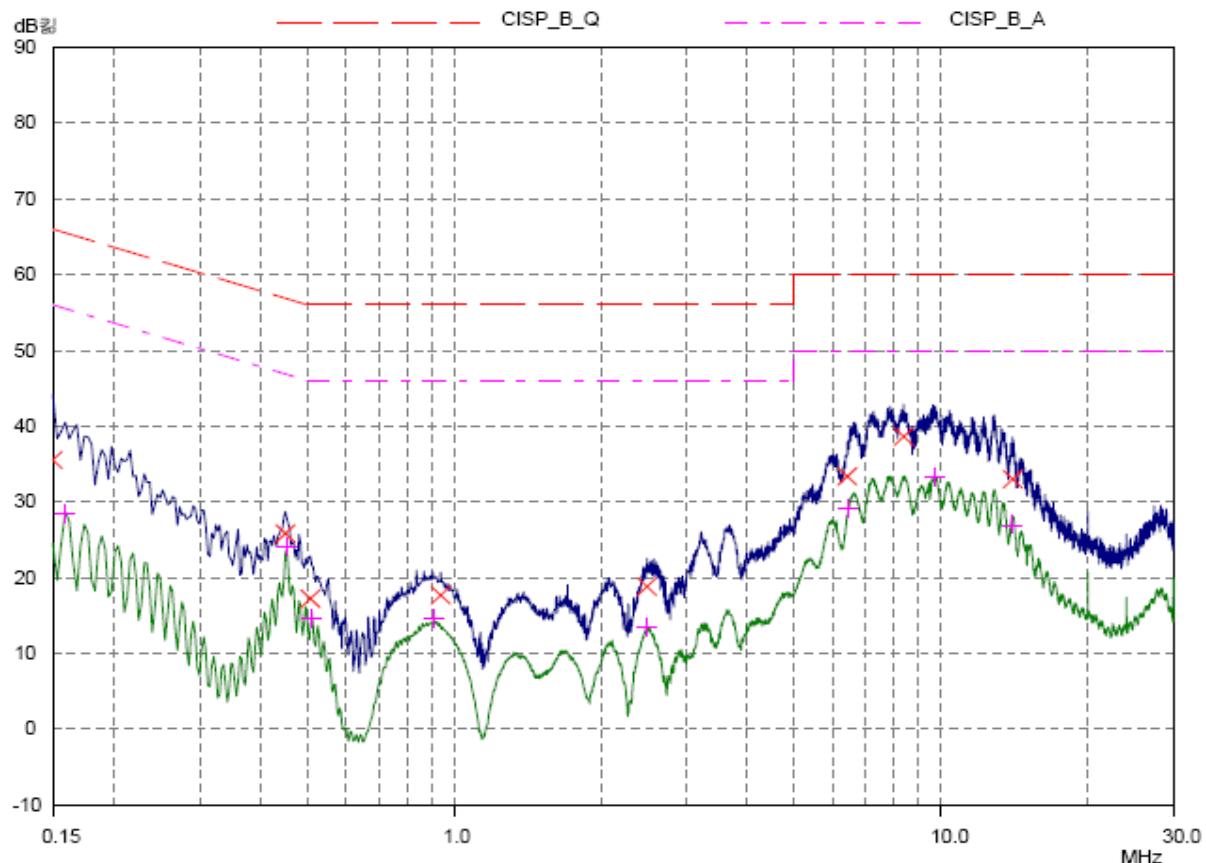
## 2.1.2 Power Line Conducted Interference

15.107 :

|               | QUASI-PEAK | AVERAGE    |
|---------------|------------|------------|
| .15 - 0.5 MHz | 66-56 dBuV | 56-46 dBuV |
| 0.5 - 5.0     | 56         | 46         |
| 5.0 - 30.     | 60         | 50         |

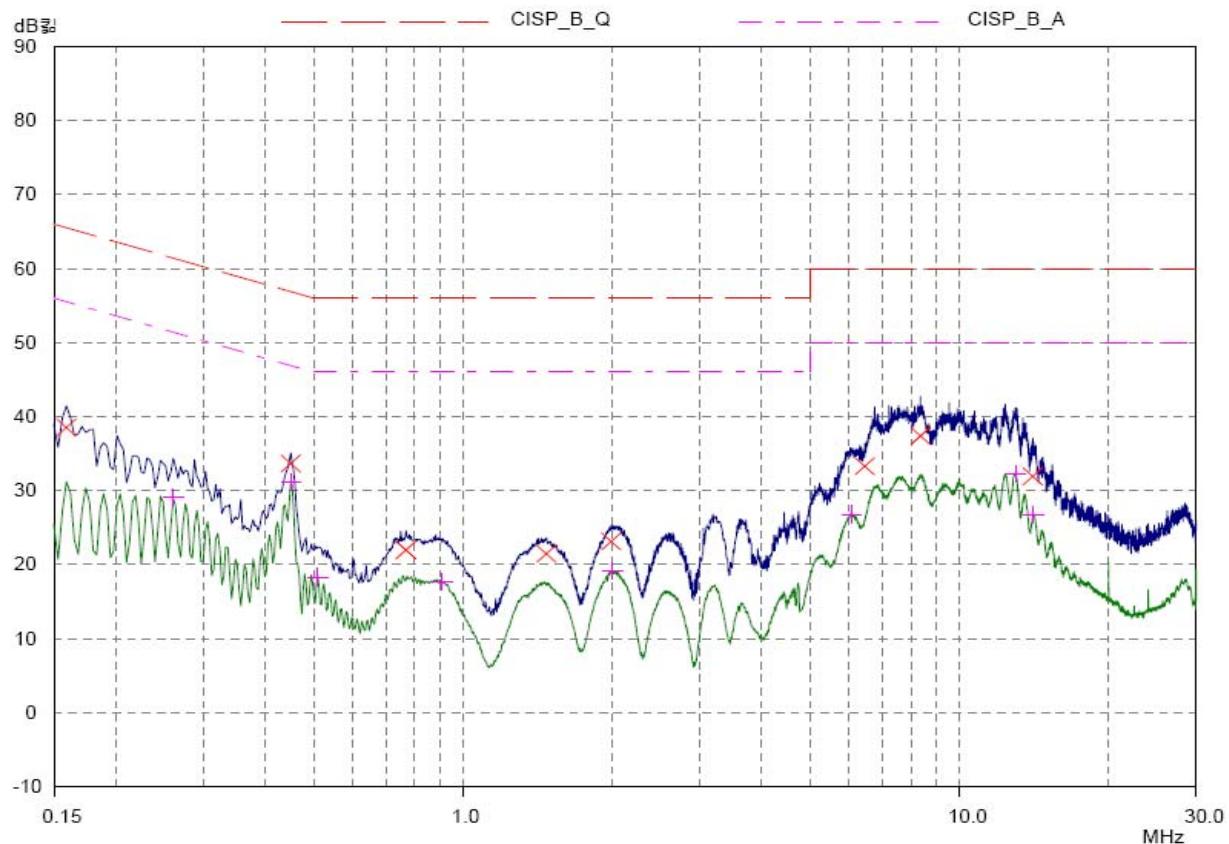
**TEST PROCEDURE:** ANSI STANDARD C63.4-2003. The spectrum was scanned from .15 to 30 MHz.

THE HIGHEST EMISSION READ FOR LINE 1 WAS 38.60 dBuV @ 8.382 MHz.


THE HIGHEST EMISSION READ FOR LINE 2 WAS 38.49 dBuV @ 0.159 MHz.

THE ATTACHED GRAPHS REPRESENT THE EMISSIONS READ FOR POWERLINE CONDUCTED FOR THIS DEVICE.

**TEST RESULTS:** Both lines were observed. The measurements indicate that the unit DOES appear to meet the FCC requirements for this class of equipment.


**H**

Final Measurement: Detectors: X QP / + AV  
Meas Time: 1sec  
Subranges: 8  
Acc Margin: 50 dB



**N**

Final Measurement: Detectors: X QP / + AV  
Meas Time: 1sec  
Subranges: 8  
Acc Margin: 50 dB



## APPENDIX A – Test Equipment Used For Tests

| No | Description              | Manufacturer     | Model No.           | Serial No. | Due Cal.   |
|----|--------------------------|------------------|---------------------|------------|------------|
| 1  | Test Receiver            | Rohde & Schwarz  | ESHS 10             | 862970/018 | 2010.06.11 |
| 2  | Test Receiver            | Rohde & Schwarz  | ESVS 10             | 826008/014 | 2010.05.20 |
| 3  | Spectrum Analyzer        | Hewlett Packard  | 8566B               | 2311A02394 | 2010.05.15 |
| 4  | Spectrum Analyzer        | Rohde & Schwarz  | FSP13               | 100130     | 2010.05.15 |
| 5  | Modulation Analyzer      | Hewlett Packard  | 8901B               | 3438A05094 | 2010.05.15 |
| 6  | Audio analyzer           | Hewlett Packard  | 8903B               | 3011A12915 | 2010.05.15 |
| 7  | Preamplifier             | Hewlett Packard  | 8447F               | 2805A02570 | 2010.05.15 |
| 8  | Preamplifier             | A.H. Systems     | PAM-0118            | 164        | 2010.04.17 |
| 9  | Signal Generator         | Hewlett Packard  | 8673D               | 2708A00448 | 2010.05.15 |
| 10 | Power Meter              | Hewlett Packard  | 437B                | 312U24787  | 2010.04.21 |
| 11 | Power Sensor             | Hewlett Packard  | 8482B               | 3318A06943 | 2010.05.15 |
| 12 | Digital Multi Meter      | Tektronix        | DMM916              | 138401     | 2010.05.15 |
| 13 | Loop Antenna             | Rohde & Schwarz  | HFH2-Z2.335.4711.52 | 826532/006 | 2011.02.06 |
| 14 | Dipole Antenna           | Rohde & Schwarz  | VHAP                | 574        | 2010.07.07 |
| 15 | Dipole Antenna           | Rohde & Schwarz  | VHAP                | 575        | 2010.07.17 |
| 16 | Dipole Antenna           | Rohde & Schwarz  | UHAP                | 545        | 2010.07.17 |
| 17 | Dipole Antenna           | Rohde & Schwarz  | UHAP                | 546        | 2010.07.07 |
| 18 | Biconical Antenna        | Eaton Corp.      | 94455-1             | 0977       | 2010.07.03 |
| 19 | Biconical Antenna        | EMCO             | 3104C               | 9111-2468  | 2010.07.03 |
| 20 | Log Periodic Antenna     | EMCO             | 3146                | 2051       | 2010.06.05 |
| 21 | Log Periodic Antenna     | EMCO             | 3146                | 8901-2320  | 2010.07.03 |
| 22 | Horn Antenna             | A.H. Systems     | SAS-571             | 414        | 2011.03.16 |
| 23 | Trilog-Broadband Antenna | SCHWARZBECK      | VULB 9168           | 9168-350   | 2011.03.27 |
| 24 | LISN                     | EMCO             | 3810/2              | 2228       | 2010.05.15 |
| 25 | Waveform Generator       | Hewlett Packard  | 33120A              | US34001190 | 2010.05.15 |
| 26 | Digital Oscilloscope     | Tektronix        | TDS 340A            | B012287    | 2010.05.15 |
| 27 | Dummy Load               | Bird Electronics | 8251                | 11511      | 2010.04.17 |