
Radio Satellite Communication Untertürkheimer Straße 6-10 . D-66117 Saarbrücken

Telefon: +49 (0)681 598-9100 Telefax: -9075

RSC14

issue test report consist of 45 Pages

Page 1 (45)

Accredited Bluetooth™ Test Facility (BQTF)

Test report no.: 2_3067-01-01/02 FCC Part 2, 15, 90 LTK-1100 FCC ID: QBTLTK-1100

CETECOM – ICT Services GmbH Untertürkheimerstr. 6-10 66117 Saarbrücken, Germany

Telephone: + 49 (0) 681 / 598-0 Fax: + 49 (0) 681 / 9075

Table of Contents

- 1 General information
- 1.1 Notes
- 1.2 Testing laboratory
- 1.3 Details of applicant
- 1.4 Application details
- 1.5 Test item
- 1.6 Test standards
- 2 Technical test
- 2.1 Summary of test results
- 1 General information
- 1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.2 Testing laboratory

CETECOM ICT Services GmbH Untertürkheimer Straße 6 - 10

66117 Saarbrücken

Germany

Telefone : + 49 681 598 - 9100 Telefax : + 49 681 598 - 9075 E-mail : Michael.Berg@ict.cetecom.de

Internet : www.cetecom.de Accredited testing laboratory:

The Test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025.

DAR registration number: TTI-P-G-166/98 Accredited BluetoothTM Test Facility (BOTF)

BLUETOOTH is a trademark owned by Bluetooth SIG, Inc. and licensed to CETECOM

1.3 Details of applicant

Name : Leetek Co., Ltd.

Street: 24-2 Samjeong-dong, Ojeong-gu

City: Puchon-city, Kyunggi-do

Country: Korea

Telephone: +82 32 678 8605-6 Telefax: +82 32 682 8605 Contact: Mr. Sung Sao Lee Telephone: +82 32 678 8605-6

1.4 Application details

Date of receipt of application : 2002-10-21 Date of receipt of test item : 2002-11-05

Date of test : 2002-11-05/06 and 2002-12-05/09

1.5 Test item

Type of equipment : Pager Transmitter

Type designation : LTK-1100 Manufacturer : applicant

Street :

City :

Country

Serial number : -.-**Additional informations:**:

Frequency : 457.5750 MHz Type of modulation : 10K2F1D

FM-Deviation : 4.5 KHz

Number of channels : 1

Antenna : Helical antenna LTK-1100 / 50 Ohms / VSWR: better than 1.5:1

Gain: 0 ± 0.5 dBi; Connector : BNC (Male)

Power supply : 120V AC / 9V DC 1000mA Adapter (HA48UF-0910(UL))

Output power : 355 mW ERP FCC ID : QBTLTK-1100 Temperature range : -30°C - +50°C

1.6 Test standards: FCC Part 2, 15, 90

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

Final verdict: PASS

Technical responsibility for area of testing:

11.12.02 RSC 8411 Berg M.

Date Section Name Signature

Technical responsibility for area of testing:

11.12.02 RSC8412 Hausknecht D.

Date Section Name Signature

2.2 Testreport

TEST REPORT

Testreport no.: 2_3067-01-01/02

TEST REPORT REFERENCE

LIST OF MEASUREMENTS

PARAMETER TO BE MEASURED	PAGE
§90.205- POWER LIMIT	7
§90.207- TYPE OF EMISSION	7
§90.209- BANDDWIDTH LIMITATION	8
§90.210 EMISSIONS MASK	10
§90.213- FREQUENCY STABILITY	19
§90.214- TRANSIENT FREQUENCY BEHAVIOR	22
TRANSIENT FREQUENCY BEHAVIOR	24
§ 15.209 SPURIOUS RADIATION	26
§ 15.107/207 Conducted emissions	29
§ 2.1091 RF Exposure calculation	31
TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	32
Photographs of the equipment	34

§90.205- POWER LIMIT

According to 90.205(g) 450–470 MHz. The maximum allowable station effective radiated power (ERP) is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table 2. (I.e. 2W for service area less than 3 km.) Table 2-450-470 MHz-Maximum ERP/Reference HAAT for a Specific Service Area Radius

	Service area radius (km)										
	3	8	13	16	24	32	40	48	64	80	
Max. ERP(W) ¹											
	2	100	500	500	500	500	500	500	500	500	
Up to reference HAAT (m) ³	15	15	15	27	63	125	250	410	950	2700	

¹ Maximum ERP indicated provides for a 39 dBu signal strength at the edge of the service area per FCC Report R-6602, Fig. 29 (See Sec. 73.699, Fig. 10 b).

ERP allow = $ER_{Pmax} X (HAA_{Tref} / HAA_{Tactual})$

Specification Limit: 2 Watts

MAXIMUM PEAK OUTPUT POWER (RADIATED)

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (mW) ERP			
Frequenc	ey (MHz)	457.575 MHz			
T _{nom} (23.8)°C	V _{nom} (115)V	355 mW (25.5 dBm) (513 mW / 27.10 dBm conducted)			
Measurement uncertainty		±3	dB		

RBW/VBW: 1 MHz

Measured at a distance of 3m

§90.207- TYPE OF EMISSION

According to 90.207(e) for non-voice paging operations, only A1A, A1D, A2B, A2D, F1B, F1D, F2B, F2D, G1B, G1D, G2B, or G2D emissions will be authorized.

LTK-1100: F1D

³ When the actual antenna HAAT is greater than the reference HAAT, the allowable ERP will be reduced in accordance with the following equation:

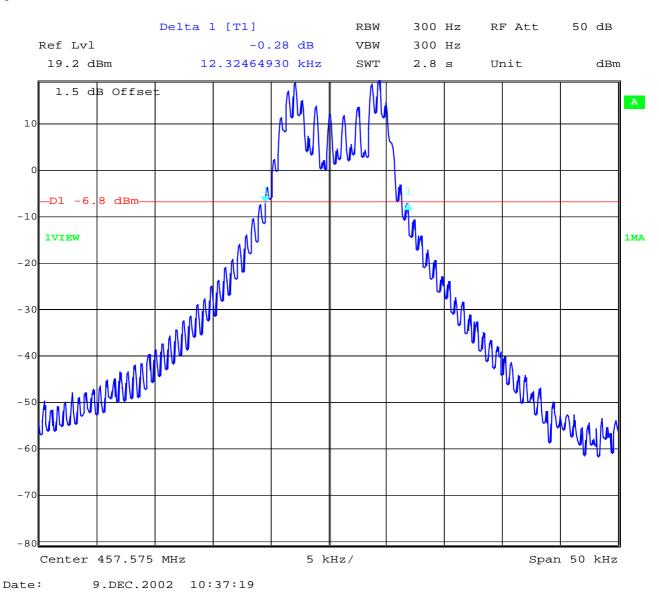
§90.209- BANDDWIDTH LIMITATION

According to 90.200(3) For all other types of emissions, the maximum authorized bandwidth shall not be more than that normally authorized for voice operations.

According to 90.200(5), unless specified elsewhere, channel spacings and bandwidths that will be authorized in the following frequency bands are given in the following "STANDARD CHANNEL SPACING/BANDWIDTH" table.

Standard Channel Spacing/Bandwidth

Frequency band (MHz)	Channel spacing (kHz)	Authorized bandwidth (kHz)
Below 25	••	
25-50.	20	20
72-76	20	20
150-174	¹ 7.5	^{1,3} 20/11.25/6
220-222	5	4
421-512	¹ 6.25	^{1,3} 20/11.25/6
806-821/851-866	25	20
821-824/866-869	12.5	20
896-901/935-940	12.5	13.6
902-928		
929-930	25	20
1427-1435		
2450-2483.52		
Above 2500		


¹⁾ For stations authorized on or after August 18, 1995.

Specification Limit: 20kHz

³⁾ Operations using equipment designed to operate with a 25 kHz channel bandwidth will be authorized a 20 kHz bandwidth. Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized an 11.25 kHz bandwidth. Operations using equipment designed to operate with a 6.25 kHz channel bandwidth will be authorized a 6 kHz bandwidth.

§90.209- BANDDWIDTH LIMITATION

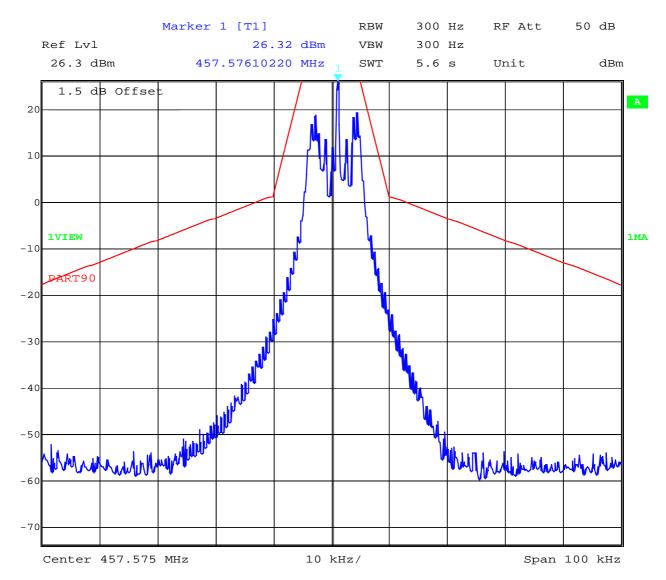
the -26 db Bandwidth is: 12.325 kHz

Bandwidth according § 2.202 rules: $B_n = 2M + 2DK = 2(1200bps/2) + 2(4.5kHz) = 10K2$

EMISSIONS MASK §90.210 Unmodulated Carrier Marker 1 [T1] RBW 300 Hz RF Att 50 dB 300 Hz Ref Lvl 26.32 dBm VBW 26.3 dBm 457.57610220 MHz SWT 5.6 s dBm Unit 1.5 dB Offse A 10 1VIEW 1MA -10 -20 -30 -40 -5 Center 457.575 MHz 10 kHz/ Span 100 kHz

Date: 9.DEC.2002 10:43:27

LIMITS SUBCLAUSE § 90.210


- **(c) Emission Mask C.** For transmitters that are not equipped with an audio low-pass filter pursuant to Sec. 90.211(b), the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:
- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) of more than 5 kHz, but not more than 10 kHz: At least 83 log (fd/5) dB;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log (fd 2/11) dB or 50 dB, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

Test report nr.:2 3067-01-01/02 Issue date: 2002-11-06 Page 11 (45)

EMISSIONS MASK §90.210

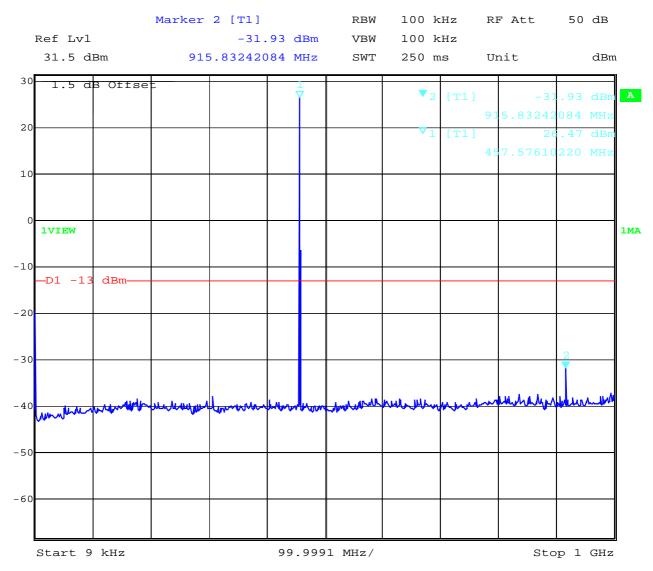
modulated Carrier

Date: 9.DEC.2002 10:42:50

LIMITS

SUBCLAUSE § 90.210

- **(c)** Emission Mask C. For transmitters that are not equipped with an audio low-pass filter pursuant to Sec. 90.211(b), the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:
- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) of more than 5 kHz, but not more than 10 kHz: At least 83 log (fd/5) dB;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log (fd 2/11) dB or 50 dB, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.



OUT-OF-BAND EMISSIONS

	EMI	SSION LIMITATI	ONS	
f (MHz)	amplitude of emission (dBm)	limit max. allowed emission power (dBm)	actual attenuation below frequency of operation (dBc)	results
		457.575 MHz		
457.575	27.10	-13.0		carrier
915.8324	-31.93	(40.10 dBc)	59.03	complies
1825.6	-34.05		61.15	complies
2282.6	-35.93		63.03	complies
2747.9	-34.03		61.13	complies
3204.4	-33.44		60.54	complies
3933.9	-34.56		61.66	complies
Measuremen	nt uncertainty		$\pm 0.5 dB$	

Conducted: 9 kHz - 1 GHz

Date: 9.DEC.2002 10:45:43

OUT-OF-BAND EMISSIONS Conducted : 1GHz- 5 GHz

Ref Lvl	Marker 1	[T1] -34.0		RBW VBW	100 k 100 k		F Att	50	dВ
31.5 dBm	1.	8256513	0 GHz	SWT	1	s U	nit		dBm
0 1.5 dB Offs	set				▼1	[T1]	-34	0.5	dBm
					_	[11]	1.82565		
					∀2	[T1]	-35	.93	dBm
							2.28256	513	GHz
0					∇_3	[T1]	-34		
							2.74749		
0					∇_4	[T1]		.44	
1VIEW							3.20440	1882	GHZ
—D1 −13 dBm—									
	1		3	4					
	T S	7		, , , , , , , , , , , , , , , , , , ,	a a Acab				
- Marine Marine	menonella	Completion of the control of the con			mount	WALLEY WAY		Market Contraction of the Contra	~₩ /\\
<u> </u>									
									-
Start 1 GHz	<u> </u>		400	MHz/		<u> </u>	C+-	p 5	

Date: 9.DEC.2002 10:49:06

SPURIOUS EMISSIONS

§2.1057- SPECTRUM RANGE TO BE INVESTIGATED

Lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

- (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the equipment operates at or above 10 GHz and below 30 GHz:
- to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the equipment operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower.
- (b) Particular attention should be paid to harmonics and sub-harmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency.

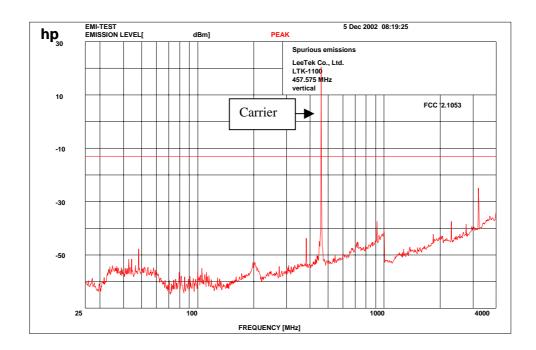
Radiation at the frequencies of multiplier stages should also be checked.

- (c) The amplitude of spurious emissions, which are attenuated more than 20 dB below the permissible value, need not be reported.
- (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

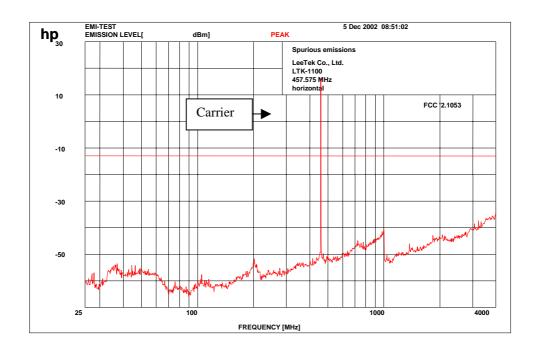
TEST PROCEDURE

- 1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- 2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.
- 3). The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- 4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- 5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 8). The maximum signal level detected by the measuring receiver shall be noted.
- 9). The transmitter shall be replaced by a substitution antenna (tuned dipole for f less than 1GHz and horn for frequency higher than 1GHz).
- 10). The substitution antenna shall be oriented for vertical polarization and the length (if a dipole antenna is used) of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11). The substitution antenna shall be connected to a calibrated signal generator.

Test report nr.:2 3067-01-01/02 Issue date: 2002-11-06 Page 16 (45)

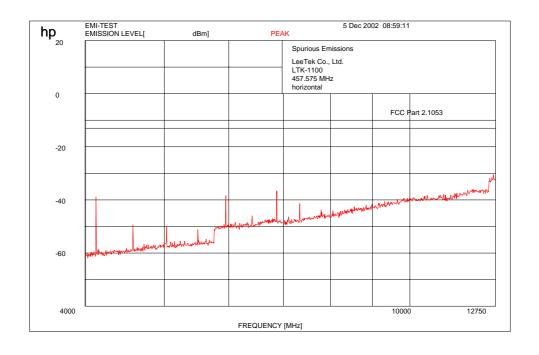

- 12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- 14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- 15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.
- 17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.
- 18). Repeat above substitution measurement procedure for fundamental and all harmonica emissions.

RESULT


Freg	SA	SG	Ant.	Dipole	Cable	ERP	Limit	Margin	Pol
	Reading	Setting	gain	gain	loss	Result			
MHz	dBμV	dBm	dBi	dBd	dB	dBm	dBm	dBm	H/V
457.575	97.3	28.1	0.0	0.0	2.6	25.5			V
457.575	91.9	22.4	0.0	0.0	2.6	19.8			Н
48.33	42.4	-43.65	-1.2	2.15	0.7	-47.7	-13	34.7	V
382.45	36.9	-29.45	-9.8	2.15	2.3	-43.7	-13	30.7	V
915.15	47.5	-23.5	-7.85	2.15	3.9	-37.4	-13	24.4	V
2287.88	48.1	-36.45	+8.4	2.15	7.2	-37.4	-13	24.4	V
3203.03	61.4	-22.05	+8.7	2.15	9.4	-24.9	-13	11.9	V
4118.18	56.2	-33.65	+8.7	2.15	11.8	-38.9	-13	25.9	V
4575.76	53.2	-40.05	+9.9	2.15	13.6	-45.9	-13	32.9	H
5948.49	51.3	-25.95	+10.4	2.15	18.9	-36.6	-13	23.6	V
6863.64	56.7	-27.35	+10.7	2.15	22.5	-41.3	-13	28.3	V
7321.21	51.7	-25.35	+10.4	2.15	24.3	-41.4	-13	28.4	V

As shown below: 25 – 4000 MHz vertical

25 - 4000 MHz horizontal



4 GHz -12.750 GHz vertical

4 GHz -12.750 GHz horizontal

Test report nr.:2 3067-01-01/02 Issue date: 2002-11-06 Page 19 (45)

§90.213- FREQUENCY STABILITY

Minimum Frequency Stability[Parts per million (ppm)]

Frequency range	Fixed and base	Mobile	e Stations
(MHz)	Stations	Over 2W output power	2 watts or less output power
Below 25	1.2.3.100	100	100
25-50	20	20	50
72-76	5	-	50
150-174	5.11. 5	^{6.} 5	^{4.6.} 50
220-222	0.1	1.5	1.5
421-512	^{7.1114.} 2.5	^{8.} 5	^{8.} 5
806-821	^{14.} 1.5	2.5	2.5
821-824	^{14.} 1.0	1.5	1.5
851-866	1.5	2.5	2.5
866-869	1.0	1.5	1.5
896-901	^{14.} 0.1	1.5	1.5
902-928	2.5	2.5	2.5
902-928	2.5	2.5	2.5
929-930	1.5	-	-
935-940	0.1	1.5	1.5
1427-1435	9300	300	300
Above 2450	-		-

- 1 Fixed and base stations with over 200 watts transmitter power must have a frequency stability of 50 ppm except for equipment used in the Public Safety Pool where the frequency stability is 100 ppm.
- 2 For single sideband operations below 25 MHz, the carrier frequency must be maintained within 50 Hz of the authorized carrier frequency.
- 3 Travelers information station transmitters operating from 530–1700 kHz and transmitters exceeding 200 watts peak envelope power used for disaster communications and long distance circuit operations pursuant to §§ 90.242 and 90.264 must maintain the carrier frequency to within 20 Hz of the authorized frequency.
- 4 Stations operating in the 154.45 to 154.49 MHz or the 173.2 to 173.4 MHz bands must have a frequency stability of 5 ppm.
- 5 In the 150–174 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.
- 6 In the 150–174 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth or designed to operate on a frequency specifically designated for itinerant use or designed for low-power operation of two watts or less, must have a frequency stability of 5.0 ppm. Mobile stations de-signed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 2.0 ppm.
- 7 In the 421–512 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 1.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 0.5 ppm.
- $8\,$ In the $421-512\,$ MHz band, mobile stations designed to operate with a $12.5\,$ kHz channel bandwidth must have a frequency stability of $2.5\,$ ppm. Mobile stations designed to operate with a $6.25\,$ kHz channel bandwidth must have a frequency stability of $1.0\,$ ppm.
- 9 Fixed stations with output powers above 120 watts and necessary bandwidth less than 3 kHz must operate with a frequency stability of 100 ppm. Fixed stations with output powers less than 120 watts and using time-division multiplex, must operate with a frequency stability of 500 ppm.
- 10 Frequency stability to be specified in the station authorization.

- 11 Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the 150–174 MHz band and 2.5 ppm in the 421–512 MHz band.
- 12 Mobile units may utilize synchronizing signals from associated base stations to achieve the specified carrier stability.
- 13 Fixed non-multilateration transmitters with an authorized bandwidth that is more than 40 kHz from the band edge, intermittently operated hand-held readers, and mobile transponders are not subject to frequency tolerance restrictions.
- 14 Control stations may operate with the frequency tolerance specified for associated mobile frequencies.
- (a) Unless noted elsewhere, transmitters used in the services governed by this part must have minimum frequency stability as specified in the following table.
- ⁸In the 421-512 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kHz channel

bandwidth must have a frequency stability of 1.0 ppm.

(b) For the purpose of determining the frequency stability limits, the power of a transmitter is considered to be the maximum rated output power as specified by the manufacturer.

Specification Limit: 2.5 ppm

FREQ STABILITY vs. INPUT VOLTAGE

Voltage	Frequency Error	Frequency Error
(V)	(Hz)	(ppm)
97.75	-328	-0.72
100.05	-328	-0.72
103.50	-334	-0.73
105.80	-341	-0.75
109.25	-352	-0.77
111.55	-358	-0.78
115.00	-365	-0.80
117.30	-372	-0.81
120.75	-385	-0.84
123.05	-398	-0.87
126.50	-415	-0.91
132.25	-461	-1.01

FREQ STABILITY vs. ENVIREMENTAL TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error
(°C)	(Hz)	(ppm)
-30	-658	-1.44
-20	-64	-0.14
-10	-4	-0.001
±0.0	-64	-0.14
+10	-65	-0.14
+20	-365	-0.80
+30	-195	-0.43
+40	-115	-0.25
+50	-314	-0.69

§90.214- TRANSIENT FREQUENCY BEHAVIOR

Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

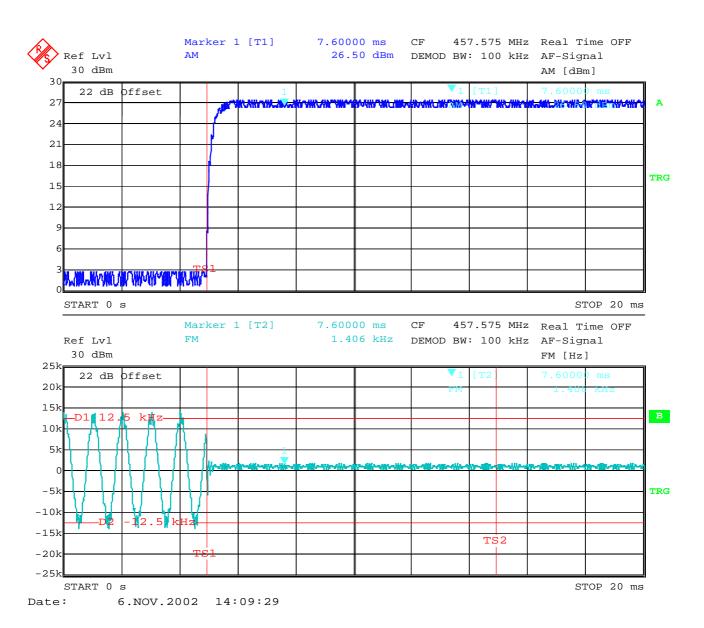
mi v i										
Time Intervals	Maximum Frequency	All Equipment								
	Difference	150 to 174MHz	421 to 512MHz							
Transient frequency Behav	Transient frequency Behavior for Equipment Designed to Operate on 25kHz Channels									
t_1^4	±25.0 kHz	5.0 ms	10.0 ms							
t_2	±12.5 kHz	20.0 ms	25.0 ms							
t_3^4	±25.0 kHz	5.0 ms	10.0 ms							
Transient frequency Behav	ior for Equipment Designed	to Operate on 12.5kHz Cha	nnels							
t_1^4	±12.5 kHz	5.0 ms	10.0 ms							
t_2	±6.25 kHz	20.0 ms	25.0 ms							
t_3^4	±12.5 kHz	5.0 ms	10.0 ms							
Transient frequency Behav	ior for Equipment Designed	to Operate on 6.25kHz Cha	nnels							
t_1^4	±6.25 kHz	5.0 ms	10.0 ms							
t_2	±3.125 kHz	20.0 ms	25.0 ms							
t_3^4	±6.25 kHz	5.0 ms	10.0 ms							

 $_{1}$ t_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

Specification Limit:

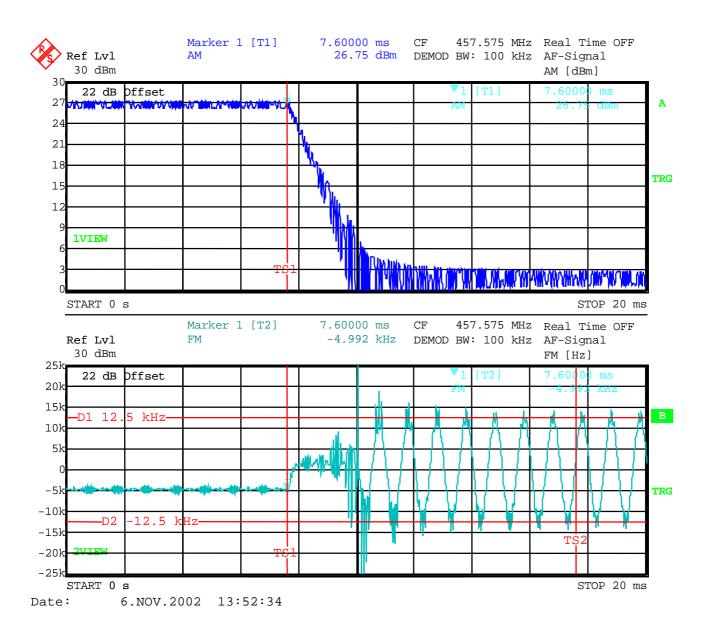
 $\underline{t2}$ = 25ms; during time interval $\underline{t2}$ the maximum frequency different = ± 12.5 KHz

⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.


 $[\]mathbf{t}_1$ is the time period immediately following \mathbf{t}_{on}

t₂ is the time period immediately following t₁

t₃ is the time period immediately before toff



TRANSIENT FREQUENCY BEHAVIOR

TRANSIENT FREQUENCY BEHAVIOR

§PART 15 RADIATED AND CONDUCTED EMISSION

The EUT is a digital device as defined by §15.3 (k), therefore Part 15 requirements does apply.

The radiated measurements are performed in vertical and horizontal plane in the frequency range from

9 kHz to 12 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1987 clause 15 and ANSI C63.4-1992 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-1992 clause 4.2.

150 kHz - 30 MHz: Quasi Peak measurement, 9kHz Bandwidth, passive loop antenna.

30 MHz - 200 MHz: Quasi Peak measurement, 120KHz Bandwidth, biconical antenna

200MHz - 1GHz: Quasi Peak measurement, 120KHz Bandwidth, log periodic antenna

1GHz: Average, RBW 1MHz, VBW 10 MHz, wave guide horn

SPURIOUS RADIATION Radiated

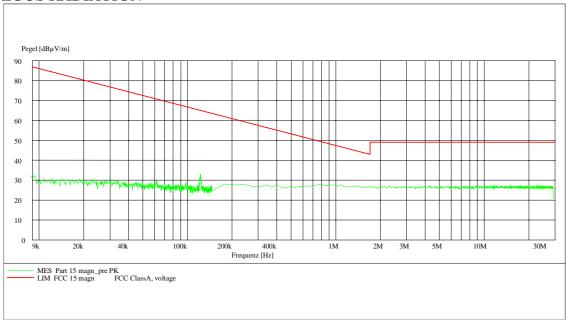
Measurement uncertainty

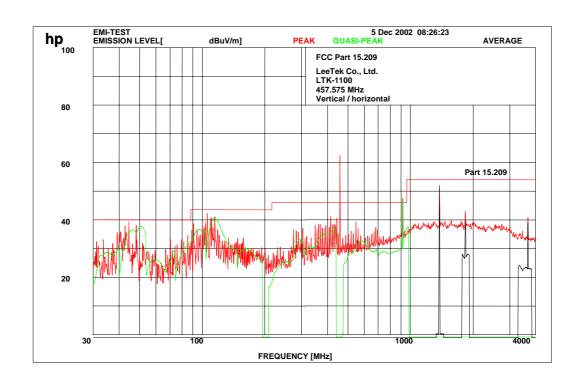
§ 15.209

 $\pm 3 dB$

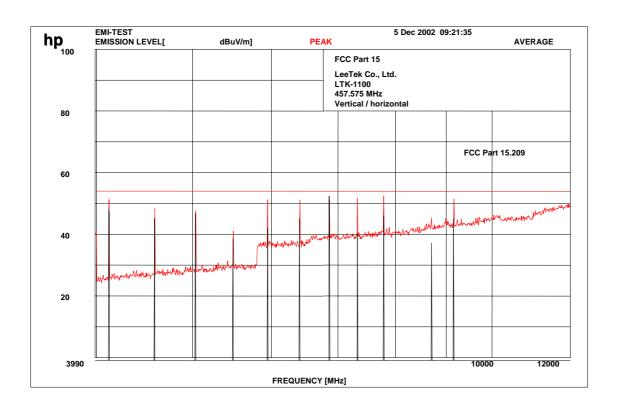
	SPURIOUS EMISSIONS LEVEL (μV/m)									
4	457.575 MH	Z								
f (MHz)	Detector Polarisati on	Level (μV/m)	f (MHz)	Detector	Level (μV/m)	f (MHz)	Detector	Level (μV/m)		
39.83	QP/V	30.6	3203.0	AV/H	40.9	7778.8	AV/H	52.5		
50.61	QP/V	37.7	3660.6	AV/V	38.8	9151.5	AV/H	51.4		
97.44	QP/V	36.7	4118.2	AV/V	51.8					
115.05	QP/V	40,5	4575.8	AV/H	45.2					
295.53	QP/V	33.3	5033.3	AV/H	47.7					
432.69	QP/V	36.9	5490.9	AV/H	41.1					
915.15	QP/V	46.5	5948.5	AV/H	51.3					
969.27	QP/V	37.5	6406.1	AV/H	51.2					
1372.7	AV/V	51.3	6863.6	AV/H	52.3					
1830.3	AV/V	39.9	7321.2	AV/H	51.7	_		_		

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$


The test setups for transmitter spurious radiated ANSI C63.4 Clause 11.


Limits SUBCLAUSE § 15.209

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3


SPURIOUS RADIATION

SPURIOUS RADIATION

Test report nr..: 2 3067-01-01/02 Issue Date: 2002-11-06 Page 29 (45)

Conducted emissions

§ 15.107/207

EN 55022 / CISPR 22

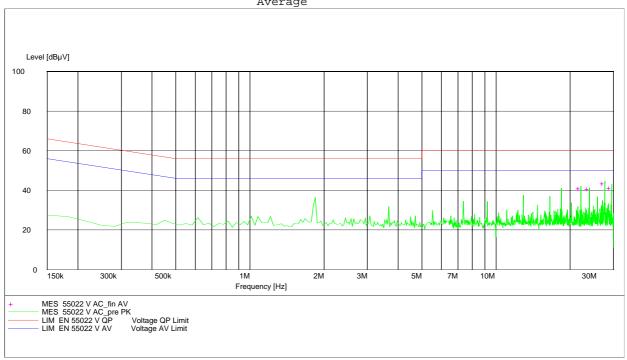
EUT: LTK-1100 Manufacturer: LeeTek Operation condition: standby Test Site: Room 006 Operator: Berg

Power Supply: 115V / 60 Hz

Comment:

Start of Test: 10.12.02 / 07:23:31

SCANTABELLE: "EN 55022 V"


Kurzbeschreibung: Voltage Mains 1.60

Start- Stop-Frequenz Frequenz Schritt- Detektor Meß-ZF-Transducer

weite zeit Bandbr.

150.0 kHz 30.0 MHz 7.5 kHz MaxPeak 100.0 ms 10 kHz ESH3-Z5 L1 1458

Average

MEßERGEBNIS: "55022 V AC fin AV"

10.12.02 07:27

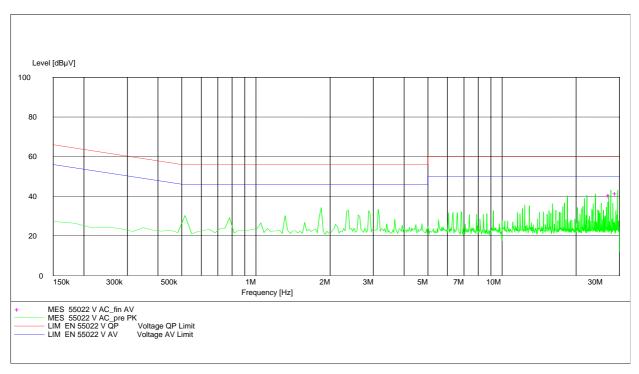
Frequenz MHz	Pegel dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
22.117500	41.10	11.2	50	8.9	L1	FLO
23.962500	40.90	11.2	50	9.1	L1	GND
27.645000	43.60	11.3	50	6.4	L1	GND
29.490000	41.30	11.3	50	8.7	L1	GND

Test report nr..: 2 3067-01-01/02 Issue Date: 2002-11-06 Page 30 (45)

EN 55022 / CISPR 22

EUT: LTK-1100 Manufacturer: LeeTek Operation condition: Tx mode Test Site: Room 006 Operator: Berg Power Supply: Comment: Start of Test: 115V 60 Hz

10.12.02 / 07:38:24


SCANTABELLE: "EN 55022 V"

Kurzbeschreibung: Voltage Mains 1.60 Start- Stop- Schritt- Detektor Meß-ZF-Transducer

zeit Bandbr. Frequenz Frequenz weite

150.0 kHz 30.0 MHz 7.5 kHz MaxPeak 100.0 ms 10 kHz ESH3-Z5 L1 1458

Average

MEßERGEBNIS: "55022 V AC_fin AV"

10.12.02 07:42

Frequenz MHz	Pegel dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
27.645000	40.40	11.3	50	9.6		FLO
29.490000	41.60	11.3	50	8.4		GND

Limits **SUBCLAUSE § 15.107 / 207**

Frequency (MHz)	Conducted Limits (µV)
0.45 - 1.705	1000 / 60 dBμV (Class A)
1.705 - 30.0	3000 / 69.5 dBμV (Class A)
0.45 - 30.0	250 / 48 dBμV (Class B)

RF Exposure calculation

SUBCLAUSE § 2.1091

The maximal power density at 20cm distance is calculated as: $Pd = (P_{out} * G)/(4\pi * r^2)$

 $355 \text{ mW} / 4\pi 400 \text{cm}^2 = 0.071 \text{ mW/cm}^2$

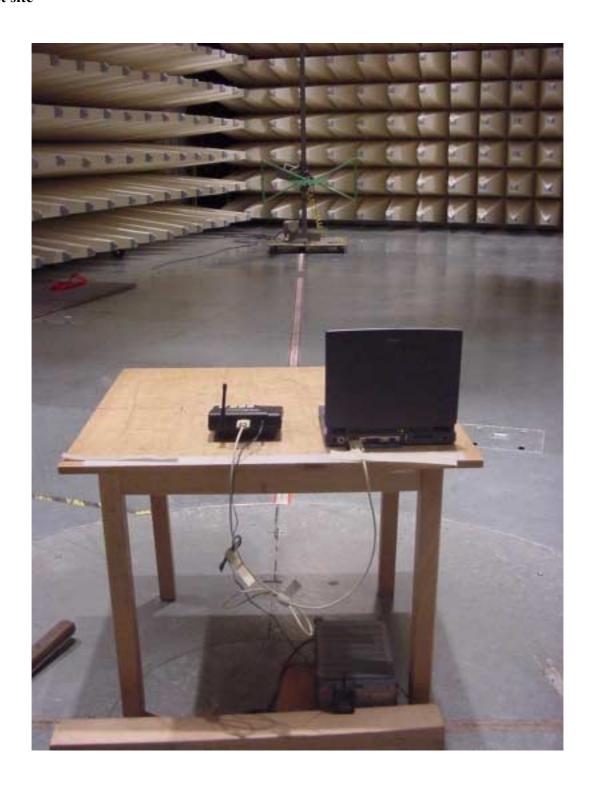
The Limit for general population/uncontrolled exposures according §1.1307(b) is 1mW/cm²

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

of test equipment and ancimaries such as cables are identified (numbered) by the Test Laboratory, below.						
No	Instrument/Ancillary	Type	Manufacturer	Serial No.		
01	Spectrum Analyzer	8566 A	Hewlett-Packard	1925A00257		
02	Analyzer Display	8566 A	Hewlett-Packard	1925A00860		
03	Oscilloscope	7633	Tektronix	230054		
04	Radio Analyzer	CMTA 54	Rohde & Schwarz	894 043/010		
05	System Power Supply	6038 A	Hewlett-Packard	2848A07027		
06	Signal Generator	8111 A	Hewlett-Packard	2215G00867		
07	Signal Generator	8662 A	Hewlett-Packard	2224A01012		
08	Funktionsgenerator	AFGU	Rohde & Schwarz	862 480/032		
09	Regeltrenntrafo	MPL	Erfi	91350		
10	Netznachbildung	NNLA 8120	Schwarzbeck	8120331		
11	Relais-Matrix	PSU	Rohde & Schwarz	893 285/020		
12	Power-Meter	436 A	Hewlett-Packard	2101A12378		
13	Power-Sensor	8484 A	Hewlett-Packard	2237A10156		
14	Power-Sensor	8482 A	Hewlett-Packard	2237A00616		
15	Modulationsmeter	9008	Racal-Dana	2647		
16	Frequenzzähler	5340 A	Hewlett-Packard	1532A03899		
17	Absorber Schirmkabine		MWB	87400/002		
18	Spectrum Analyzer	85660 B	Hewlett-Packard	2747A05306		
19	Analyzer Display	85662 A	Hewlett-Packard	2816A16541		
20	Quasi Peak Adapter	85650 A	Hewlett-Packard	2811A01131		
21	RF-Preselector	85685 A	Hewlett-Packard	2833A00768		
22	Biconical Antenne	3104	Emco	3758		
23	Log. Per. Antenne	3146	Emco	2130		
24	Double Ridge Horn	3115	Emco	3088		
25	EMI-Testreceiver	ESAI	Rohde & Schwarz	863 180/013		
26	EMI-Analyzer-Display	ESAI-D	Rohde & Schwarz	862 771/008		
27	Biconical Antenne	HK 116	Rohde & Schwarz	888 945/013		
28	Log. Per. Antenne	HL 223	Rohde & Schwarz	825 584/002		
29	Relais-Switch-Unit	RSU	Rohde & Schwarz	375 339/002		
30	Highpass	HM985955	FSY Microwave	001		
31	Amplifier	P42-GA29	Tron-Tech	B 23602		
32	Absorber Schirmkabine		Frankonia			
33	Steuerrechner	PSM 7	Rohde & Schwarz	834 621/004		
34	EMI Test Reciever	ESMI	Rohde & Schwarz	827 063/010		
35	EMI Test Receiver	Display	Rohde & Schwarz	829 808/010		
	Zivii i ost iteetivei	Disping	Tonue & Senivare	02/00/010		

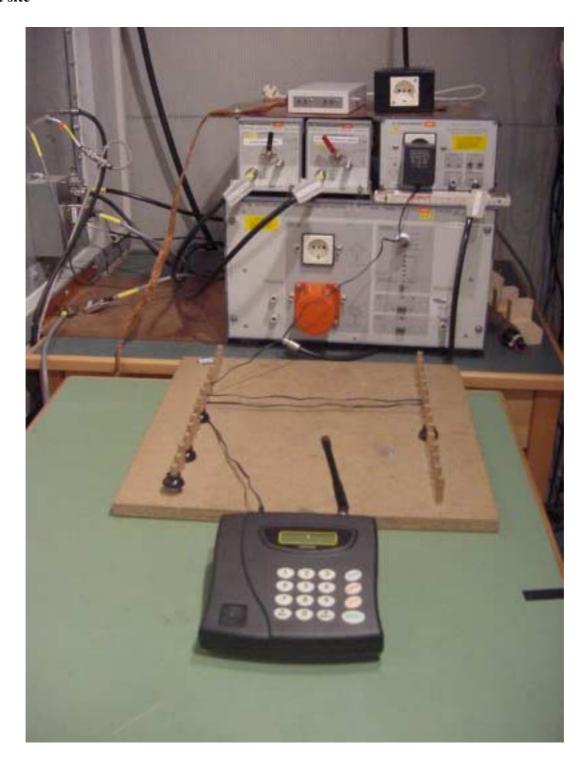
TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS


To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

· -	uipment and ancillaries such as c		1 ·	1
No	Instrument/Ancillary	Type	Manufacturer	Serial No.
36	Controler	HD 100	Deisel	100/322/93
37	Relais Matrix	PSN	Rohde & Schwarz	829 065/003
38	Control Unit	GB 016 A2	Rohde & Schwarz	344 122/008
39	Relais Switch Unit	RSU	Rohde & Schwarz	316 790/001
40	Power Supply	6032A	Hewlett Packard	2846A04063
41	Spektrum Monitor	EZM	Rohde & Schwarz	883 720/006
42	Meßempfänger	ESH 3	Rohde & Schwarz	890 174/002
43	Meßempfänger	ESVP	Rohde & Schwarz	891 752/005
44	Biconi Ant. 20-300MHz	HK 116	Rohde & Schwarz	833 162/011
45	Logper Ant. 0.3-1 GHz	HL 223	Rohde & Schwarz	832 914/010
46	Amplifier 0.1-4 GHz	AFS4	Miteq Inc.	206461
47	Logper Ant. 1-18 GHz	HL 024 A2	Rohde & Schwarz	342 662/002
48	Polarisationsnetzwerk	HL 024 Z1	Rohde & Schwarz	341 570/002
49	Double Ridge G Horn Antenne 1-26.5 GHz	3115	EMCO	9107-3696
50	Microw. Sys. Amplifier 0.5- 26.5 GHz	8317A	Hewlett Packard	3123A00105
51	Audio Analyzer	UPD	Rohde & Schwarz	1030.7500.04
52	Steuerrechner	PSM 7	Rohde & Schwarz	883 086/026
53	DC V-Netzwerk	ESH3-Z6	Rohde & Schwarz	861 406/005
54	DC V-Netzwerk	ESH3-Z6	Rohde & Schwarz	893 689/012
55	AC 2 Phasen V- Netzwerk	ESH3-Z5	Rohde & Schwarz	861 189/014
56	AC 2 Phasen V- Netzwerk	ESH3-Z5	Rohde & Schwarz	894 981/019
57	AC-3 Phasen V- Netzwerk	ESH2-Z5	Rohde & Schwarz	882 394/007
58	Stromversorgung	6032A	Rohde & Schwarz	2933A05441
59	HF-Test Empfänger	ESVP.52	Rohde & Schwarz	881 487/021
60	Spectrum Monitor	EZM	Rohde & Schwarz	883 086/026
61	HF-Test Empfänger	ESH3	Rohde & Schwarz	881 515/002
62	Relais Matrix	PSU	Rohde & Schwarz	882 943/029
63	Relais Matrix	PSU	Rohde & Schwarz	828 628/007
64	Spectrum Analyzer	FSIQ 26	Rohde & Schwarz	119.6001.27
65	Spectrum Analyzer	HP 8565E	Hewlett Packard	3473A00773
66	Bidirektionalkoppler	DC 3010	Amplifier res.	12306
67	Oscilloscope	54502A	HP	2934A01917
68	Radiocommunic.Analyz.	4040	Schlumberger	1725117

Photographs of the equipment

Test site



Test site

Test site

