

CORPORATE OFFICE 795 Marconi Avenue Ronkonkoma, NY 11779 631-737-1500 Fax 631-737-1497 (A NY Corporation)

BRANCH LABORATORIES 3131 Detwiler Road Harleysville, PA 19438 215-256-4133 Fax 215-256-4130

WASHINGTON REGULATORY OFFICE 703-533-1614 Fax 703-533-1612

Report of Measurements on

Single Use Tag Transmitter Model: 360A FCC ID: Q9V-360-A

Customer Name: Radianse, Inc. Customer P.O.: 1327 April 16, 2008 Test Report Date: Test Report No.: R-4985N **Test Start Date:** February 29, 2008 Test Finish Date: March 10, 2008 Test Technician: Matthew Seamans Test Engineer: Scott Wentworth Supervisor: Todd Hannemann Results Prepared By: Jamie Ramsey **Government Source Inspection:** N/A

Our letters, procedures and reports are for the exclusive use of the customer to whom they are addressed and their communication or the use of the name of Retlif Testing Laboratories must receive our prior written approval. Our letters, procedures and reports apply only to the sample tested and are not necessarily indicative of the qualities of apparently identical or similar products. The letters, procedures and reports and the name of Retlif Testing Laboratories or insignia are not to be used under any circumstances in advertising to the public. This report shall not be reproduced, except in full, without the prior written approval of Retlif Testing Laboratories. The only official copy of this document is the signed original provided by Retlif Testing Laboratories.

Certification and Signatures

We certify that these Test Results are true results obtained from the tests of the equipment stated, and relates only to the equipment tested. We further certify that the measurements shown in this Test Results package were made in accordance with the procedures indicated and vouch for the qualifications of all Retlif Testing Laboratories personnel taking them.

Todd Hannemann Laboratory Supervisor

Scott Wentworth Branch Manager

Non-Warranty Provision

The testing services have been performed, findings obtained and reports prepared in accordance with generally accepted laboratory principles and practices. This warranty is in lieu of all others, either expressed or implied.

Non-Endorsement

This test report contains only findings and results arrived at after employing the specific test procedures and standards listed herein. It is not intended to constitute a recommendation, endorsement or certification of the product or material tested. This test report may not be used by the client to claim product endorsement by NVLAP, NIST or any agency of the U.S. Government.

Retlif Testing Laboratories

Revision History

Revisions to this document are listed below; the latest revised document supersedes all previous issues of this document.

Revision	Date	Pages Affected
-	April 16, 2008	Original Release

Retlif Testing Laboratories

Test Program Summary

Job Number: R-4985N

Customer: Radianse, Inc.

Address: 200 Brickstone Square, Suite 302

Andover, Ma 01810

Test Sample: Suite 302

Part Number: N/A

Model Number: 360A

Serial Number: N/A

Type: Single Use Tag Transmitter

Power Requirements: 3VDC Internal Battery

Frequency Operation: 433.92MHz

Modulation: ASK (Manchester Encoded)

Pulsed Transmission containing Manchester

Type of Transmission: Encoded Data Bits

Application: Indoor Location & Tracking of People

Frequencies Tested: 433.92 MHz

Test Specification:

FCC Rules and Regulations Part 15, Subpart C, Paragraph 15.231

Test Procedure:

ANSI C3.4:2003

Purpose:

The purpose of this test program was to demonstrate compliance of the 360A Transmitter with the requirements of FCC Part 15.231

Test Methods:

The following table depicts the test methods that were performed on the EUT and the corresponding test results:

Testing	Testing				
Date(s)	Test Method	Results			
2/29/08	15.231(e) Spurious Radiated Emissions				
	(30MHz to 4.4GHz)	Complied			
2/29/08	15.231(e) Field Strength of Fundamental	Complied			
3/10/08	15.231(c) Occupied Bandwidth, 0.25% of Fundamental Frequency	Complied			
3/10/08	Duty Cycle Determination	N/A			

Retlif Testing Laboratories

Test Sample Operation:

The device is normally automatically operated but can also be manually operated. The device transmits location ID data for indoor tracking of people. Normal operation of the EUT complies with the parameters required in Part 15, Subpart C, Section 15.231 (e) for devices which transmit data and with the general requirements of 15.231 for both automatic and manual momentary operated devices. For testing purposes only, the EUT was configured to continuously transmit.

Test Sample/Test Program:

- When manually activated the transmitter automatically ceases transmission within 5 seconds after activation per 15.231 a (1).
- In automatic mode the transmitter ceases transmission within 5 seconds after activation per the requirements of 15.231 a (2).
- In automatic mode operation is limited so that the duration of each transmission is less than one second (8.0msec) and the silent period between transmissions is more than 30 times the duration of the transmission and never less than ten seconds per the requirements of 15.231 (e).
- The device uses an internal PCB loop antenna.
- The fundamental field strength at 433.92MHz did not exceed 4398µV/M (Average) at a test distance of 3.0 meters.
- The peak value of fundamental emissions did not exceed a peak field strength limit corresponding to 20dB above the maximum permitted average limit.
- The field strength of harmonic and spurious emissions did not exceed 439µV/M as specified in 15.231 (e) for a fundamental frequency of 433.92MHz. No harmonic or spurious emissions were observed above the second harmonic within 10dB of the specified limit at test distances of 1 or 3 meters.
- Radiated Emissions from the EUT were measured in all three axis. The attached Radiated Emissions test data is representative of the worst case orientation.
- The device operates at 433.92MHz. The 20dB bandwidth of the emission did not exceed 0.25% of the center operating frequency.

Retlif Testing Laboratories

Determination of Field Strength Limits:

The field strength limits shown below were calculated as instructed in Section 15.231.

Fundamental Frequency: 433.92MHz

Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strength for the band 260-470MHz, µV/m at 3 meters is as follows:

16.6667(F) - 2833.3333 = Field Strength Limit (µV/m)

16.6667 x 433.92 = 7232 7232 - 2833.3333 = 4398

Field Strength Limit = $4398\mu\text{V/m} = 72.87\text{dBuV/M}$

The maximum permitted unwanted emission level is 20dB below the maximum permitted fundamental level which equals $439.8\mu\text{V/m} = 52.87\text{dBuV/M}$.

Determination of Duty Cycle:

The transmitter controls were adjusted to maximize the transmitted duty cycle. The analyzer was set for a frequency span of 0Hz. The sweep time was then adjusted in order to display one full pulse train. The pulse train was observed and the number and width of the pulses and the period of the train was determined. The transmitter on time was then summed and compared to the time for one full cycle in order to obtain the duty cycle. The cycle time exceeded 100msec therefore 100msec was used as the cycle time. The on times were determined as follows:

In the worst case duty cycle there were 66 individual pulses within the 100msec period (54 short pulse @55.51usec/ea & 12 long pulses @101.6usec/ea). The pulse durations were summed in order to obtain the total "on time" of 4.22msec.

Fundamental Frequency: 433.92MHz

Transmitter On Time = 4.22milliseconds
Transmitter Cycle Time = 100milliseconds

Transmitter Duty Cycle = 4.22%

On Time divided by Cycle Time = Duty Cycle Factor

4.22 divided by 100 = 0.0422 $0.0422 \text{ converted to dB (LOG}_{10} .0422)20 = -27.5$ **Duty Cycle Factor** = **-27.5dB**

Duty Cycle Factor Determination Plots are included with this application as a separate attachment.

Retlif Testing Laboratories

Test Methods:

15.231 (b) Fundamental & Spurious Radiated Emissions

The test sample was placed on a 80cm high wooden test stand which was located 3 meters from the test antenna on an FCC listed open area test site. Emissions from the EUT were maximized by rotating the test sample and adjusting the test sample orientation and antenna polarization. The maximized peak field strength of each emission was measured and recorded and compared to the limit specified in 15.35 (b) (peak limit corresponds to 20dB above the maximum permitted average limit). The duty cycle factor was applied to the peak readings in order to determine the average field strength of the emissions for comparison to the specified average limits.

Test Results: The worst case maximum peak field strength of the fundamental frequency at 433.92MHz was 69.31dBuV/M which met the peak limit of 92.8dBuV. The maximum average field strength at 433.92MHz was 41.81dBuV which met the specified average limit of 72.8dBuV. Harmonic/spurious frequencies did not exceed the specified limit of 439.8uV.

15.231 (c) Occupied Bandwidth

The test sample was placed on a test bench and configured to transmit its normal modulated signal at maximum power. The spectrum analyzers resolution bandwidth, sweep rate and span were adjusted for the frequency being measured. The upper and lower frequency points corresponding to levels 20dB down from the peak of the modulated carrier frequency were used to determine the occupied bandwidth as follows:

Fundamental Frequency = 433.92MHz 0.25% of Center Frequency= 1.0848MHz 1.0848 divided by 2 = 0.542MHz

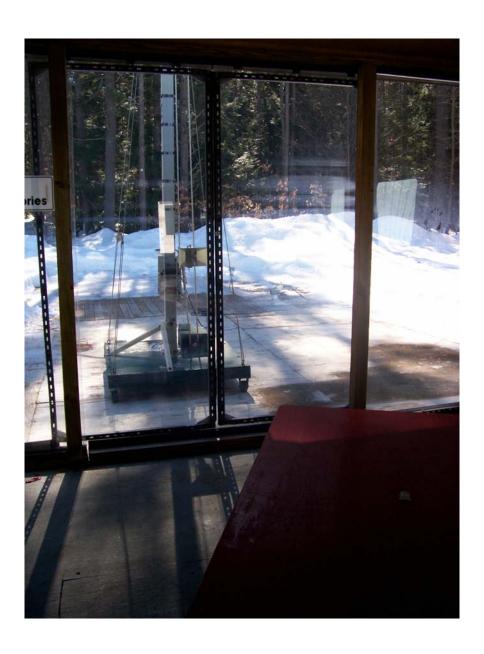
Bandwidth Range = Fundamental Frequency + and -0.542MHz


433.92MHz - 0.542MHz = 433.378MHz433.92MHz + 0.542MHz = 434.462MHz

Bandwidth Range = 433.378MHz - 434.462MHz

Test Results: The bandwidth of the emission at 433.92MHz was less than 0.25% of the center frequency and met the requirements of 15.231 (c).

Retlif Testing Laboratories


Test Photograph Radiated Emissions 30MHz to 1GHz

Retlif Testing Laboratories

Test Photograph Radiated Emissions 1GHz to 4.4GHz

Retlif Testing Laboratories

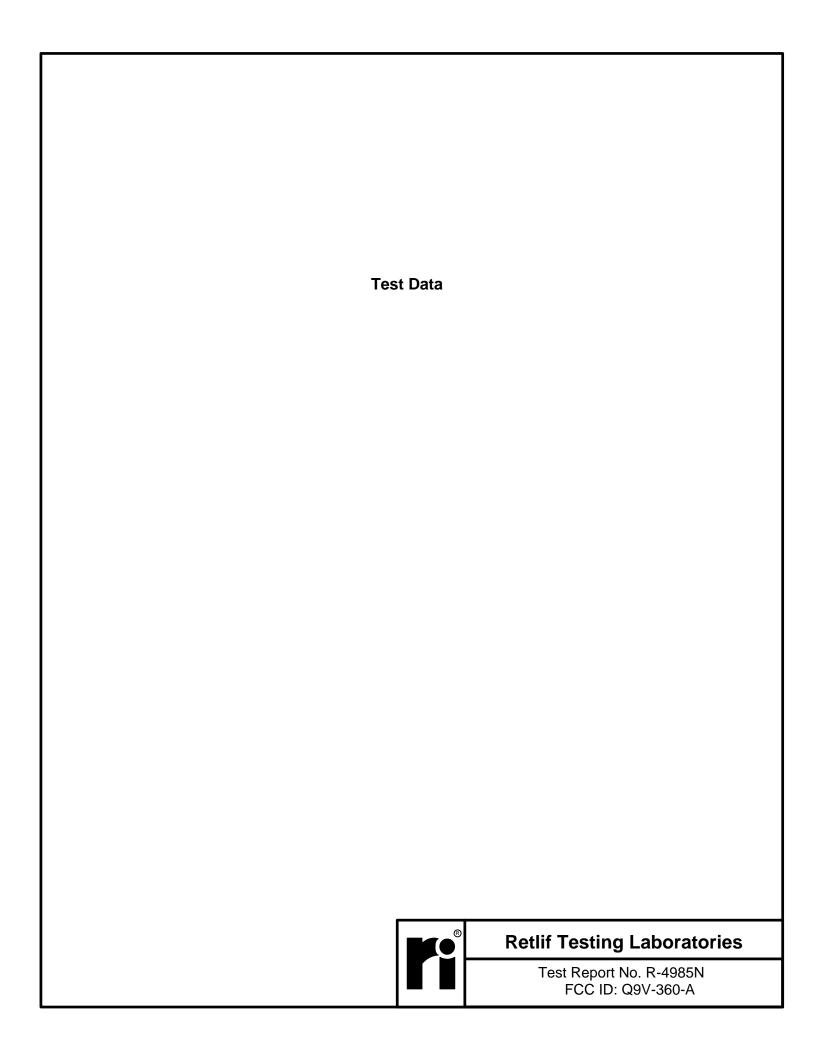
Test Photograph Occupied Bandwidth/99% Bandwidth/Duty Cycle

Retlif Testing Laboratories

Equipment Lists

Fundamental & Spurious Radiated Emissions

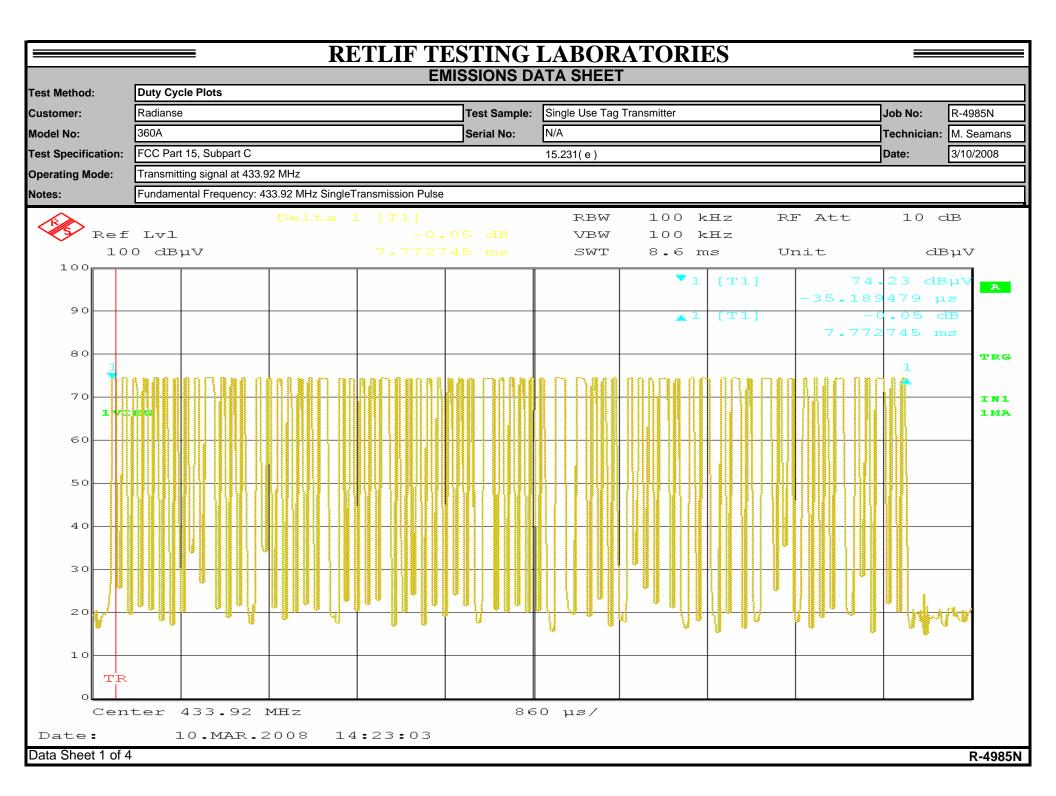
EN	Туре	Manufacturer	Description	Model No.	Cal Date	Due Date
3116	Pre-Amplifier	Miteq	0.1 GHz - 18 GHz	AFS42-35	8/27/2007	8/27/2008
3117	Power Supply	B&K Precision	0-30 Vdc, 3.0 A	1630	1/31/2008	1/31/2009
3258	Double Ridge Guide	EMCO	1 - 18 GHz	3115	11/14/2007	11/14/2008
4029B	Test Site Attenuation	Retlif	3 / 10 Meters	RNH	6/20/2007	6/20/2008
5053	Biconilog	EMCO	26 MHz - 3 GHz	3142C	10/4/2007	10/4/2008
5070	EMI Test Receiver	Rohde & Schwarz	20 Hz - 40 GHz	ESIB40	12/7/2007	12/7/2008


Occupied Bandwidth/Duty Cycle

Occupied Bandwidth

EN	Type	Manufacturer	Description	Model No.	Cal Date Due Date
5070	EMI Test Receiver	Rohde & Schwarz	20 Hz - 40 GHz	ESIB40	12/7/2007 12/7/2008

Retlif Testing Laboratories


			TABUL	AR DATA	SHEET						
Test Method:	Fundamental Field Strength										
Customer:	Radianse				Job No:	R-4985N					
Test Sample: Single Use Tag Transmitter											
Model No:	360A				Serial No:	N/A					
Test Specification:	FCC Part 15, S	Subpart C									
		Paragraph: 15.231(e)									
Operating Mode:	Continuously T	ransmitting									
Technician:	M.Seamans				Date:	March 10, 20	08				
Notes:	Corrected peal	k readings me	eet peak limit (2	20dB above av	/erage limit) pe	er 15.35					
Transmit	Antenna/EUT	Meter	Correction	Corrected	Duty Cycle	Corrected	Average Limit	Converted	Limit		
Frequency	Position	Reading	Factor	Peak	Correction	Reading	at 3 Meters	Reading	at 3 Meters		
MHz 433.92	Polarization/Axis V/Y	dBuV 49.28	dB 20.03	dBuV/m 69.31	dB -27.50	dBuV/m 41.81	dBuV 72.87	uV/m 123.17	uVm 4398.68		
400.02	V/1	43.20	20.00	00.01	21.50	41.01	12.01	120.17	4000.00		
			<u> </u>			1	1	<u> </u>			
									1		

		■ RE	TLIF	TESTI	NG LA	ABOR	ATORI	ES ≡			
				TABUL	AR DATA	SHEET					
Test Method:	:	Spurious Emis	sions 30MHz	to 4.5GHz							
Customer:		Radianse				Job No:	R-4985N				
Test Sample:	:	Single Use Tag Transmitter									
						-					
Model No:		360A				Serial No:	N/A				
Test Specific	ation:	FCC Part 15, Subpart C Paragraph: 15.231(e)									
Operating Mo	ode:	Continuously T	ransmitting			T diagrapii.	10.201(0)				
, ,											
Technician:		M.Seamans				Date:	3/10/2008				
Notes:		Fundamental F	requency: 43	33.92 MHz							
	1			1	1	T	_	1	1		
Harmonic		Antenna/EUT Position	Meter	Correction	Duty Cycle	Corrected Reading			Converted	Limit at 3 Meters	
Frequency		Position Polarization/Axis	Reading	Factor	Correction	<u> </u>	<u> </u>		Reading	uVm	
MHz			dBuV	dB	dB	dBuV/m			uV/m		
867.84		H/Y	30.7	27.6	-27.5	30.8			34.67	439.87	
*1301.76		-	-	-	-	-			-	439.87 439.87	
*1735.68		-	-	-	-	-			-		
*2169.6		-	-	-	-	-			-	439.87	
*2603.52		-	=	-	-	=			-	439.87 439.87	
*3037.44		-	-	-	-	-			-	439.87	
*3471.36		-	-	-	-	-			-	439.87	
*3905.28 *4339.2		-	-	-	-	-			-	439.87	
4339.2		-	-	-	-	-			-	439.07	
								†			
								†			
	* These harr	nonic frequencie	s were not ob	served above	the noise floor	of the test ed	quipment which	was a minimun	n of		
	10dB below	the limit.									
Data Sheet	t 1 of 1									R-4985N	

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Test Method: Occupied Bandwidth Radianse Single Use Tag Transmitter Customer: Test Sample: Job No: R-4985N Model No: 360A N/A Serial No: Technician: M. Seamans FCC Part 15. Subpart C Test Specification: Date: 3/10/2008 15.231(c) Operating Mode: Continously Transmiting Notes: Transmit Frequency: 433.92 MHz Occupied Bandwidth: 340.6813 Allowed bandwith: 0.25% of center frequency, at 20 db down. RBW 100 kHz RF Att 10 dB Ref Lvl VBW 100 kHz 100 dBuV SWT 5 ms Unit dΒμV 100 [T1] -D1 95.3 dBµV-A 3.7346 MH: 0.68136 273 kH₂ 80 75.3 dBuV-IN1 1VIEW 1MA athly white the state may brilling running 60 3.0 10 Center 433.92 MHz 500 kHz/ Span 5 MHz Date: 10.MAR.2008 14:06:02

R-4985N

Data Sheet 1 of 1

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: Radianse Single Use Tag Transmitter Job No: R-4985N Customer: Test Sample: N/A Model No: 360A Serial No: Technician: M. Seamans FCC Part 15. Subpart C Test Specification: Date: 3/10/2008 15.231(e) Transmitting signal at 433.92 MHz Operating Mode: Fundamental Frequency: 433.92 MHz Off Time Between Pulses Notes: RBW 100 kHz RF Att 10 dB Ref Lvl VBW 100 kHz 100 dBµV SWT 12 s Unit dΒμV 100 41 dBu A 865.683 90 [T1] 10.436 874 s 70 IN1 1MA 1VIEW 60 50 40 30 20 10 Center 433.92 MHz 1.2 s/ Date: 10.MAR.2008 14:30:13 Data Sheet 2 of 4

R-4985N

			E	EMISSIONS DA	ATA SHEE	T				
Method:	Duty Cycle Plots									
omer:	Radianse			Test Sample:	Single Use Tag	g Transmitter			Job No:	R-4985N
l No:	360A			Serial No:	N/A				Technician:	M. Seamar
Specification:	FCC Part 15, Subpart	0			15.231(e)				Date:	3/10/2008
ating Mode:	Transmitting signal at	133.92 MHz								
S :	Fundamental Frequence	cy: 433.92 MHz Short	t Pulse							
	Lvl) dBµV	Delta		.10 dB 022 µs	RBW VBW SWT	100 k 100 k 100 p	ΞΗZ	RF Att Jnit	10 di dB:	
100						▼1	[T1]	59 1.202	. 62 dB _l	
90						<u>*</u> 1	[T1]	55.51	1.10 di 1022 με	
80										TR
70 1VII	ew 1					1				1 N
60										
50										
30	- Commission of the Commission									
20										
10										
	TR									
	er 433 . 92	MHZ		1.0	μs/					

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: Radianse Single Use Tag Transmitter Job No: R-4985N Customer: Test Sample: N/A Model No: 360A Serial No: Technician: M. Seamans FCC Part 15, Subpart C Test Specification: Date: 3/10/2008 15.231(e) Transmitting signal at 433.92 MHz Operating Mode: Notes: Fundamental Frequency: 433.92 MHz Long Pulse RBW 100 kHz RF Att 10 dB Ref Lvl VBW 100 kHz 100 dBµV SWT 150 µs Unit dΒμV 100 37 dBu\ [T1] A 914 ms 2.019 90 [T1] 101.603 206 µs 80 TRG 7.0 IN1 1VIEW 1MA 60 40 30 20 10 Center 433.92 MHz 15 µs/ 10.MAR.2008 14:55:20 Date: Data Sheet 4 of 4 R-4985N