ENGINEERING TEST REPORT

XTend Model: XT09B FCC ID: MCQ-9XTENDB

Applicant:

Digi International Inc. 11001 Bren Road East Minnetonka, MN 55343

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247 Frequency Hopping Spread Spectrum (FHSS)
Operating within 902-928 MHz Band

UltraTech's File No.: DIGI-068F15C247

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: September 10, 2012

Report Prepared by: Dan Huynh Tested by: Mr. Hung Trinh

Issued Date: September 10, 2012 Test Dates: July 22 - August 28, 2012

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
 This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

FCC

91038

1309

46390-2049

NvLap Lab Code 200093-0

SL2-IN-E-1119R

TABLE OF CONTENTS

EXHIBIT	1.	INTRODUCTION	1
1.1. 1.2. 1.3.	RELAT	E TED SUBMITTAL(S)/GRANT(S) ATIVE REFERENCES	1
EXHIBIT	2.	PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	EQUIP EUT'S ASSOC LIST C	T INFORMATION MENT UNDER TEST (EUT) INFORMATION TECHNICAL SPECIFICATIONS CIATED ANTENNA DESCRIPTIONS DF EUT'S PORTS LARY EQUIPMENT	2 3 3
EXHIBIT	3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	5
3.1. 3.2.		TE TEST CONDITIONSATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	
EXHIBIT	4.	SUMMARY OF TEST RESULTS	6
4.1. 4.2. 4.3.	APPLI	FION OF TESTSCABILITY & SUMMARY OF EMC EMISSION TEST RESULTSFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	6
EXHIBIT	5.	TEST DATA	7
5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	COMP PROVI PEAK RF EX TRANS	R LINE CONDUCTED EMISSIONS [§15.207(a)]	12 14 32 46 65
EXHIBIT	6.	TEST EQUIPMENT LIST	95
EXHIBIT	7.	MEASUREMENT UNCERTAINTY	96
7.1.	_	CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	
7.2.	RADIA	TED EMISSION MEASUREMENT UNCERTAINTY	96

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.247
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15 – Radio Frequency Devices
Purpose of Test:	Equipment Certification for Frequency Hopping Spread Spectrum Transceiver Operating within the Frequency Band 902-928 MHz.
Test Procedures:	ANSI C63.4 ANSI C63.10 FCC Public Notice DA 00-705
Environmental Classification:	[x] Commercial, industrial or business environment [x] Residential environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2011	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2009	American National Standard for Testing Unlicensed Wireless Devices
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances
FCC Public Notice DA 00-705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
FCC ET Docket No. 99-231	2002	Amendment to FCC Part 15 of the Commission's Rules Regarding to Spread Spectrum Devices

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Digi International Inc.	
Address:	11001 Bren Road East Minnetonka, MN 55343 USA	
Contact Person:	Mr. Paul Dahl Phone #: 801-765-9885 Fax #: 801-765-9895 Email Address: <u>paul.dahl@digi.com</u>	

MANUFACTURER		
Name:	Digi International Inc.	
Address:	11001 Bren Road East Minnetonka, MN 55343 USA	
Contact Person:	Mr. Paul Dahl Phone #: 801-765-9885 Fax #: 801-765-9895 Email Address: paul.dahl@digi.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Digi International Inc
Product Name:	XTend
Model Name or Number:	XT09B
Serial Number:	Test Sample
Type of Equipment:	Spread Spectrum Transmitter
Input Power Supply Type:	External Regulated DC Sources
Primary User Functions of EUT:	Long range drop-in wireless solution for embedded systems in 902-928MHz band

2.3. EUT'S TECHNICAL SPECIFICATIONS

Transmitter		
Equipment Type:	MobileBase Station (fixed use)	
Intended Operating Environment:	Commercial, industrial or business environmentResidential environment	
Power Supply Requirement:	2.8V to 5.5V DC	
RF Output Power Rating:	0.001 to 1 W	
Operating Frequency Range:	902.9- 927.1 MHz	
RF Output Impedance:	50 Ohm	
Duty Cycle:	Continuous	
Modulation Type:	FSK, GFSK	
Antenna Connector Type:	RPSMA or MMCX	

2.4. ASSOCIATED ANTENNA DESCRIPTIONS

Antenna Type	Maximum Gain (dBi)	
Monopole antenna	2.1	
Multi-path antenna	3.0	
Omni-directional antenna	8.1	
Yagi antenna	15.1	

The highest gain antenna from each of the above antenna types were selected for testing to represents the worst-case. Refer to user manual for antennas list information.

2.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	RF IN/OUT Port	1	RPSMA/MMCX	Shielded
2	DC Supply & I/O Port	1	Pin Header	No cable, direct connection

2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Description:	Test Jig Cable
Brand name:	Digi International Inc.
Model Name or Number:	N/A
Serial Number:	N/A
Connected to EUT's Port:	Module pin signals

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power Input Source:	5.5 VDC

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	 Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements. The EUT operates in normal Frequency Hopping mode for occupancy duration, and frequency separation.
Special Test Software:	Special software provided by the Applicant to operate the EUT at each channel frequency continuously and in the range of typical modes of operation.
Special Hardware Used:	Test Jig
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as non-integral antenna equipment as described with the test results.

Transmitter Test Signals	
Frequency Band(s):	902.9-927.1 MHz
Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	902.9, 915.2 and 927.1 MHz
RF Power Output: (measured maximum output power at antenna terminals)	1 W (conducted)
Normal Test Modulation:	FSK, GFSK
Modulating Signal Source:	Internal

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2014-04-04.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)	
15.203	Antenna requirements	Yes	
15.207(a)	Power Line Conducted Emissions Measurements	Yes	
15.247(a)(1)	Provisions for Frequency Hopping Systems	Yes	
15.247(b)	Peak Output Power	Yes	
15.247(d)	Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes	
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated Emissions	Yes	
15.247(i), 1.1307, 1.1310, 2.1091	RF Exposure	Yes	

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

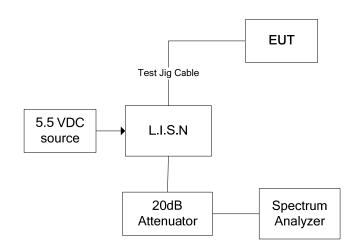
None.

EXHIBIT 5. TEST DATA

5.1. POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

5.1.1. Limit(s)

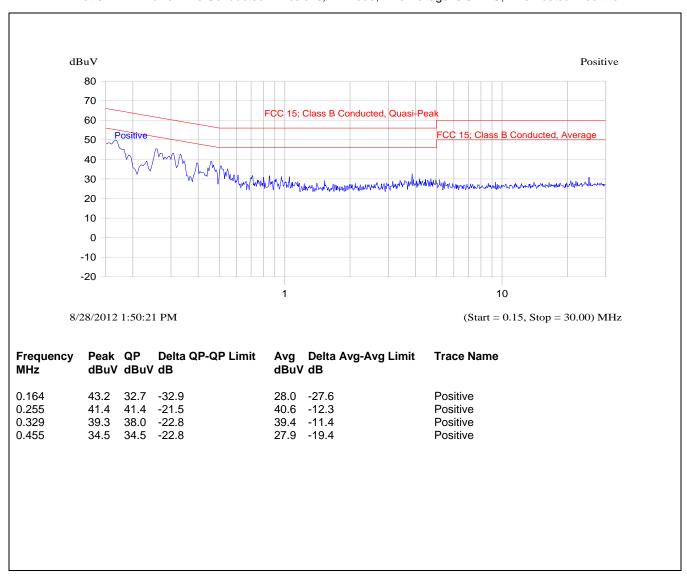
The equipment shall meet the limits of the following table:

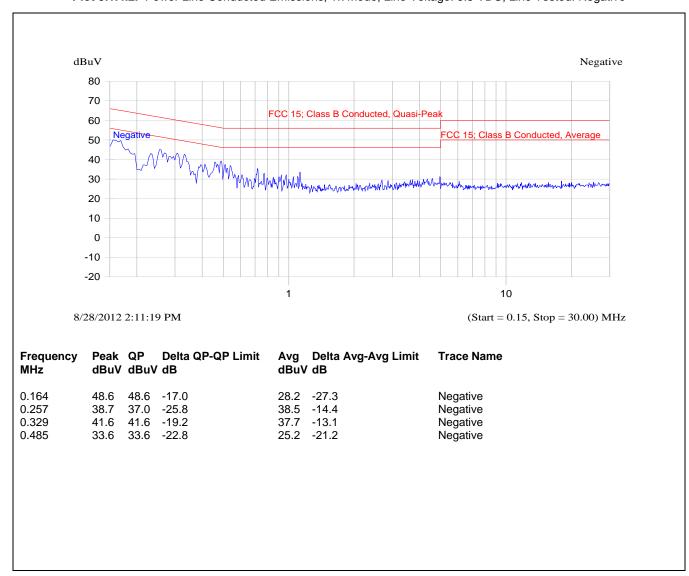

Frequency of emission	Conducted Limits (dB _µ V)		
(MHz)	Quasi-peak	Average	
0.5–5	66 to 56* 56	56 to 46* 46 50	

^{*}Decreases linearly with the logarithm of the frequency

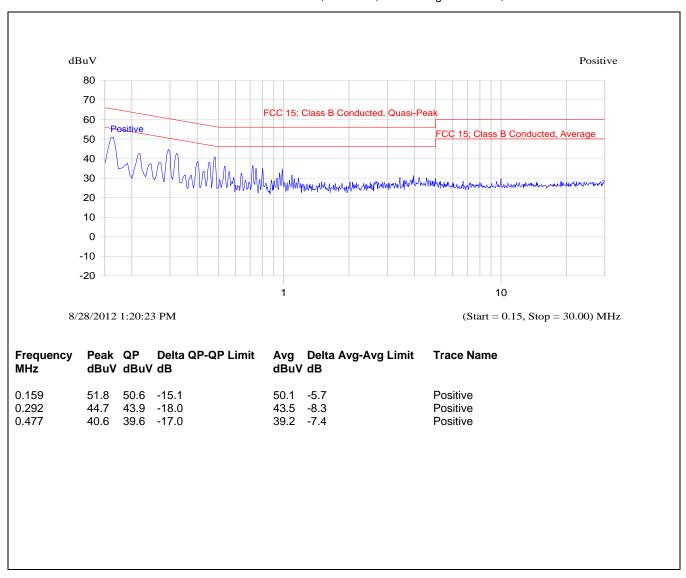
5.1.2. Method of Measurements

ANSI C63.4-2009

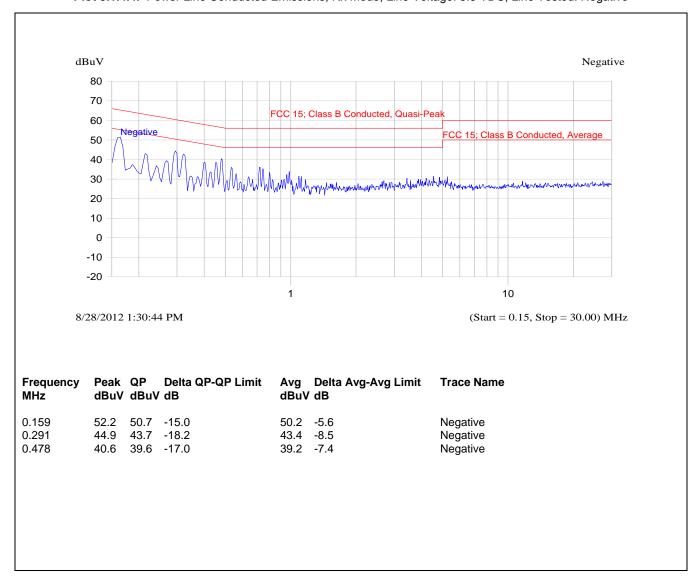

5.1.3. Test Arrangement


5.1.4. Test Data

Plot 5.1.4.1. Power Line Conducted Emissions, Tx Mode, Line Voltage: 5.5 VDC, Line Tested: Positive


File #: DIGI-068F15C247

Plot 5.1.4.2. Power Line Conducted Emissions, Tx Mode, Line Voltage: 5.5 VDC, Line Tested: Negative



File #: DIGI-068F15C247

Plot 5.1.4.3. Power Line Conducted Emissions, Rx Mode, Line Voltage: 5.5 VDC, Line Tested: Positive

Plot 5.1.4.4. Power Line Conducted Emissions, Rx Mode, Line Voltage: 5.5 VDC, Line Tested: Negative

File #: DIGI-068F15C247

FCC Section	FCC Rules	Manufacturer's Clarification
15.31(m)	The hoping function must be disabled for tests, which should be performed with the EUT transmitting on the number of frequencies specified in this Section. The measurements made at the upper and lower ends of the band of operation should be made with the EUT tuned to the highest and lowest available channels.	Hoping function was disabled for the required tests at low, middle and high channels.
15.203	Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.	Employs unique antenna connectors: Reverse Polarity SMA or MMCX
	The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed: > The application (or intended use) of the EUT > The installation requirements of the EUT > The method by which the EUT will be marketed	
15.204	Provided the information for every antenna proposed for use with the EUT: > type (e.g. Yagi, patch, grid, dish, etc), > manufacturer and model number > gain with reference to an isotropic radiator	See proposed antenna list.
15.247(a)	Description of how the EUT meets the definition of a frequency hopping spread spectrum, found in Section 2.1. Based on the technical description.	See Operational Description
15.247(a)	Pseudo Frequency Hopping Sequence: Describe how the hopping sequence is generated. Provide an example of the hopping sequence channels, in order to demonstrate that the sequence meets the requirements specified in the definition of a frequency hopping spread spectrum system, found in Section 2.1	See Operational Description
15.247(a)	Equal Hopping Frequency Use: Describe how each individual EUT meets the requirement that each of its hopping channels is used equally on average (e.g. that each new transmission event begins on the next channel in the hopping sequence after final channel used in the previous transmission events).	See Operational Description
15.247(g)	Describe how the EUT complies with the requirement that it be designed to be capable of operating as a true frequency hopping system	See Operational Description

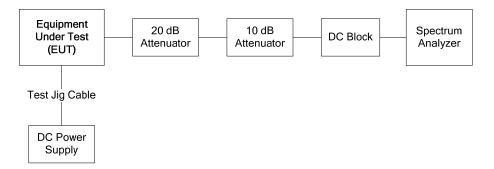
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

FCC Section	FCC Rules	Manufacturer's Clarification
15.247(h)	Describe how the EUT complies with the requirement that it not have the ability to coordinated with other FHSS is an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters	See Operational Description
Public Notice DA 00-705	System Receiver Input Bandwidth: Describe how the associated receiver(s) complies with the requirement that its input bandwidth (either RF or IF) matches the bandwidth of the transmitted signal.	See Operational Description
Public Notice DA 00-705	System Receiver Hopping Capability: Describe how the associated receiver(s) has the ability to shift frequencies in synchronization with the transmitted signals	See Operational Description

5.3. PROVISIONS FOR FREQUENCY HOPPING SYSTEMS [§ 15.247(a)(1)]

5.3.1. Limits


§ 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

§ 15.247(a)(1)(i): For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

5.3.2. Method of Measurements

FCC Public Notice DA 00-705 and ANSI C63.10-2009.

5.3.3. Test Arrangement

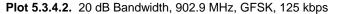
5.3.4. Test Data

Test Description	FCC Specification	Measured Values	Comments
Receiver Input Bandwidth and Hopping Capability	The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.		See Note 1
20 dB BW of the hopping channel	Shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.	341.48 kHz	See Note 2
Channel Hopping Frequency Separation	Minimum of 25 kHz or 20dB BW, whichever is greater.	354.31 kHz	See Note 2
Number of hopping frequencies	If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping	70 hopping frequencies	See Note 1 and 2
Average Time of Occupancy	frequencies. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period	286 ms	See Note 2

Note 1: See operational description exhibit for details.

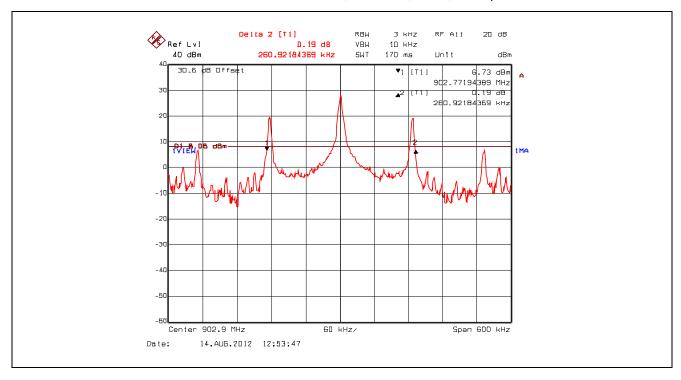
Note 2: See the following plots for details.

-50

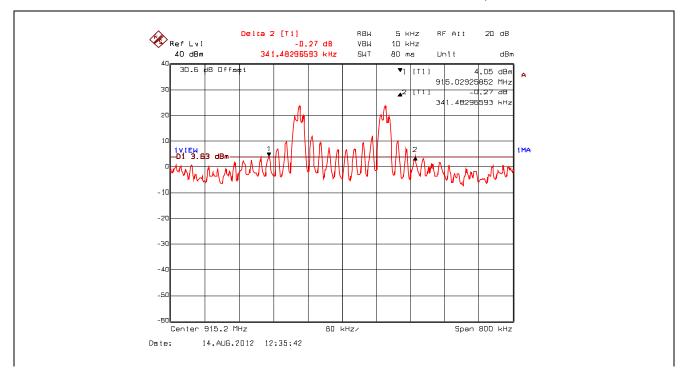

Date:

Center 902.9 MHz

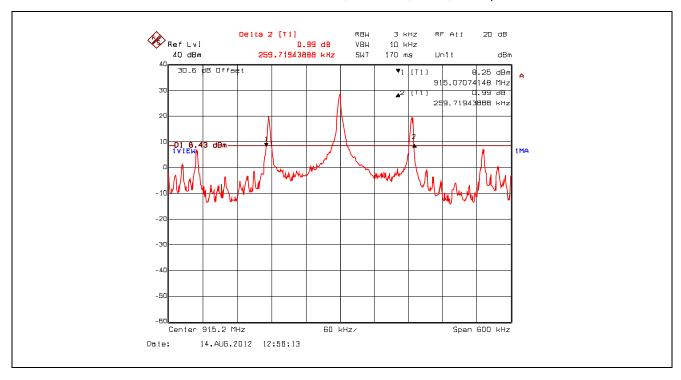
14.AUG.2012 12:32:32

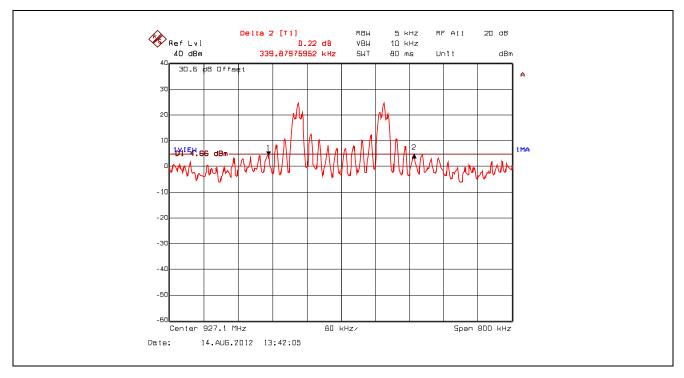

Delta 2 [T1] RBW 5 kHz RF All 211 dB Ref Lv] о.40 ав ٧BW 10 kHz 40 dBm 325,45090180 kHz 80 ms dBm 30.5 dB Offact 3,37 dBm 902.74689379 MHz .40 ab 325.45090180 kHz

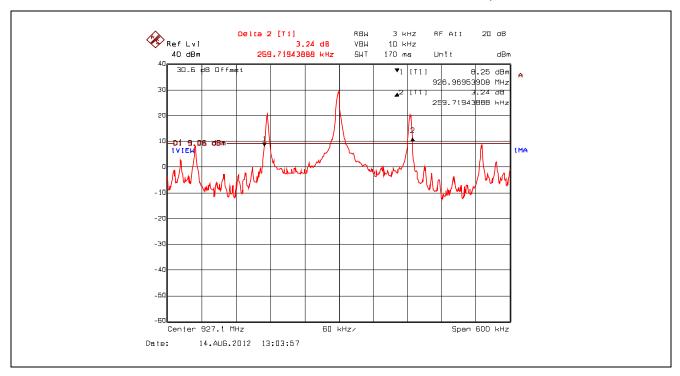
Plot 5.3.4.1. 20 dB Bandwidth, 902.9 MHz, FSK, 10 kbps

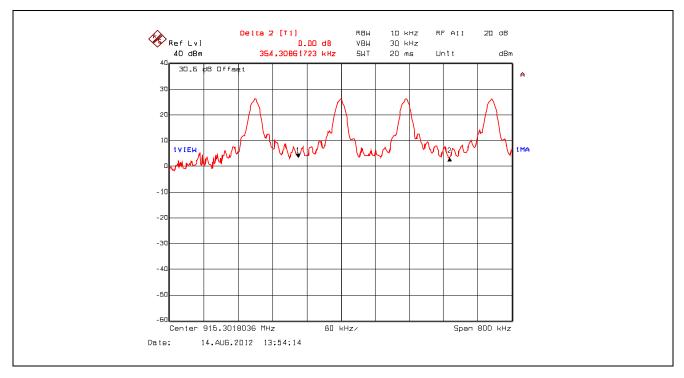


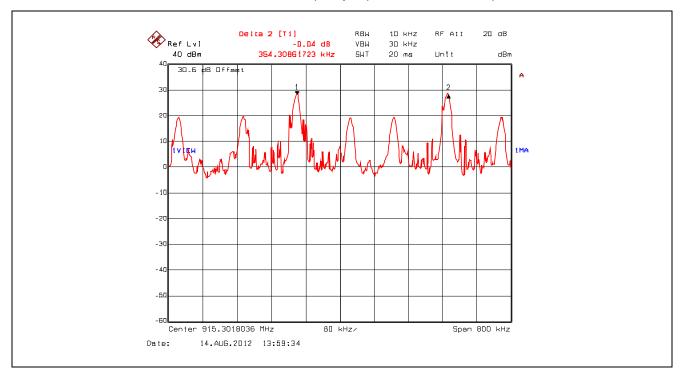
BO kHz/

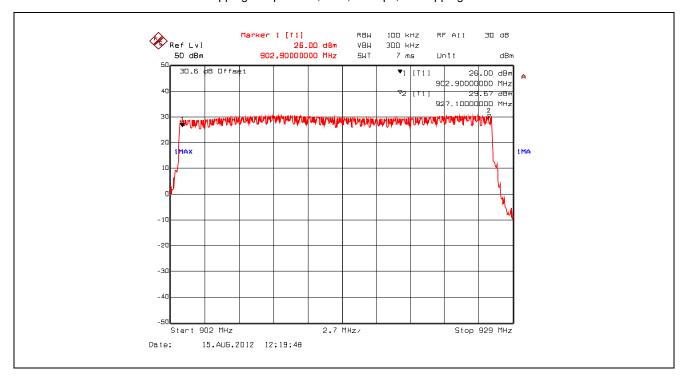

Span 800 kHz

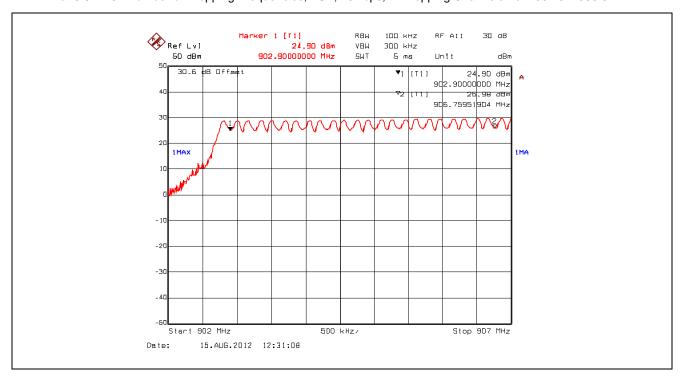

Plot 5.3.4.3. 20 dB Bandwidth, 915.2 MHz, FSK, 10 kbps

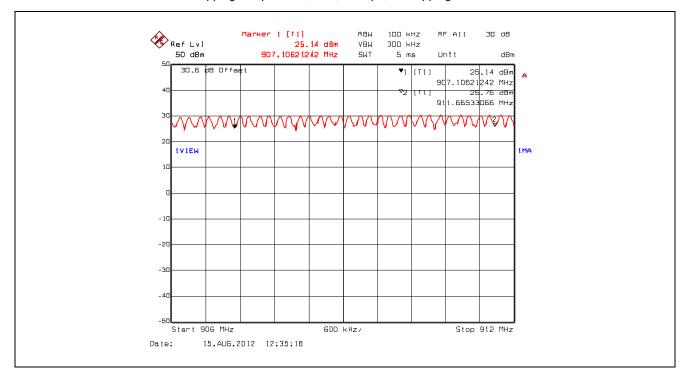

Plot 5.3.4.4. 20 dB Bandwidth, 915.2 MHz, GFSK, 125 kbps

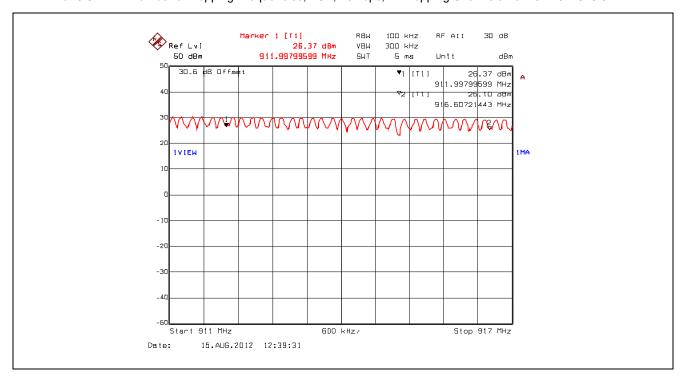

Plot 5.3.4.5. 20 dB Bandwidth, 927.1 MHz, FSK, 10 kbps

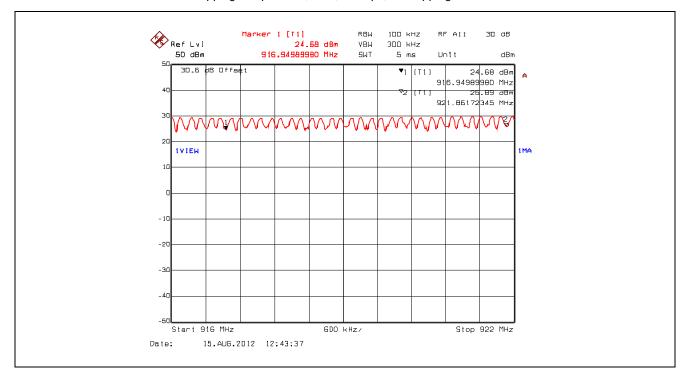

Plot 5.3.4.6. 20 dB Bandwidth, 927.1 MHz, GFSK, 125 kbps


Plot 5.3.4.7. Carrier Frequency Separation, FSK, 10 kbps

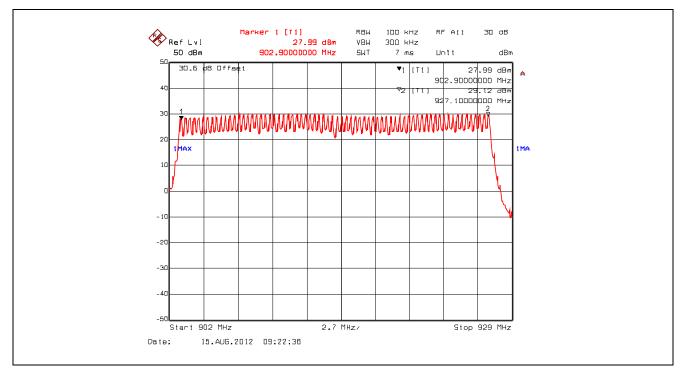

Plot 5.3.4.8. Carrier Frequency Separation, GFSK, 125 kbps

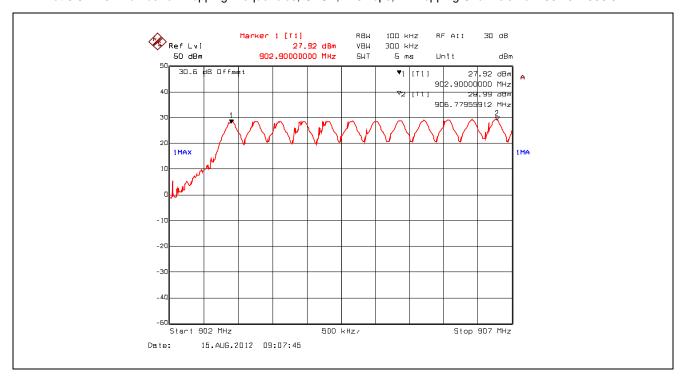

Plot 5.3.4.9. Number of Hopping Frequencies, FSK, 10 kbps, 70 Hopping Channels from 902-928 MHz


Plot 5.3.4.10. Number of Hopping Frequencies, FSK, 10 kbps, 12 Hopping Channels from 902.9 - 906.8 MHz


Plot 5.3.4.11. Number of Hopping Frequencies, FSK, 10 kbps, 14 Hopping Channels from 907.1 – 911.7 MHz

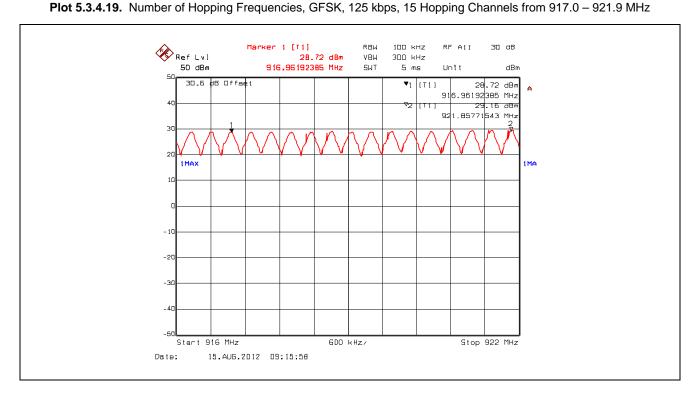

Plot 5.3.4.12. Number of Hopping Frequencies, FSK, 10 kbps, 14 Hopping Channels from 912.0 – 916.6 MHz


Plot 5.3.4.13. Number of Hopping Frequencies, FSK, 10 kbps, 15 Hopping Channels from 916.9 – 921.9 MHz

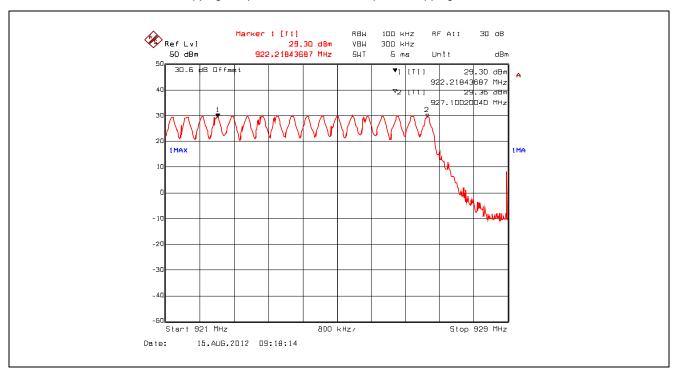

Plot 5.3.4.14. Number of Hopping Frequencies, FSK, 10 kbps, 15 Hopping Channels from 922.2 – 927.1 MHz


Plot 5.3.4.15. Number of Hopping Frequencies, GFSK, 125 kbps, 70 Hopping Channels from 902-928 MHz

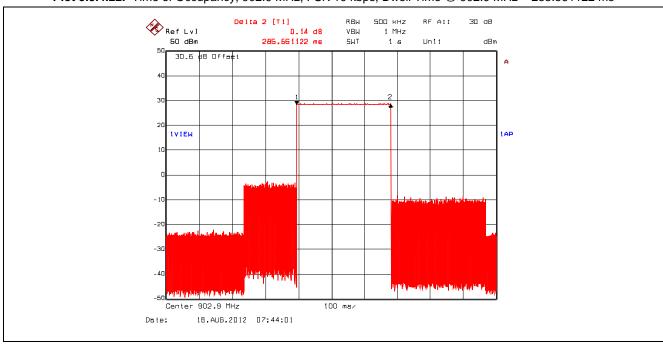

Plot 5.3.4.16. Number of Hopping Frequencies, GFSK, 125 kbps, 12 Hopping Channels from 902.9 - 906.8 MHz



Plot 5.3.4.17. Number of Hopping Frequencies, GFSK, 125 kbps, 14 Hopping Channels from 907.1 – 911.7 MHz

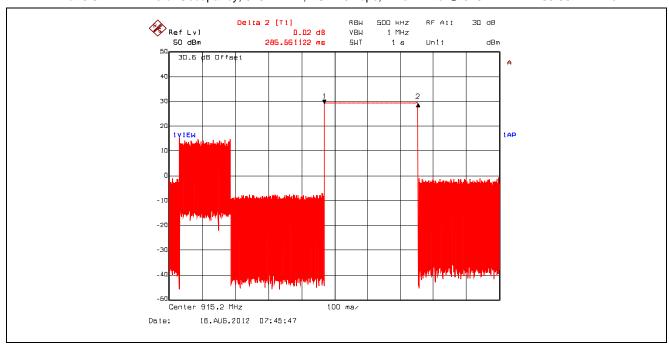


Plot 5.3.4.18. Number of Hopping Frequencies, GFSK, 125 kbps, 14 Hopping Channels from 912.0 – 916.6 MHz


Plot 5.3.4.20. Number of Hopping Frequencies, GFSK, 125 kbps, 15 Hopping Channels from 922.2 - 927.1 MHz

500 kHz RF AII 30 dB Ref Lyl 28.58 dBm 8.917836 s VBW 1 MHz 50 dBm 5WT 10 s Unit dBm 30.6 ¢B Offset 1 AP Center 902.9 MHz 16.AUG.2012 07:51:50 Date:

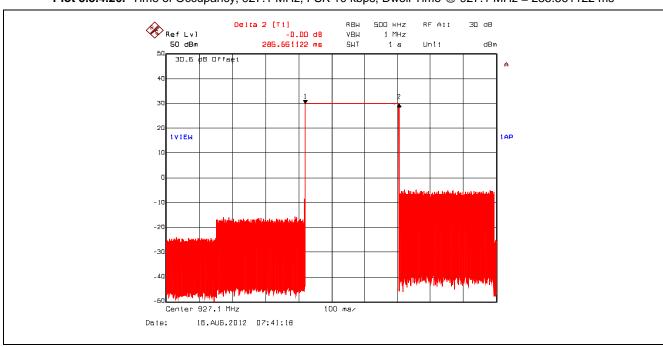
Plot 5.3.4.21. Time of Occupancy, 902.9 MHz, FSK 10 kbps



Average time of occupancy within a 10 s = (Dwell Time @ 902.9 MHz) x (number of hops within a period) = 285.561122 x 1 = 286 ms

Marker 1 [T1] 500 kHz RF AII 30 dB RBW Ref Lv] 29.23 dBm VBW 1 MHz 50 dBm 3.867735 s 30.6 dB Offset 1 V I EW 1 AP 16.AUG.2012 07:47:30 Date:

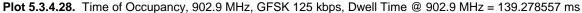
Plot 5.3.4.23. Time of Occupancy, 915.2 MHz, FSK 10 kbps



Average time of occupancy within a 10 s = (Dwell Time @ 915.2 MHz) x (number of hops within a period) = 285.561122 ms x 1 = 286 ms

Marker 1 [T1] 500 kHz RF AII 30 dB RBW Ref Lv] 29.93 dBm VBW 1 MHz 50 dBm 2.364729 s 30.6 dB Offset 1 V I EW 1 AP 927.1 MHz Center 16.AUG.2012 07:53:49 Date:

Plot 5.3.4.25. Time of Occupancy, 927.1 MHz, FSK 10 kbps



Average time of occupancy within a 10 s = (Dwell Time @ 927.1 MHz) x (number of hops within a period) = 285.561122 ms x 1 = 286 ms

Ref Lv1 28.52 dBm VBW 1 MHz SO CH RE A11 30 dB So CH RE A11 30 dB So CH REF A11 30 dB

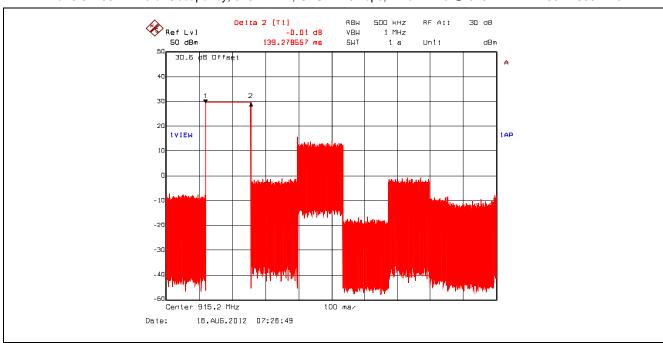
Plot 5.3.4.27. Time of Occupancy, 902.9 MHz, GFSK 125 kbps

902.9 MHz

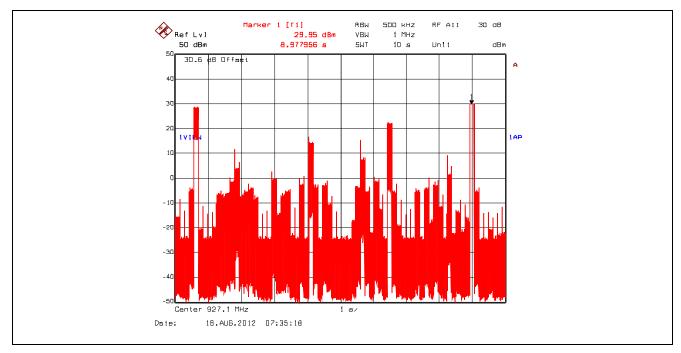
16.AUG.2012 07:31:16

Center

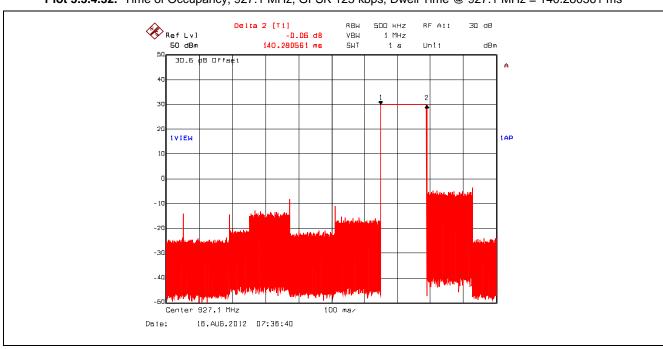
Date:


Average time of occupancy within a 10 s = (Dwell Time @ 902.9 MHz) x (number of hops within a period) = 139.278557 ms x 1 = 139 ms

Plot 5.3.4.29. Time of Occupancy, 915.2 MHz, GFSK 125 kbps


16.AUG.2012 07:19:24

Date:



Average time of occupancy within a 10 s = (Dwell Time @ 915.2 MHz) x (number of hops within a period) = 139.278557 ms x 1 = 139 ms

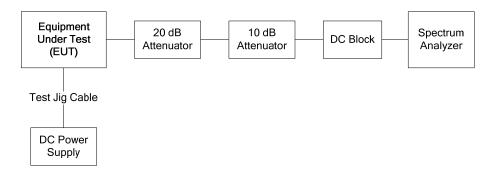
Plot 5.3.4.31. Time of Occupancy, 927.1 MHz, GFSK 125 kbps

Plot 5.3.4.32. Time of Occupancy, 927.1 MHz, GFSK 125 kbps, Dwell Time @ 927.1 MHz = 140.280561 ms

Average time of occupancy within a 10 s = (Dwell Time @ 927.1 MHz) x (number of hops within a period) = 140.280561 ms x 1 = 140 ms

5.4. PEAK OUTPUT POWER & EQUIVALENT ISOTROPIC RADIATED POWER (EIRP) [§ 15.247(b)]

5.4.1. Limit


§15.247(b)(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

§15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.4.2. Method of Measurements

FCC Public Notice DA 00-705 and ANSI C63.10-2009

5.4.3. Test Arrangement

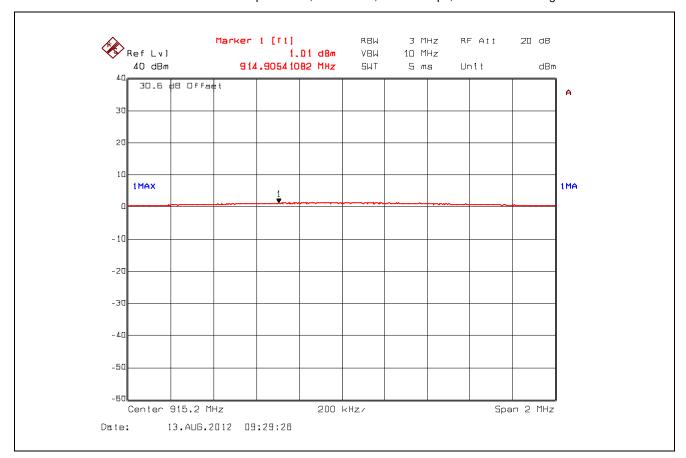
FCC ID: MCQ-9XTENDB

5.4.4. Test Data

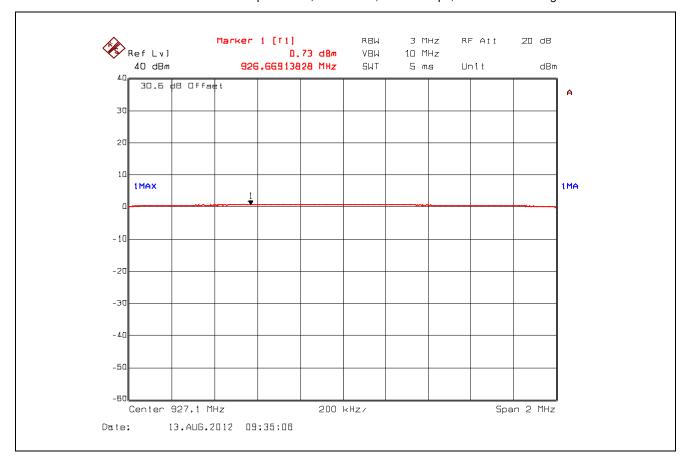
Operation Mode	Frequency (MHz)	Peak Output Power at Antenna Terminal (dBm)	Calculated EIRP (dBm)	Peak Output Power Limit (dBm)	EIRP Limit (dBm)
FSK 10 kbps	902.9	0.32	See Notes below	30	36
Low power setting (0 dBm, 1 mW)	915.2	1.01	See Notes below	30	36
	927.1	0.73	See Notes below	30	36
FSK 10 kbps High power setting (30 dBm, 1 W)	902.9	29.00	See Notes below	30	36
	915.2	29.60	See Notes below	30	36
	927.1	29.90	See Notes below	30	36
GFSK 125 kbps Low power setting (0 dBm, 1 mW)	902.9	0.18	See Notes below	30	36
	915.2	1.01	See Notes below	30	36
	927.1	0.73	See Notes below	30	36
GFSK 125 kbps High power setting (30 dBm, 1 W)	902.9	28.75	See Notes below	30	36
	915.2	29.48	See Notes below	30	36
	927.1	29.90	See Notes below	30	36

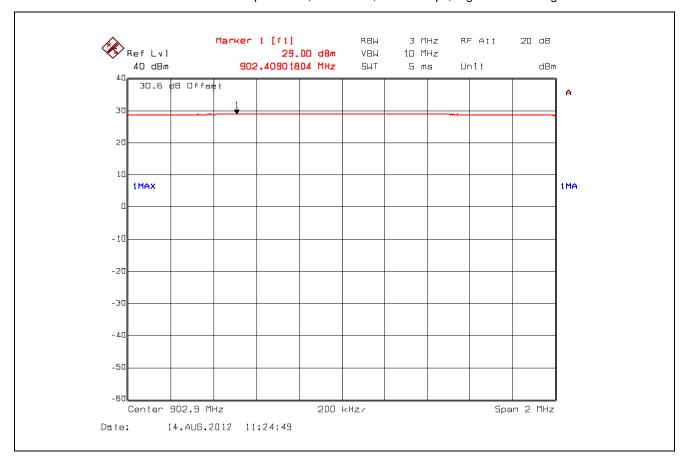
Notes:

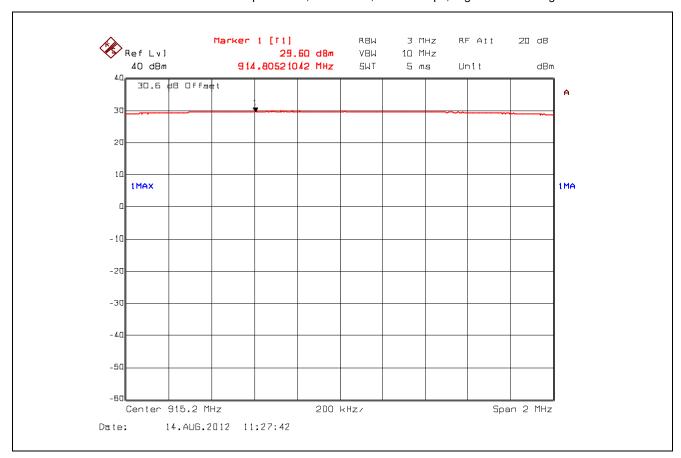
See the following plots for details.

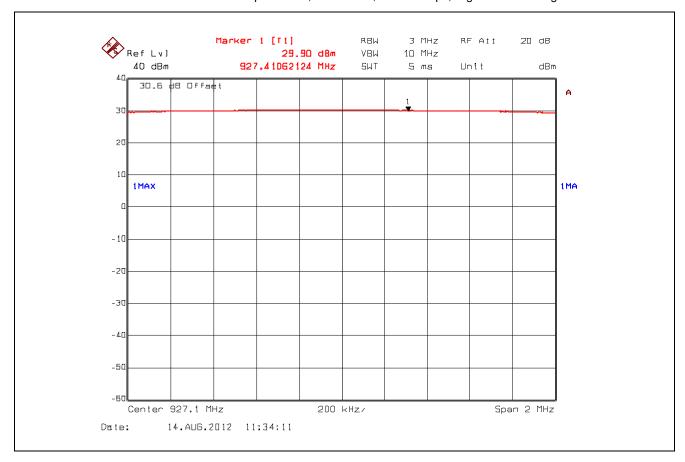

^{1.} The EIRP shall be calculated based on the transmitter antenna gain (G_{dBi}), cable loss (CL_{dB}) and peak output power at antenna terminal (P_{dBm}). Calculated EIRP = P_{dBm} + G_{dBi} - CL_{dB}

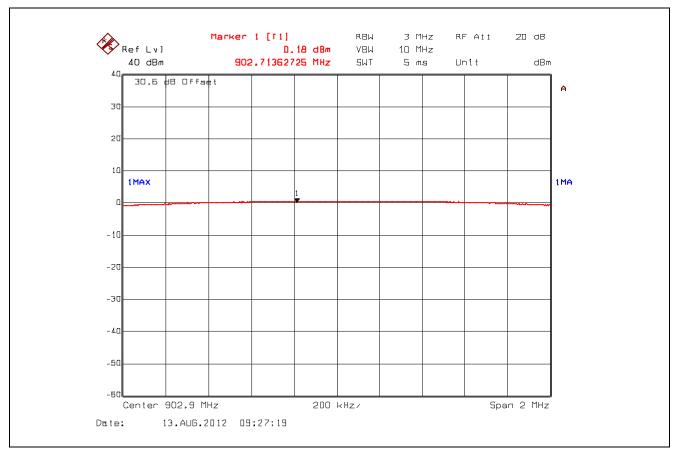
^{2.} EIRP shall not exceed 36 dBm limit (Power Setting = 36 dBm - G_{dBi} + CL_{dB}).

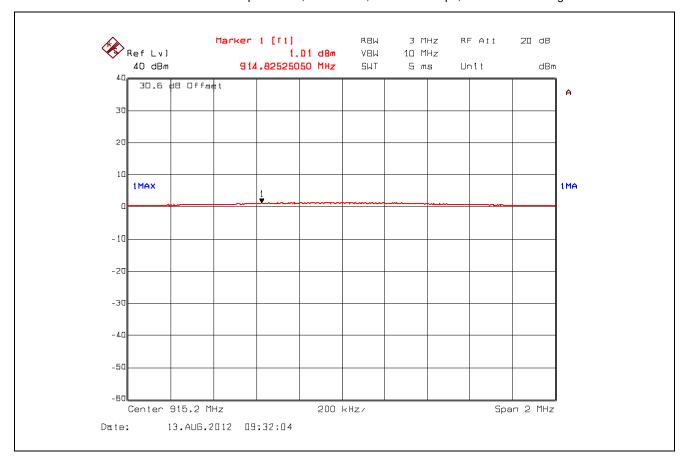

Plot 5.4.4.1. Peak Output Power, 902.9 MHz, FSK 10 kbps, Low Power Setting

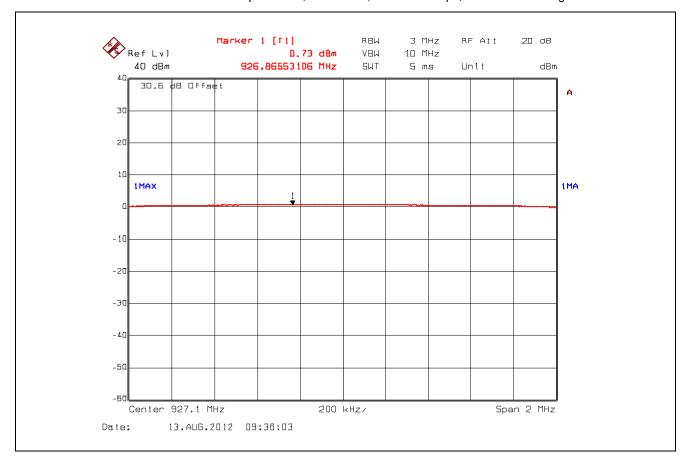

Plot 5.4.4.2. Peak Output Power, 915.2 MHz, FSK 10 kbps, Low Power Setting

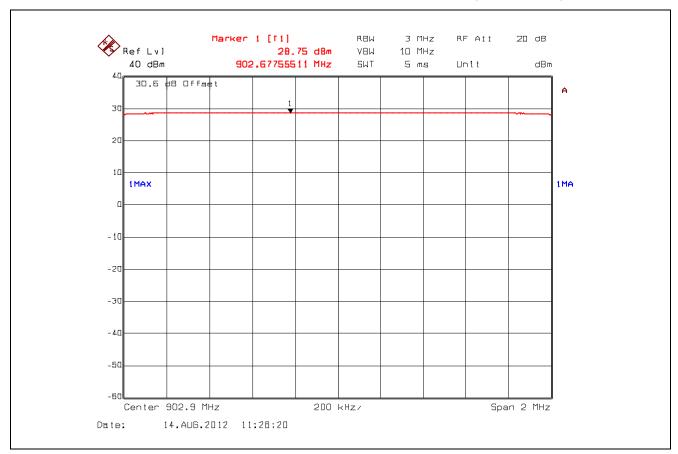

Plot 5.4.4.3. Peak Output Power, 927.1 MHz, FSK 10 kbps, Low Power Setting

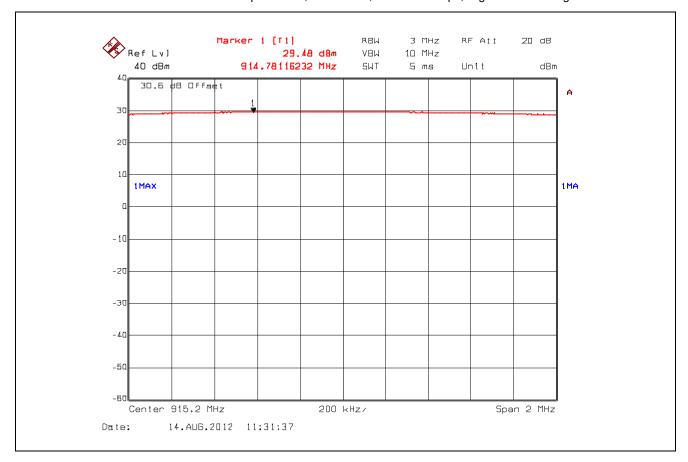

Plot 5.4.4.4. Peak Output Power, 902.9 MHz, FSK 10 kbps, High Power Setting

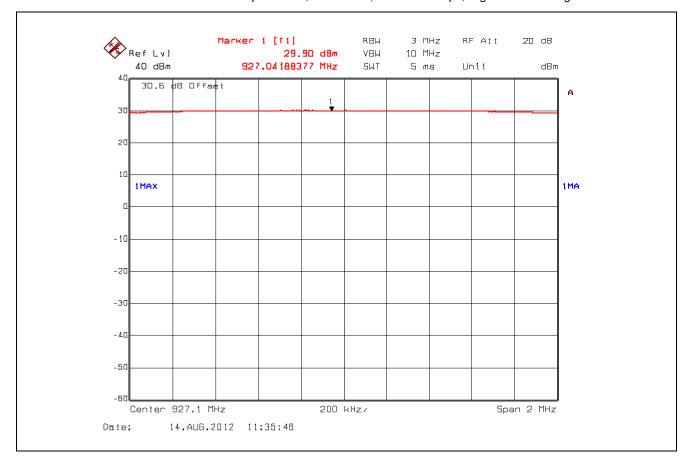

Plot 5.4.4.5. Peak Output Power, 915.2 MHz, FSK 10 kbps, High Power Setting


Plot 5.4.4.6. Peak Output Power, 927.1 MHz, FSK 10 kbps, High Power Setting


Plot 5.4.4.7. Peak Output Power, 902.9 MHz, GFSK 125 kbps, Low Power Setting


Plot 5.4.4.8. Peak Output Power, 915.2 MHz, GFSK 125 kbps, Low Power Setting


Plot 5.4.4.9. Peak Output Power, 927.1 MHz, GFSK 125 kbps, Low Power Setting


Plot 5.4.4.10. Peak Output Power, 902.9 MHz, GFSK 125 kbps, High Power Setting

Plot 5.4.4.11. Peak Output Power, 915.2 MHz, GFSK 125 kbps, High Power Setting

Plot 5.4.4.12. Peak Output Power, 927.1 MHz, GFSK 125 kbps, High Power Setting

RF EXPOSURE REQUIRMENTS [§§ 15.247(b)(5), 1.1310 & 2.1091] 5.5.

The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation.

FCC 47 CFR § 1.1310:

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)					
(A) Limits for Occupational/Controlled Exposures									
0.3–3.0	614	1.63	*(100)	6					
3.0–30	1842/f	4.89/f	*(900/f ²)	6					
30–300	61.4	0.163	1.0	6					
300–1500			f/300	6					
1500–100,000			5	6					
(B) Limits	for General Populati	on/Uncontrolled Ex	oosure						
0.3–1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f ²)	30					
30–300	27.5	0.073	0.2	30					
300-1500			f/1500	30					
1500–100,000			1.0	30					

f = frequency in MHz

5.5.1. Method of Measurements

Refer to Sections 1.1310, 2.1091.

In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:

- (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits defined for free space.
- (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
- (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure
- (4) Any other RF exposure related issues that may affect MPE compliance

^{* =} Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Calculation Method of RF Safety Distance:

$$S = \frac{P \cdot G}{4 \cdot \pi \cdot r^2} = \frac{EIRP}{4 \cdot \pi \cdot r^2}$$

Where: P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power

S: power density mW/cm²

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

5.5.2. RF Evaluation

Evaluation of RF Exposure Compliance Requirements						
RF Exposure Requirements	Compliance with FCC Rules					
Minimum calculated separation distance between antenna and persons required: 23 cm (see note)	Manufacturer' instruction for separation distance between antenna and persons required: 30 cm.					
Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement.	Antenna installation and device operating instructions shall be provided to installers to maintain and ensure compliance with RF exposure requirements.					
Caution statements and/or warning labels that are necessary in order to comply with the exposure limits.	Refer to User's Manual for RF Exposure Information.					
Any other RF exposure related issues that may affect MPE compliance	None.					

NOTE: The minimum separation distance between the antenna and bodies of users are calculated using the following formula:

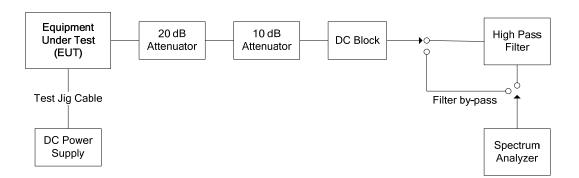
RF Exposure Distance Limits

$$r = \sqrt{\frac{P \cdot G}{4 \cdot \pi \cdot S}} = \sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}}$$

 $S = 902.9/1500 \text{ mW/cm}^2 = 0.602 \text{ mW/cm}^2 \\ \text{EIRP} = 36 \text{ dBm} = 10^{36/10} \text{ mW} = 3981 \text{ mW (Worst Case)}$

(Minimum Safe Distance, r) = $\sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}} = \sqrt{\frac{3981}{4 \cdot \pi \cdot (0.602)}} \approx 23cm$

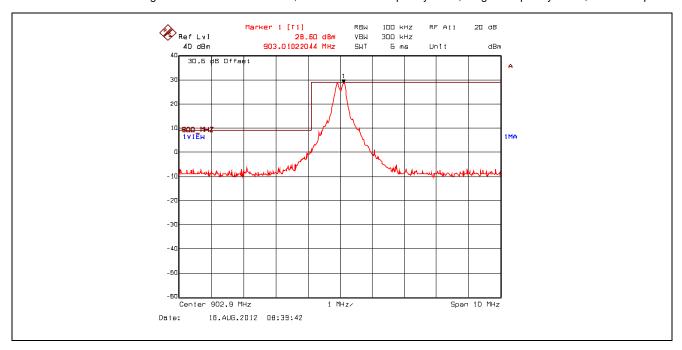
5.6. TRANSMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(d)]

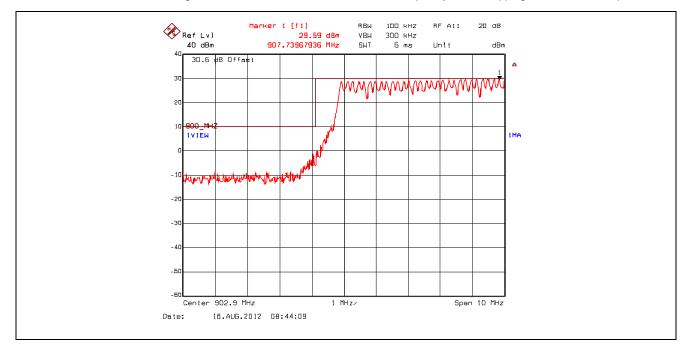

5.6.1. Limits

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

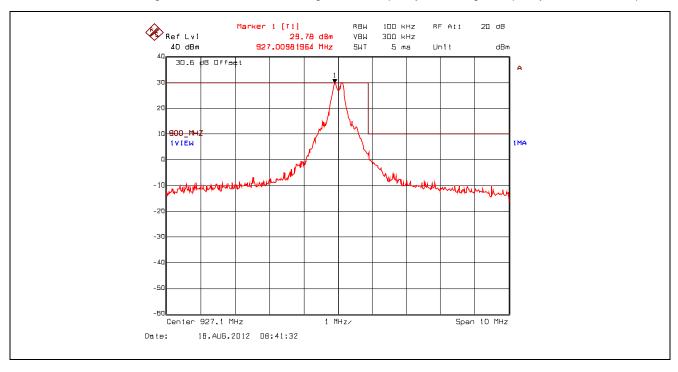
5.6.2. Method of Measurements

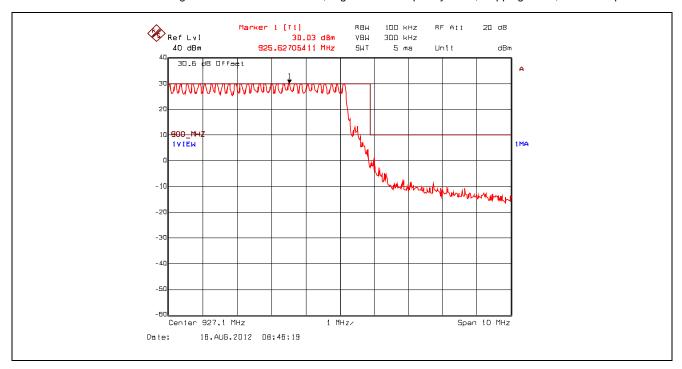
FCC Public Notice DA 00-705 and ANSI C63.10-2009

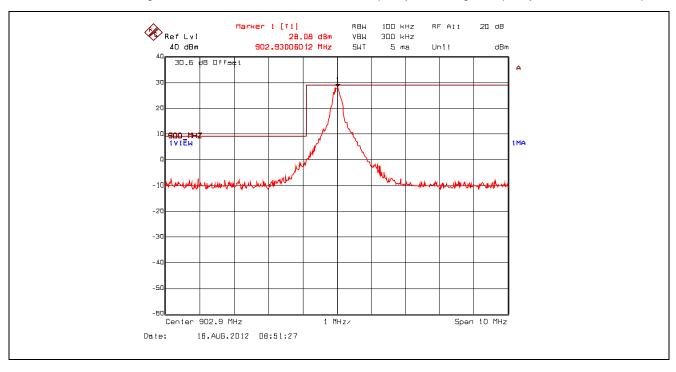

5.6.3. Test Arrangement


5.6.4. Test Data

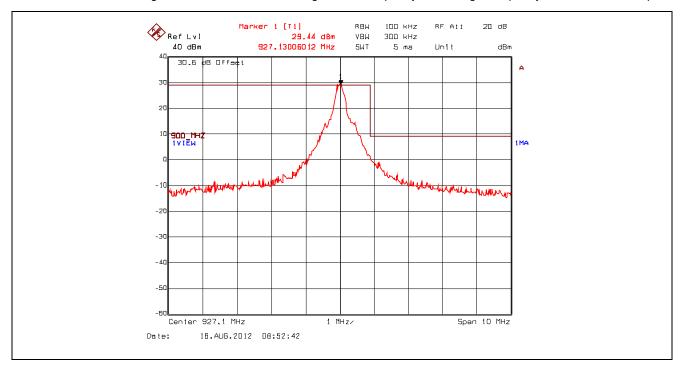
5.6.4.1. Band-Edge RF Conducted Emissions Test Results

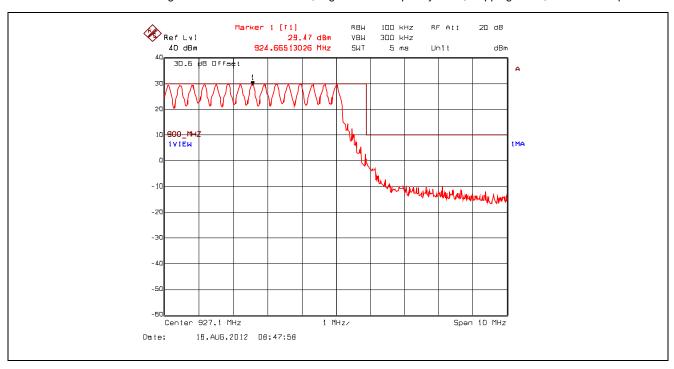

Plot 5.6.4.1.1. Band-Edge RF Conducted Emissions, Lowest End of Frequency Band, Single Frequency Mode, FSK 10 kbps


Plot 5.6.4.1.2. Band-Edge RF Conducted Emissions, Low End of Frequency Band, Hopping Mode, FSK 10 kbps

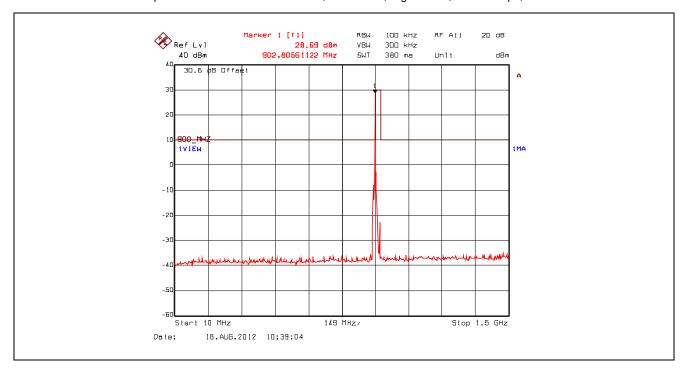

Plot 5.6.4.1.3. Band-Edge RF Conducted Emissions, High End of Frequency Band, Single Frequency Mode, FSK 10 kbps

Plot 5.6.4.1.4. Band-Edge RF Conducted Emissions, High End of Frequency Band, Hopping Mode, FSK 10 kbps

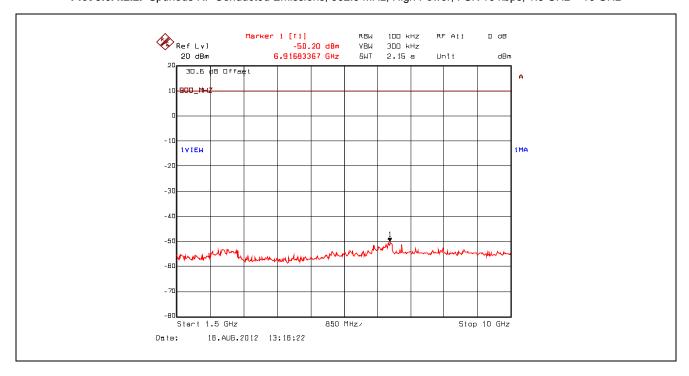

Plot 5.6.4.1.5. Band-Edge RF Conducted Emissions, Low End of Frequency Band, Single Frequency Mode, GFSK 125 kbps


Plot 5.6.4.1.6. Band-Edge RF Conducted Emissions, Low End of Frequency Band, Hopping Mode, GFSK 125 kbps

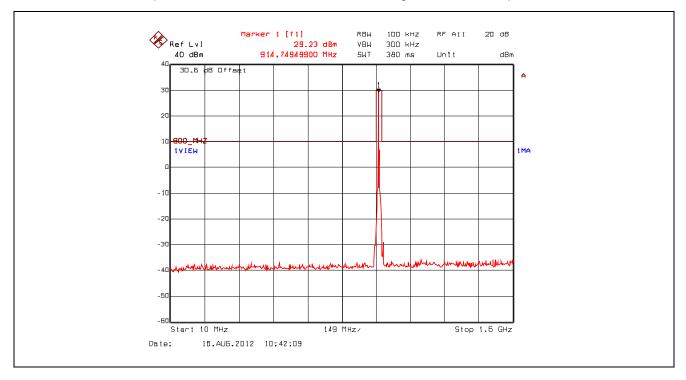
Plot 5.6.4.1.7. Band-Edge RF Conducted Emissions, High End of Frequency Band, Single Frequency Mode, GFSK 125 kbps

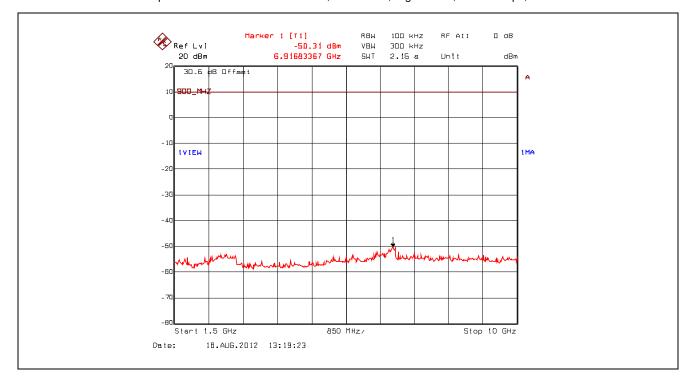


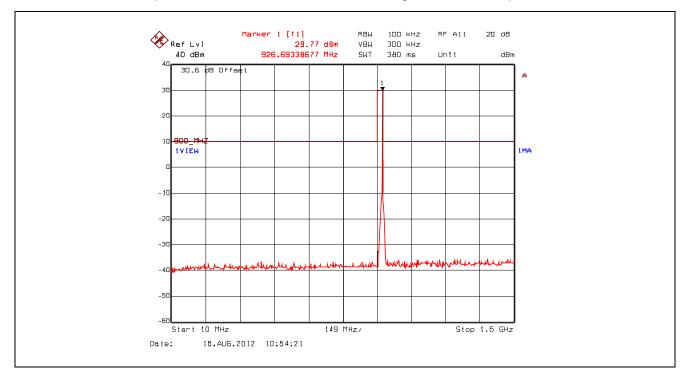
Plot 5.6.4.1.8. Band-Edge RF Conducted Emissions, High End of Frequency Band, Hopping Mode, GFSK 125 kbps

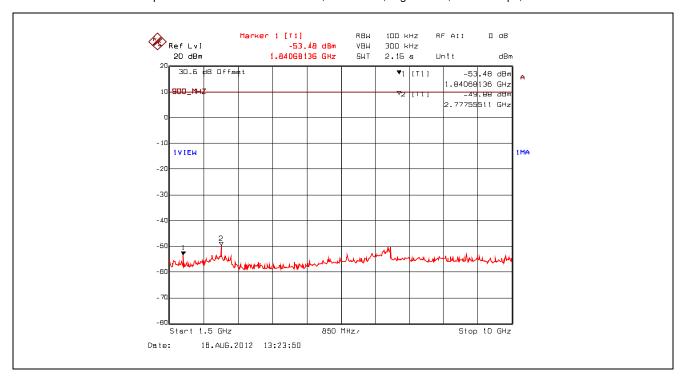


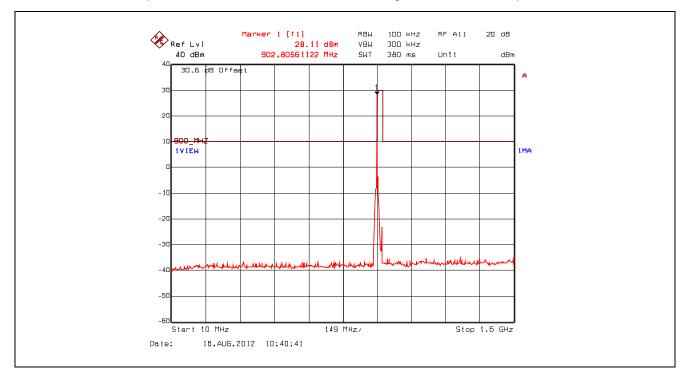
5.6.4.2. Spurious RF Conducted Emissions Test Results

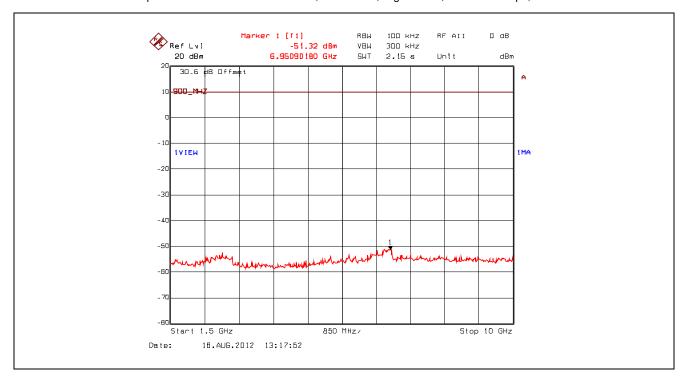

Plot 5.6.4.2.1. Spurious RF Conducted Emissions, 902.9 MHz, High Power, FSK 10 kbps, 10 MHz - 1.5 GHz

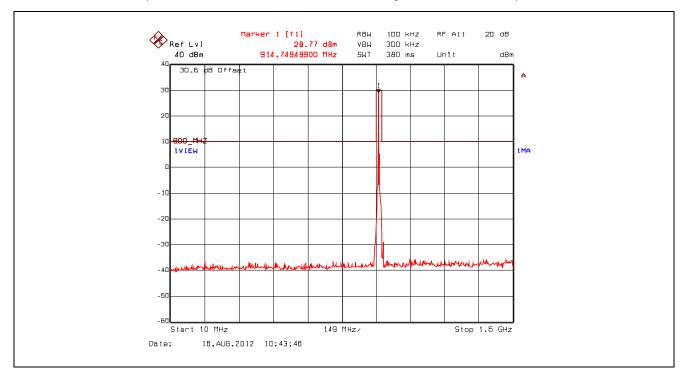

Plot 5.6.4.2.2. Spurious RF Conducted Emissions, 902.9 MHz, High Power, FSK 10 kbps, 1.5 GHz - 10 GHz

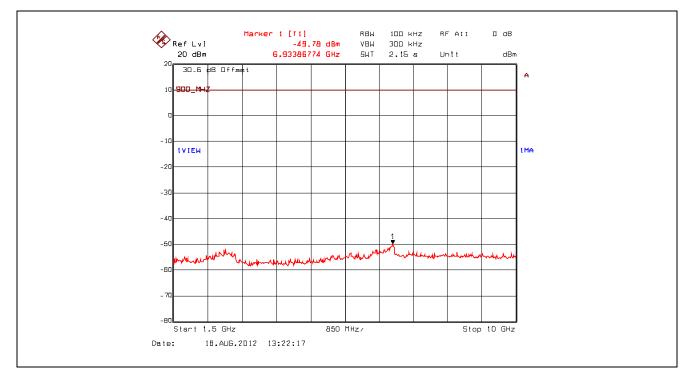

Plot 5.6.4.2.3. Spurious RF Conducted Emissions, 915.2 MHz, High Power, FSK 10 kbps, 10 MHz - 1.5 GHz

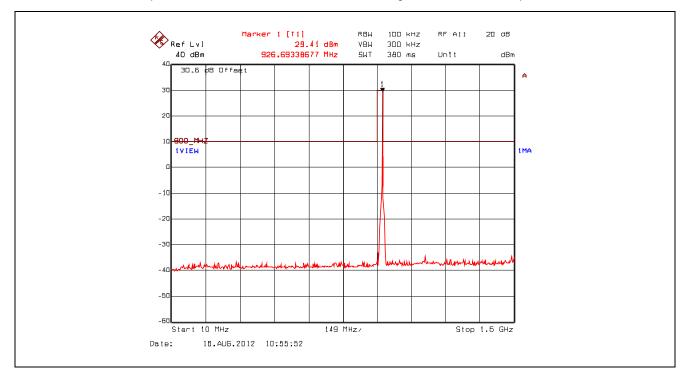

Plot 5.6.4.2.4. Spurious RF Conducted Emissions, 915.2 MHz, High Power, FSK 10 kbps, 1.5 GHz - 10 GHz

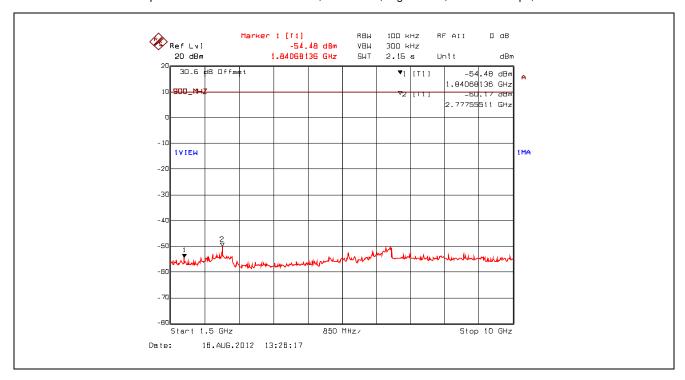

Plot 5.6.4.2.5. Spurious RF Conducted Emissions, 927.1 MHz, High Power, FSK 10 kbps, 10 MHz - 1.5 GHz

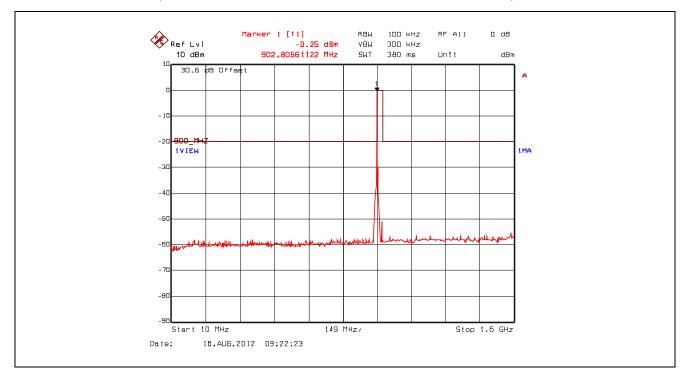

Plot 5.6.4.2.6. Spurious RF Conducted Emissions, 927.1 MHz, High Power, FSK 10 kbps, 1.5 GHz - 10 GHz

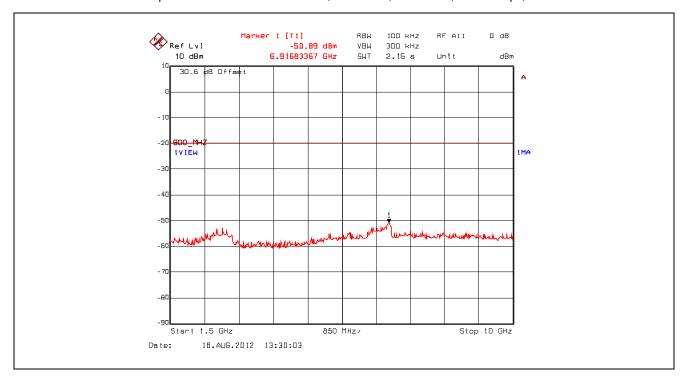

Plot 5.6.4.2.7. Spurious RF Conducted Emissions, 902.9 MHz, High Power, GFSK 125 kbps, 10 MHz – 1.5 GHz

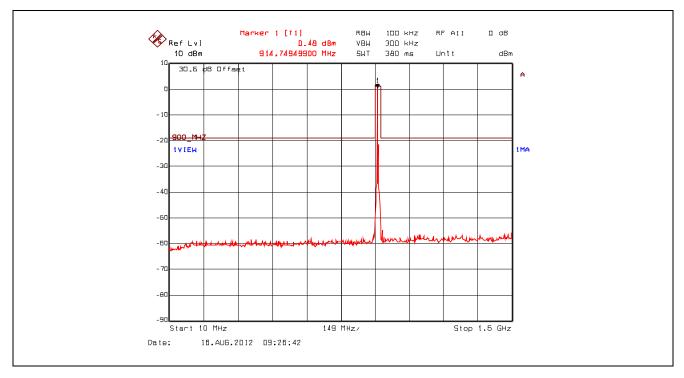

Plot 5.6.4.2.8. Spurious RF Conducted Emissions, 902.9 MHz, High Power, GFSK 125 kbps, 1.5 GHz - 10 GHz

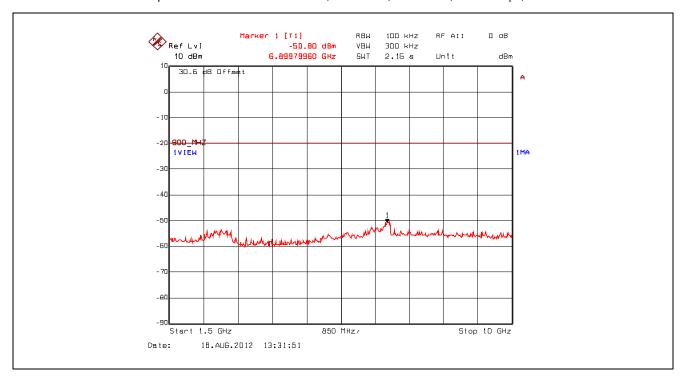

Plot 5.6.4.2.9. Spurious RF Conducted Emissions, 915.2 MHz, High Power, GFSK 125 kbps, 10 MHz - 1.5 GHz

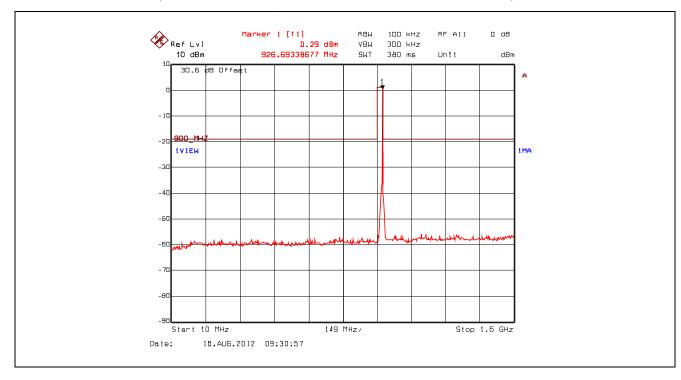

Plot 5.6.4.2.10. Spurious RF Conducted Emissions, 915.2 MHz, High Power, GFSK 125 kbps, 1.5 GHz - 10 GHz


Plot 5.6.4.2.11. Spurious RF Conducted Emissions, 927.1 MHz, High Power, GFSK 125 kbps, 10 MHz - 1.5 GHz

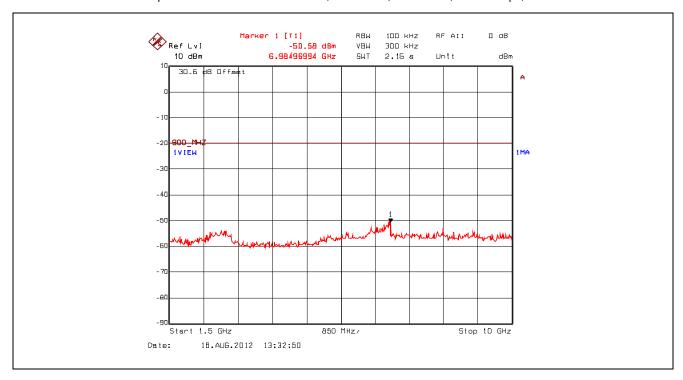

Plot 5.6.4.2.12. Spurious RF Conducted Emissions, 927.1 MHz, High Power, GFSK 125 kbps, 1.5 GHz - 10 GHz


Plot 5.6.4.2.13. Spurious RF Conducted Emissions, 902.9 MHz, Low Power, FSK 10 kbps, 10 MHz - 1.5 GHz

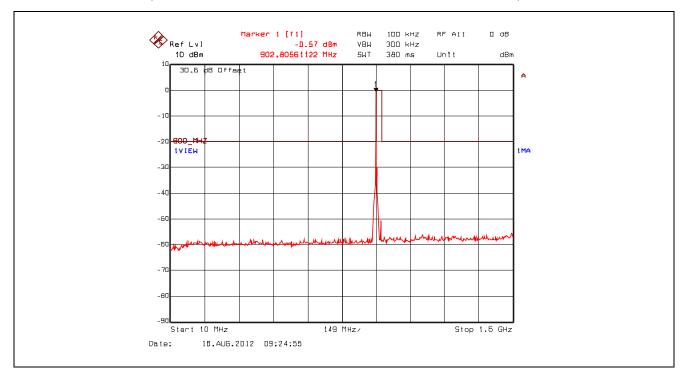

Plot 5.6.4.2.14. Spurious RF Conducted Emissions, 902.9 MHz, Low Power, FSK 10 kbps, 1.5 GHz - 10 GHz

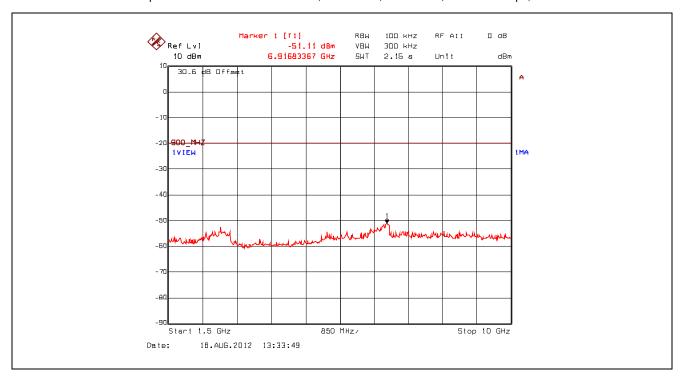


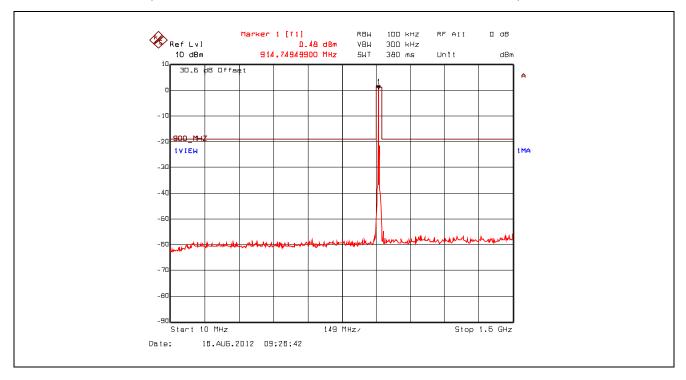
Plot 5.6.4.2.15. Spurious RF Conducted Emissions, 915.2 MHz, Low Power, FSK 10 kbps, 10 MHz - 1.5 GHz

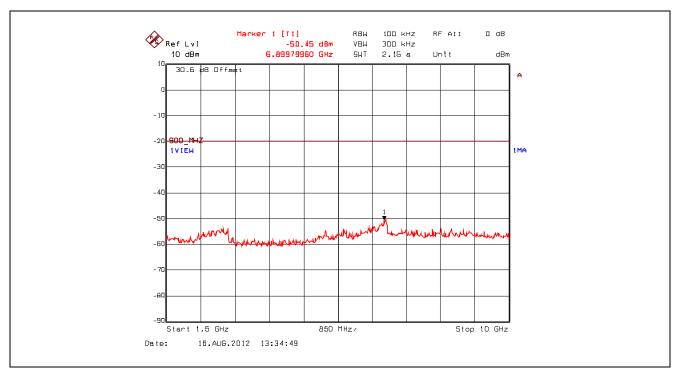


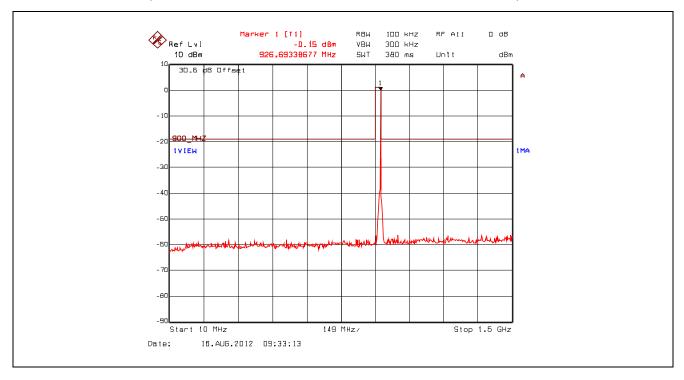
Plot 5.6.4.2.16. Spurious RF Conducted Emissions, 915.2 MHz, Low Power, FSK 10 kbps, 1.5 GHz - 10 GHz

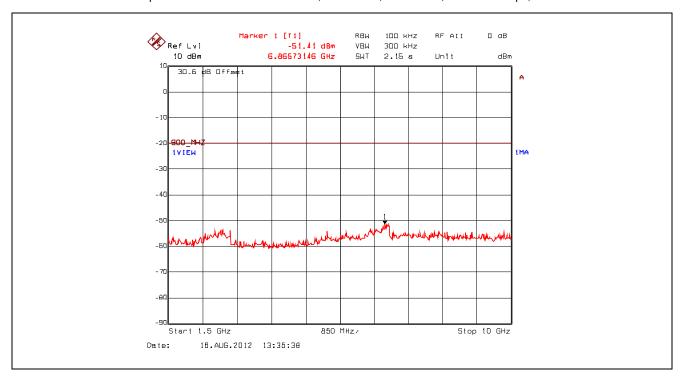



Plot 5.6.4.2.18. Spurious RF Conducted Emissions, 927.1 MHz, Low Power, FSK 10 kbps, 1.5 GHz - 10 GHz


Plot 5.6.4.2.19. Spurious RF Conducted Emissions, 902.9 MHz, Low Power, GFSK 125 kbps, 10 MHz - 1.5 GHz


Plot 5.6.4.2.20. Spurious RF Conducted Emissions, 902.9 MHz, Low Power, GFSK 125 kbps, 1.5 GHz - 10 GHz


Plot 5.6.4.2.21. Spurious RF Conducted Emissions, 915.2 MHz, Low Power, GFSK 125 kbps, 10 MHz - 1.5 GHz


Plot 5.6.4.2.22. Spurious RF Conducted Emissions, 915.2 MHz, Low Power, GFSK 125 kbps, 1.5 GHz - 10 GHz

Plot 5.6.4.2.23. Spurious RF Conducted Emissions, 927.1 MHz, Low Power, GFSK 125 kbps, 10 MHz - 1.5 GHz

Plot 5.6.4.2.24. Spurious RF Conducted Emissions, 927.1 MHz, Low Power, GFSK 125 kbps, 1.5 GHz - 10 GHz

5.7.1. Limit

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

§ 15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0-9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6-24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

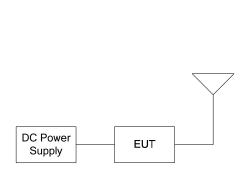
§ 15.209(a) Radiated Emission Limits; General Requirements

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)		
0.009 - 0.490	2,400 / F (kHz)	300		
0.490 - 1.705	24,000 / F (kHz)	30		
1.705 - 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 – 960	200	3		
Above 960	500	3		

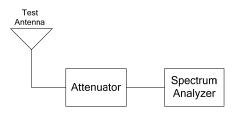
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

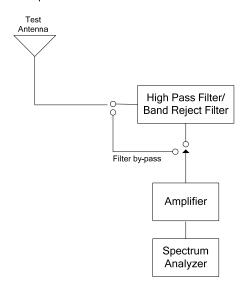
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


File #: DIGI-068F15C247 September 10, 2012

² Above 38.6


5.7.2. Method of Measurements

ANSI C63.10-2009


5.7.3. Test Arrangement

For Fundamental and Band-edge

For Spurious and Harmonics

5.7.4. Test Data

Remark(s):

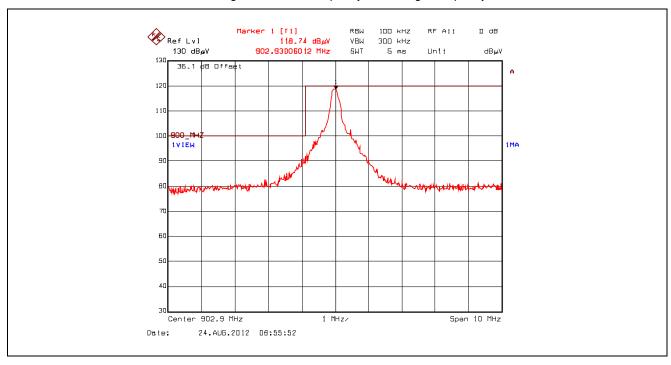
- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- Exploratory tests were performed to determined final test configuration, the following test results at the highest data rate (125kbps, GFSK modulation) represent the worst-case.

5.7.4.1. EUT with 2.1 dBi Monopole Antenna at 100 mW Output Power

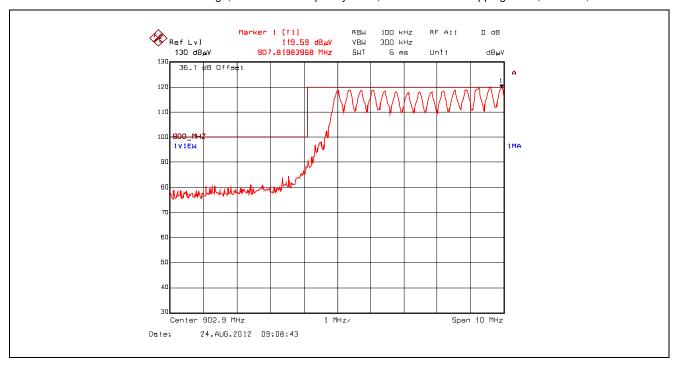
5.7.4.1.1. Spurious RF Radiated Emissions Test Results

Fundamental	Frequency:	:	902.9 MHz				
Frequency Te	ency Test Range: 30 MHz – 10 GHz						
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
902.9	117.95		٧				
902.9	120.04		Н				
30-10000	*	*	V/H	*	100.0	*	Pass
*All spurious	emissions/har	monics are m	ore than 20 d	B below the a	oplicable limit.		•

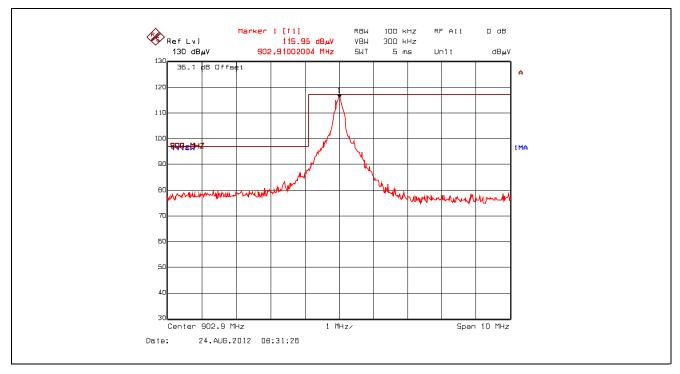
"All spurious emissions/narmonics are more than 20 db below the app	nicable limit.
-	

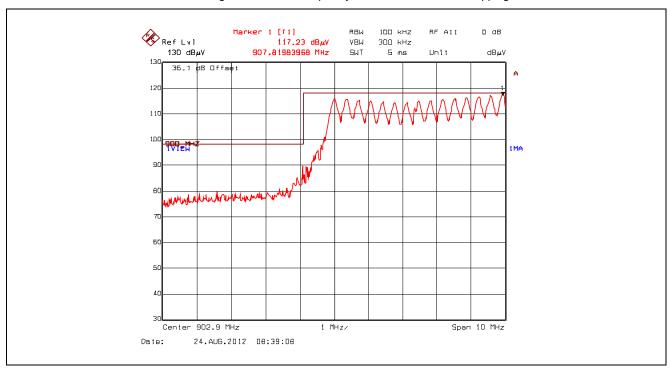

Fundamental	Frequency:	!	915.2 MHz				
Frequency To	requency Test Range: 30 MHz – 10 GHz						
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
915.2	117.82		٧				
915.2	120.36		Н				
30-10000	*	*	V/H	*	100.4	*	Pass
*All spurious emissions/harmonics are more than 20 dB below the applicable limit.							

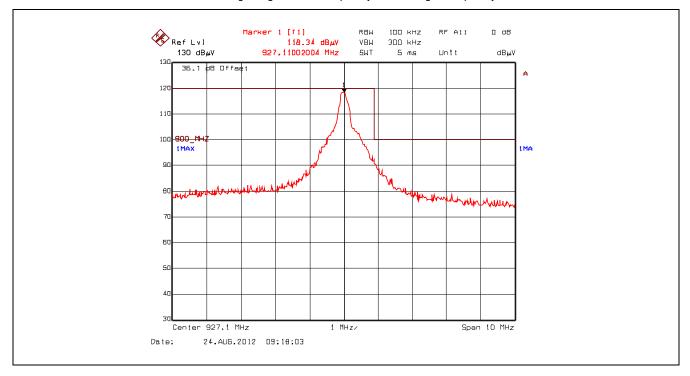
Fundamental	Frequency:		927.1 MHz				
Frequency Te	est Range:	30 MHz – 10 GHz					
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
927.1	118.36		٧				
927.1	120.98		Н				
30-10000	*	*	V/H	*	101.0	*	Pass
*All enurious	emissions/har	monice are m	ore than 20 d	R helow the a	onlicable limit		•

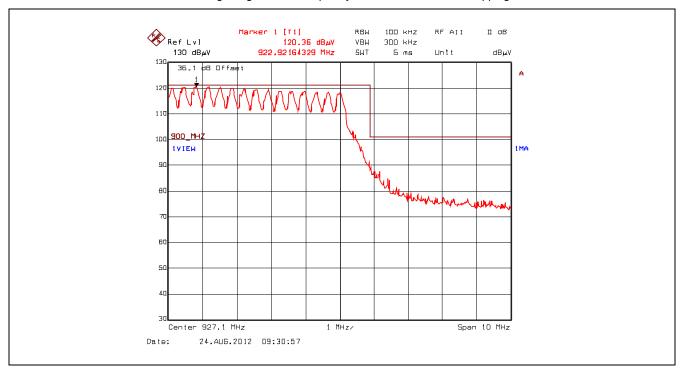

*All spurious emissions/harmonics are more than 20 dB below the applicable limit.

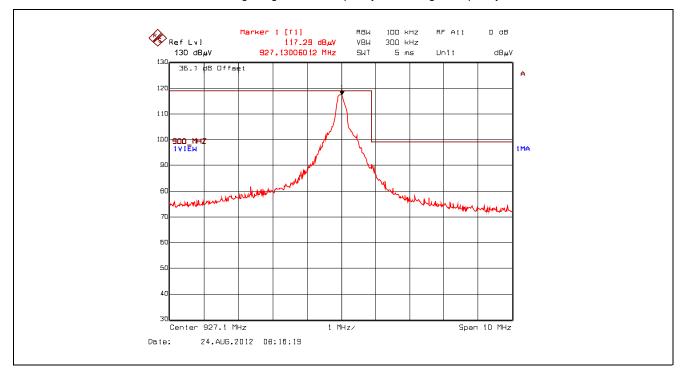
5.7.4.1.2. Band-Edge RF Radiated Emissions Test Results

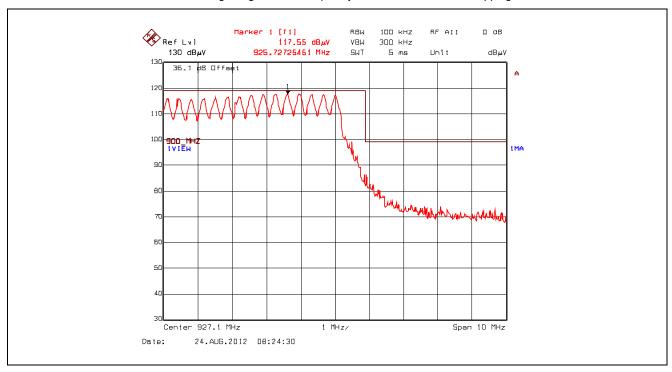

Plot 5.7.4.1.2.1. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, 100 mW, Horizontal


Plot 5.7.4.1.2.2. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, 100 mW, Horizontal


Plot 5.7.4.1.2.3. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, 100 mW, Vertical


Plot 5.7.4.1.2.4. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, 100 mW, Vertical


Plot 5.7.4.1.2.5. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, 100 mW, Horizontal


Plot 5.7.4.1.2.6. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, 100 mW, Horizontal

Plot 5.7.4.1.2.7. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, 100 mW, Vertical

Plot 5.7.4.1.2.8. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, 100 mW, Vertical

5.7.4.2. EUT with 3.0 dBi Multi-path Antenna, 0.5 dB Assembly Cable Loss at 1 W Output Power

5.7.4.2.1. Spurious RF Radiated Emissions Test Results

Fundamental	Frequency:	902.9 MH	z					
Frequency Te	est Range:	30 MHz –	30 MHz – 10 GHz					
Frequency (MHz)	. , , , , , , , , , , , , , , , , , , ,						Pass/ Fail	
902.9	124.37		V					
902.9	124.28		Н					
2708.7	50.90	45.97	V	54.0	104.4	-8.0	Pass*	
2708.7	48.00	41.82	Н	54.0	104.4	-12.2	Pass*	
3611.6	49.55	42.94	V	54.0	104.4	-11.1	Pass*	
3611.6 48.95 40.09 H 54.0 104.4 -13.9 Pass*								
All other spur	ious emission	s and harmon	ics are more t	han 20 dB be	low the applica	able limit	•	

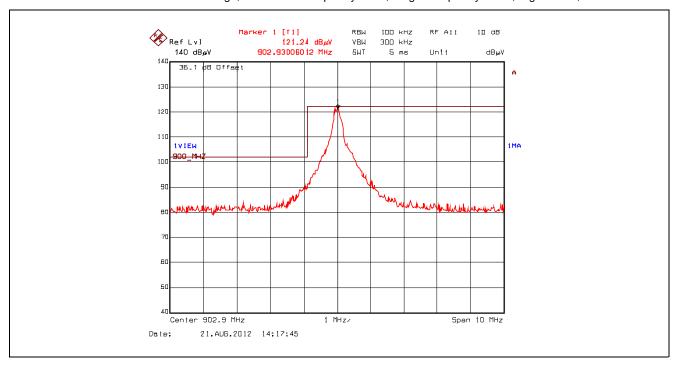
All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

^{*} Emission within the restricted frequency bands.

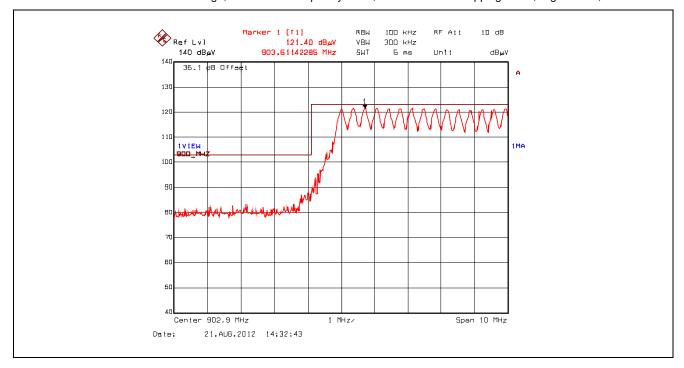
Fundamenta	I Frequency:	915.2 MԻ	lz				
Frequency T	est Range:	30 MHz –	- 10 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
915.2	124.65		V				
915.2	123.47		Н				
2745.6	49.37	44.51	V	54.00	104.7	-9.5	Pass*
2745.6	51.17	46.13	Н	54.00	104.7	-7.9	Pass*
3660.8	48.83	40.11	V	54.00	104.7	-13.9	Pass*
3660.8	47.45	38.10	Н	54.00	104.7	-15.9	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

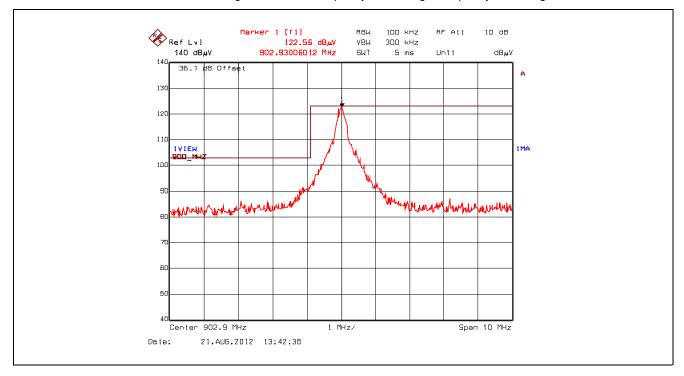
File #: DIGI-068F15C247 September 10, 2012

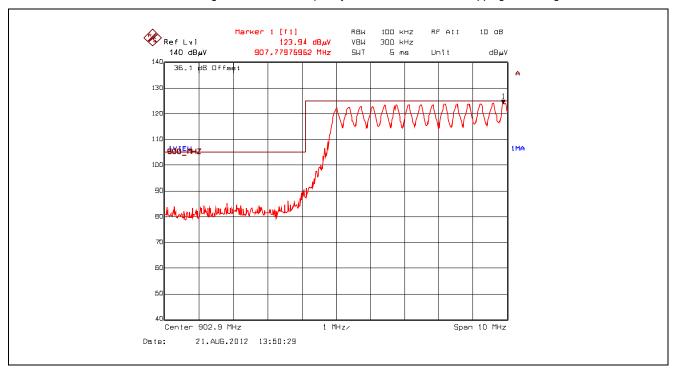

^{*} Emission within the restricted frequency bands.

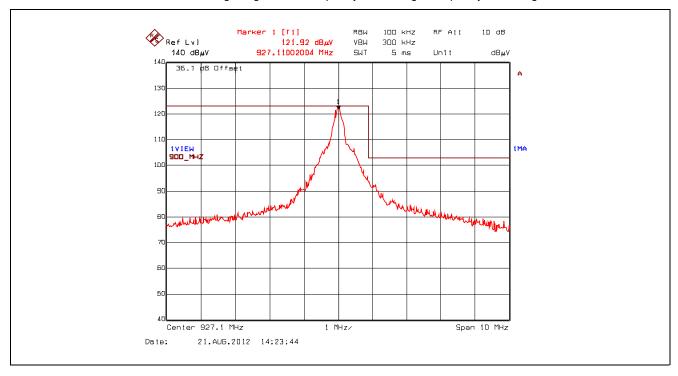
Fundamenta	al Frequency:	927.1 MH	lz						
Frequency T	est Range:	30 MHz –	30 MHz – 10 GHz						
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Avg Level Plane 15.209 15.247 Margin Pa						
927.1	125.63		V						
927.1	122.65		Н						
2781.3	48.53	43.59	V	54.0	105.6	-10.4	Pass*		
2781.3	49.90	45.37	Н	54.0	105.6	-8.6	Pass*		
3708.4	48.94	41.28	V	54.0	105.6	-12.7	Pass*		
3708.4	48.68	41.63	Н	54.0	105.6	-12.4	Pass*		
All other spu	rious emission	ns and harmonic	cs are more th	an 20 dB belo	w the applica	ble limit.			


^{*} Emission within the restricted frequency bands.

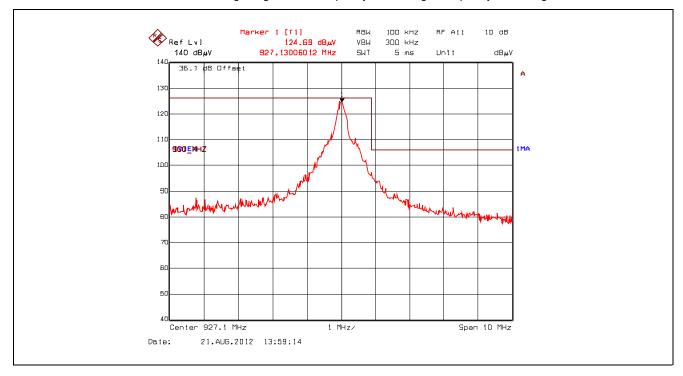
5.7.4.2.2. Band-Edge RF Radiated Emissions Test Results

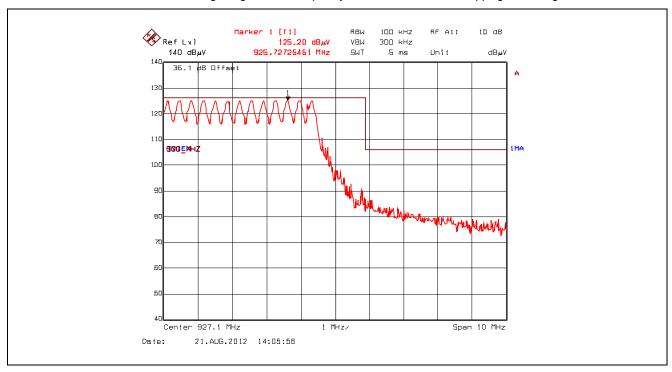

Plot 5.7.4.2.2.1. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, High Power, Horizontal


Plot 5.7.4.2.2.2. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, High Power, Horizontal


Plot 5.7.4.2.2.3. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, High Power, Vertical

Plot 5.7.4.2.2.4. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, High Power, Vertical


Plot 5.7.4.2.2.5. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, High Power, Horizontal


Plot 5.7.4.2.2.6. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, High Power, Horizontal

Plot 5.7.4.2.2.7. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, High Power, Vertical

Plot 5.7.4.2.2.8. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, High Power, Vertical

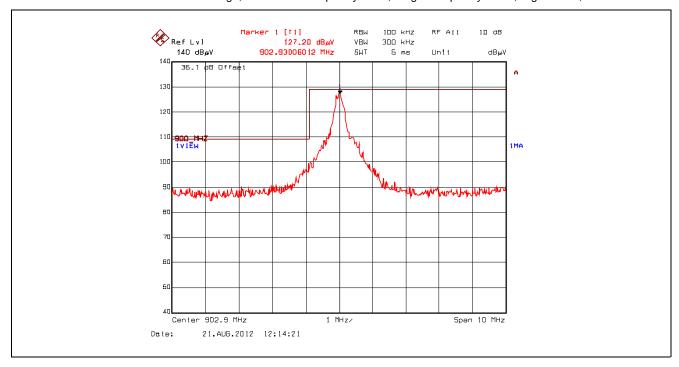
5.7.4.3. EUT with 8.1 dBi Omni-directional Antenna, 2.07 dB Assembly Cable Loss at 1 W Output Power

5.7.4.3.1. Spurious RF Radiated Emissions Test Results

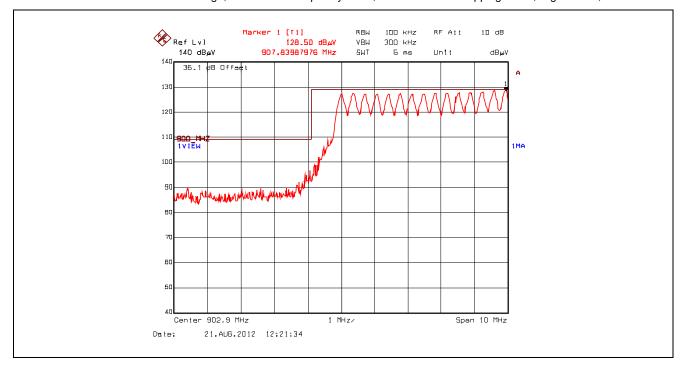
Fundamental	Frequency:	902.9 M⊦	lz				
Frequency Te	est Range:	30 MHz – 10 GHz					
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
902.9	130.41		٧				
902.9	129.11		Н				
2708.7	43.93	34.20	V	54.0	110.4	-19.8	Pass*
2708.7	49.82	45.51	Н	54.0	110.4	-8.5	Pass*
3611.6	46.26	35.05	V	54.0	110.4	-19.0	Pass*
3611.6	47.63	36.82	Н	54.0	110.4	-17.2	Pass*
4514.5	47.91	37.81	V	54.0	110.4	-16.2	Pass*
4514.5	48.17	36.30	Н	54.0	110.4	-17.7	Pass*
	ious emission		ics are more t	l			<u> </u>

^{*} Emission within the restricted frequency bands.

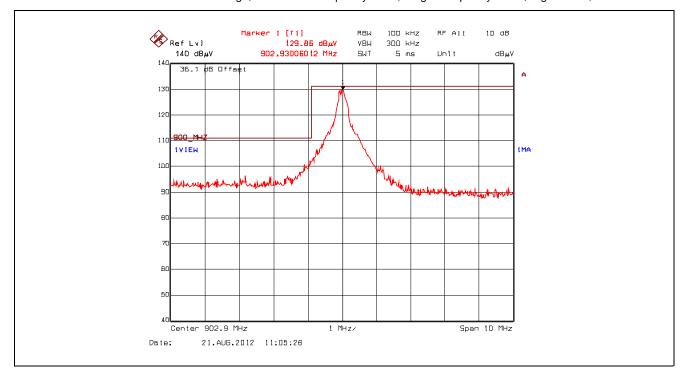
Fundamenta	al Frequency:	915.2 MH	z							
Frequency T	est Range:	30 MHz –	· 10 GHz							
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail			
915.2	130.11		V							
915.2	129.35		Н							
2745.6	48.73	42.34	V	54.00	110.1	-11.66	Pass*			
2745.6	50.84	45.81	Н	54.00	110.1	-8.19	Pass*			
3660.8	47.46	35.63	Н	54.00	110.1	-18.37	Pass*			
4576.0	49.39	40.05	V	54.00	110.1	-13.95	Pass*			
4576.0 50.10 40.27 H 54.00 110.1 -13.73 Pass*										
All other spu	All other spurious emissions and harmonics are more than 20 dB below the applicable limit.									

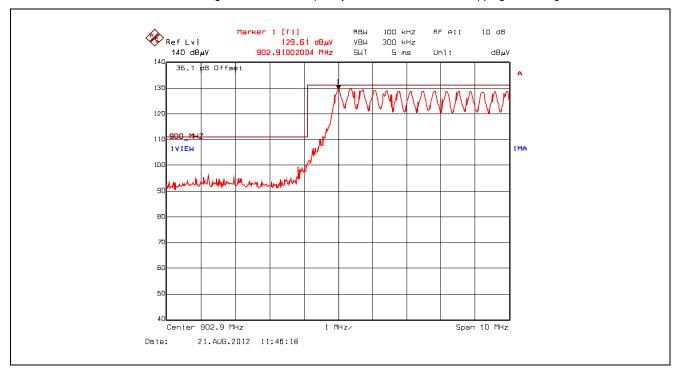

^{*} Emission within the restricted frequency bands.

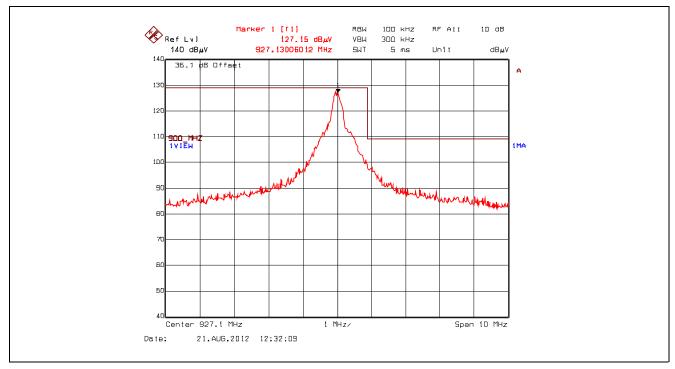
Fundamenta	al Frequency:	927.1 M⊦	łz					
Frequency T	est Range:	30 MHz -	30 MHz – 10 GHz					
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Avg Level Plane 15.209 15.247 Margin					
927.1	130.14		V					
927.1	128.32		Н					
2781.3	50.01	44.35	V	54.0	110.1	-9.7	Pass*	
2781.3	50.76	47.19	Н	54.0	110.1	-6.8	Pass*	
3708.4	47.61	36.37	V	54.0	110.1	-17.6	Pass*	
3708.4	48.27	38.79	Н	54.0	110.1	-15.2	Pass*	
4635.5	51.00	44.17	V	54.0	110.1	-9.8	Pass*	
4635.5	52.75	45.68	Н	54.0	110.1	-8.3	Pass*	
All other spu	rious emissior	ns and harmonic	cs are more th	nan 20 dB belo	ow the applica	ble limit.	•	

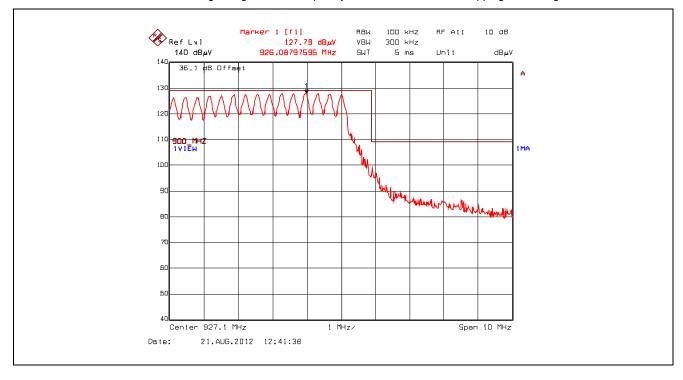

^{*} Emission within the restricted frequency bands.

5.7.4.3.2. Band-Edge RF Radiated Emissions Test Results

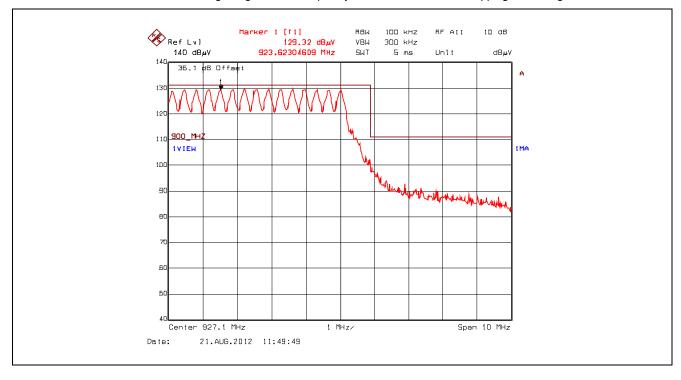

Plot 5.7.4.3.2.1. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, High Power, Horizontal


Plot 5.7.4.3.2.2. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, High Power, Horizontal


Plot 5.7.4.3.2.3. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, High Power, Vertical


Plot 5.7.4.3.2.4. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, High Power, Vertical


Plot 5.7.4.3.2.5. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, High Power, Horizontal


Plot 5.7.4.3.2.6. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, High Power, Horizontal

Plot 5.7.4.3.2.7. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, High Power, Vertical

Plot 5.7.4.3.2.8. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, High Power, Vertical

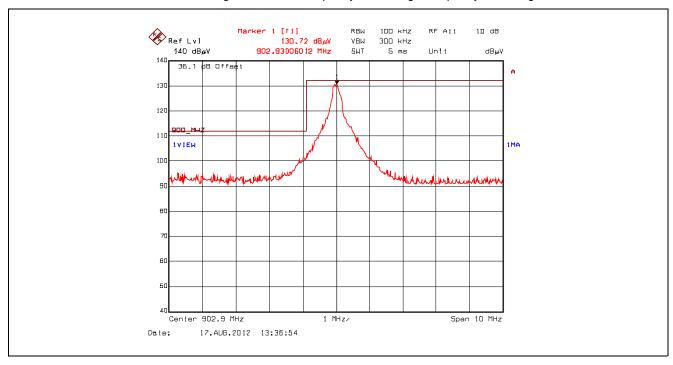
5.7.4.4. EUT with 15.1 dBi Yagi Antenna, 10.62 dB Assembly Cable Loss at 1 W Output Power

5.7.4.4.1. Spurious RF Radiated Emissions Test Results

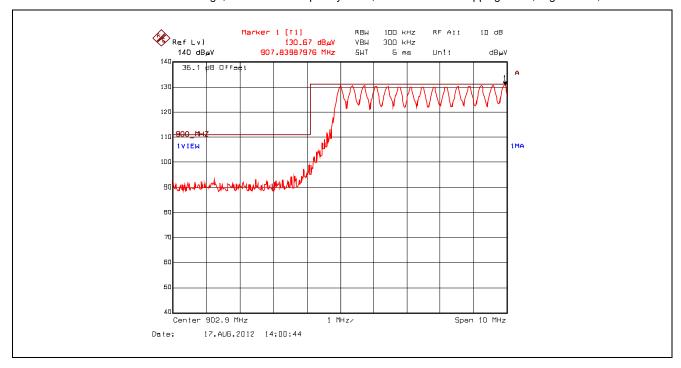
Fundamental Frequency: 902.9 MHz Frequency Test Range: 30 MHz - 10 GHz RF RF **Antenna** Limit Limit Frequency Avg Level **Plane** 15.209 15.247 Pass/ Peak Level Margin (dBµV/m) (dBµV/m) (H/V) (dBµV/m) (dBµV/m) (dB) Fail (MHz) V 902.9 131.80 902.9 131.19 Н 2708.7 51.52 V 47.53 54.0 111.8 -6.5 Pass* 2708.7 48.75 44.20 Н 54.0 111.8 -9.8 Pass* 3611.6 46.79 37.08 ٧ 54.0 111.8 -16.9Pass* 3611.6 48.62 39.30 54.0 111.8 -14.7 Pass* Η 4514.5 47.68 34.69 ٧ 54.0 111.8 -19.3Pass* 4514.5 47.77 34.53 Η 54.0 111.8 -19.5Pass* All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

^{*} Emission within the restricted frequency bands.

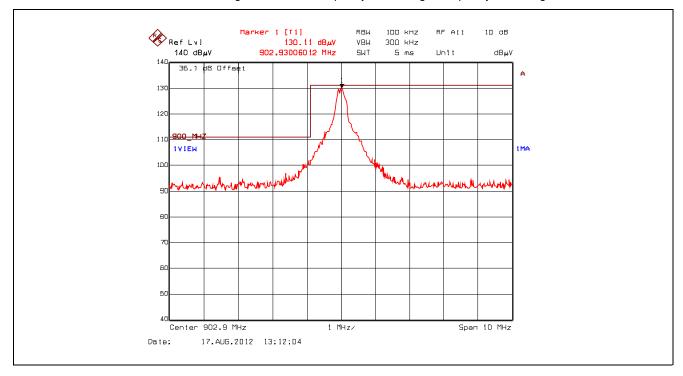
Fundamenta	al Frequency:	915.2 MF	lz					
Frequency T	est Range:	30 MHz – 10 GHz						
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail	
915.2	131.77		V					
915.2	130.94		Н					
2745.6	51.70	47.26	V	54.00	111.8	-6.74	Pass*	
2745.6	51.82	48.20	Н	54.00	111.8	-5.80	Pass*	
3660.8	48.61	38.95	V	54.00	111.8	-15.05	Pass*	
3660.8	50.15	41.12	Н	54.00	111.8	-12.88	Pass*	
4576.0	48.64	35.33	V	54.00	111.8	-18.67	Pass*	
4576.0 48.48 35.01 H 54.00 111.8 -18.99 Pass*								
All other spu	rious emissior	ns and harmonic	cs are more th	an 20 dB belo	w the applica	ble limit.		

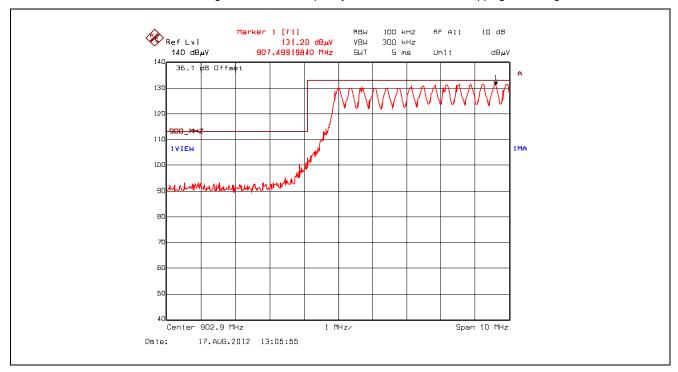

^{*} Emission within the restricted frequency bands.

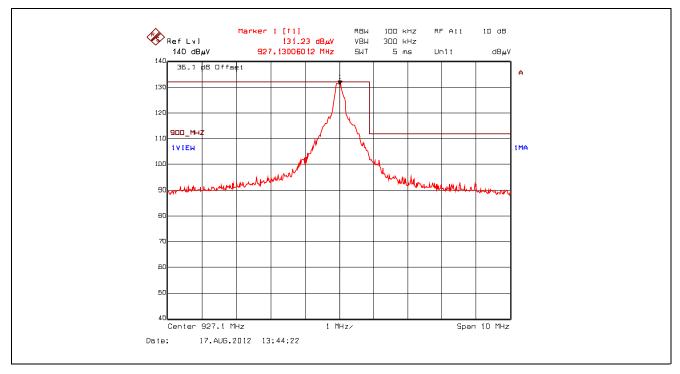
Fundamenta	al Frequency:	927.1 MF	łz						
Frequency T	est Range:	30 MHz -	- 10 GHz						
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Avg Level Plane 15.209 15.247 Margin						
927.1	132.48		V						
927.1	132.13		Н						
2781.3	49.04	41.42	V	54.0	112.5	-12.6	Pass*		
2781.3	51.46	47.10	Н	54.0	112.5	-6.9	Pass*		
3708.4	53.26	48.18	V	54.0	112.5	-5.8	Pass*		
3708.4	51.32	46.55	Н	54.0	112.5	-7.5	Pass*		
4635.5	49.24	37.94	V	54.0	112.5	-16.1	Pass*		
4635.5	48.81	37.33	Н	54.0	112.5	-16.7	Pass*		
All other spu	rious emissior	ns and harmonic	cs are more th	nan 20 dB belo	ow the applica	ble limit.	•		

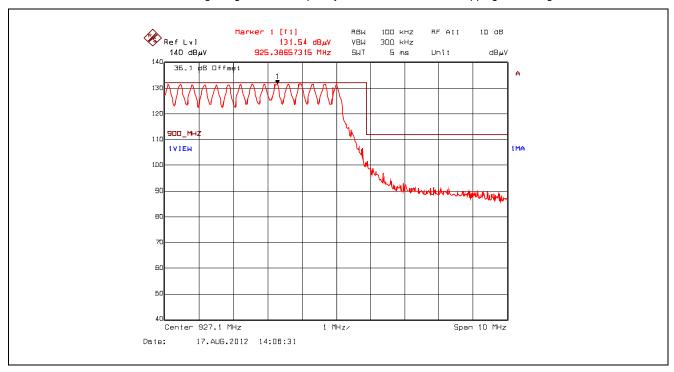

^{*} Emission within the restricted frequency bands.

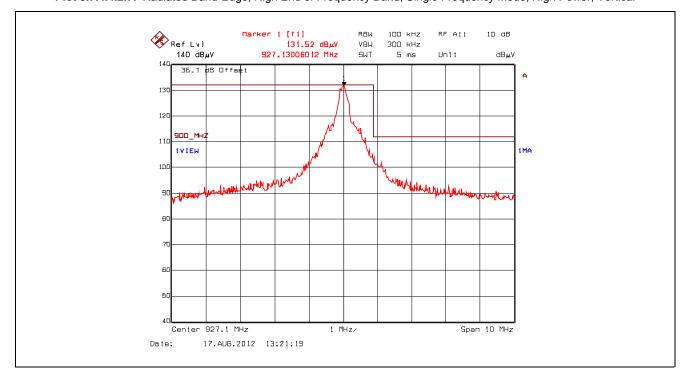
5.7.4.4.2. Band-Edge RF Radiated Emissions Test Results

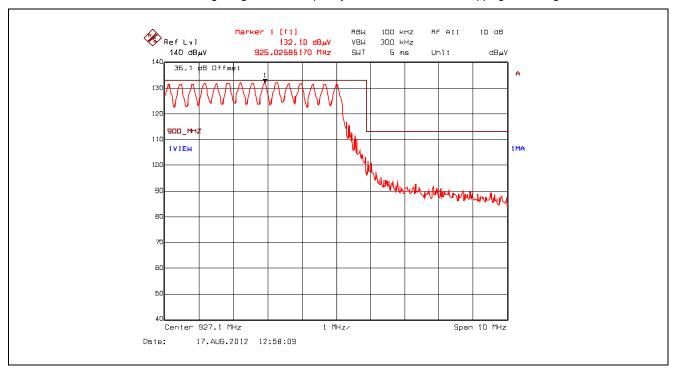

Plot 5.7.4.4.2.1. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, High Power, Horizontal


Plot 5.7.4.4.2.2. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, High Power, Horizontal


Plot 5.7.4.4.2.3. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, High Power, Vertical


Plot 5.7.4.4.2.4. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, High Power, Vertical


Plot 5.7.4.4.2.5. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, High Power, Horizontal


Plot 5.7.4.4.2.6. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, High Power, Horizontal

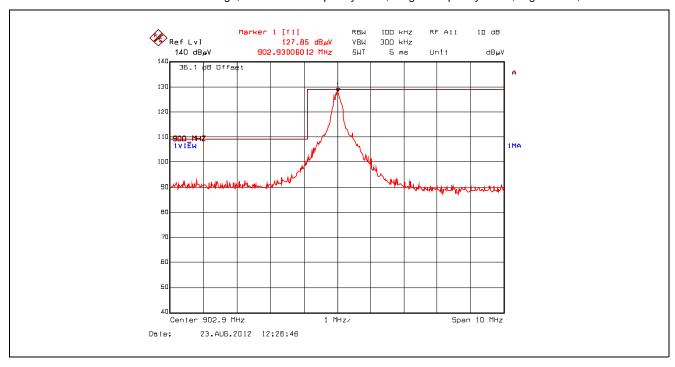
Plot 5.7.4.4.2.7. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, High Power, Vertical

Plot 5.7.4.4.2.8. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, High Power, Vertical

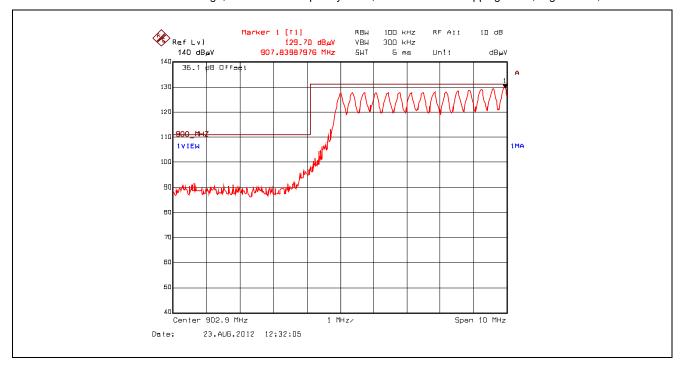
5.7.4.5. EUT with 15.1 dBi Yagi Antenna, 3.95 dB Assembly Cable Loss at 100 mW Output Power

5.7.4.5.1. Spurious RF Radiated Emissions Test Results

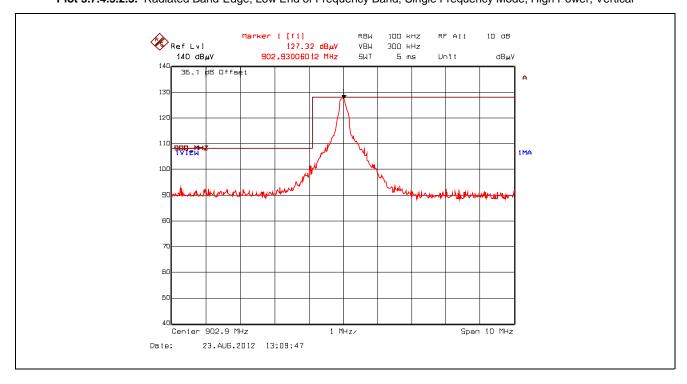
Fundamental	ndamental Frequency: 902.9 MHz		lz					
Frequency Te	Frequency Test Range:		30 MHz – 10 GHz					
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail	
902.9	130.59		٧					
902.9	130.22		Н					
30-10000	*	*	V/H	*	110.6	*	Pass	
*All spurious	emissions/har	monics are m	ore than 20 d	B below the ap	oplicable limit.		•	

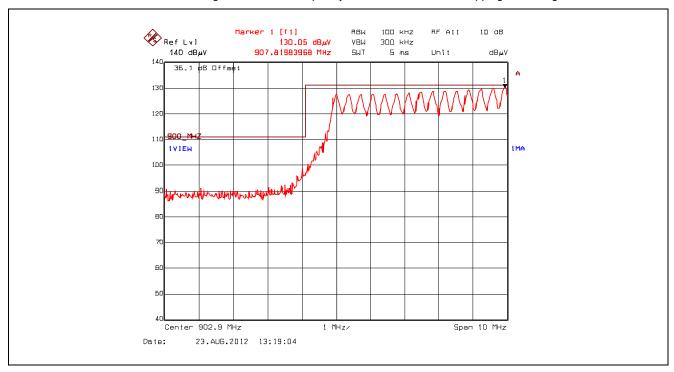

Fundamenta	al Frequency:	915.2 MF	lz					
Frequency T	est Range:	30 MHz -	30 MHz – 10 GHz					
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail	
915.2	131.97		V					
915.2	130.81		Н					
30-10000	*	*	V/H	*	112.0	*	Pass	
*All spurious	emissions/ha	rmonics are mo	re than 20 dB	below the ap	plicable limit.			

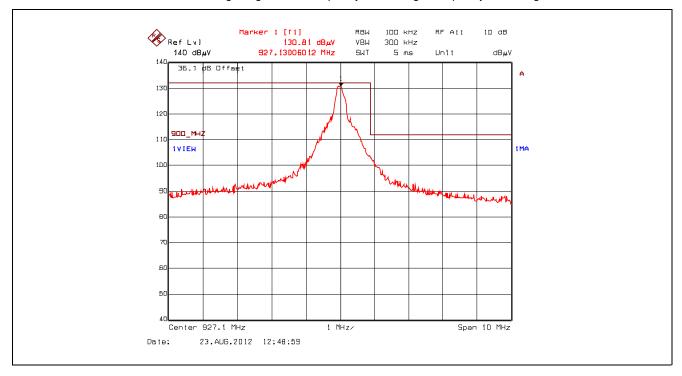
Fundamenta	al Frequency:	927.1 MF	927.1 MHz						
Frequency T	est Range:	30 MHz -	30 MHz – 10 GHz						
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail		
927.1	131.68		V						
927.1	131.87		н						
30-10000	*	*	* V/H * 111.9 * Pass						

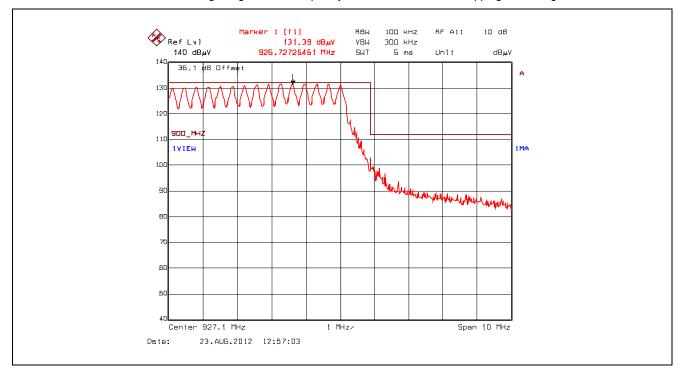

^{*}All spurious emissions/harmonics are more than 20 dB below the applicable limit.

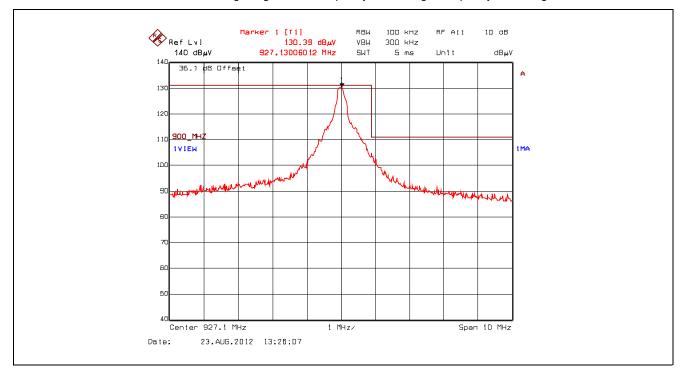
5.7.4.5.2. Band-Edge RF Radiated Emissions Test Results


Plot 5.7.4.5.2.1. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, High Power, Horizontal


Plot 5.7.4.5.2.2. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, High Power, Horizontal


Plot 5.7.4.5.2.3. Radiated Band-Edge, Low End of Frequency Band, Single Frequency Mode, High Power, Vertical


Plot 5.7.4.5.2.4. Radiated Band-Edge, Low End of Frequency Band, Pseudorandom Hopping Mode, High Power, Vertical


Plot 5.7.4.5.2.5. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, High Power, Horizontal


Plot 5.7.4.5.2.6. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, High Power, Horizontal

Plot 5.7.4.5.2.7. Radiated Band-Edge, High End of Frequency Band, Single Frequency Mode, High Power, Vertical

Plot 5.7.4.5.2.8. Radiated Band-Edge, High End of Frequency Band, Pseudorandom Hopping Mode, High Power, Vertical

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20Hz-40 GHz	27 Sep 2012
Attenuator	Pasternack	7024-20	-	DC-26.5 GHz	Cal on use
Attenuator	Pasternack	7024-10	-	DC-26.5 GHz	Cal on use
DC Block	Hewlett Packard	11742A	12460	0.045–26.5 GHz	Cal on use
DC Power Supply	Tenma	72-7295	490300270	1 – 40 Vdc	Cal on use
High Pass Filter	K&L	11SH10- 1500/T8000	2	Cut off 900 MHz	Cal. on use
Spectrum Analyzer	Agilent	E7401A	US40240432	9 kHz–1.5 GHz	15 Feb 2013
Attenuator	Pasternack	PE7010-20	-	DC-2 GHz	09 Jan 2013
L.I.S.N	EMCO	3825/2	8907-1531	10 kHz -100 MHz	05 Apr 2013
Signal Generator	Hewlett Packard	8648C	3443U00391	100 kHz – 3200 MHz	14 Dec 2012
Log Periodic Antenna	ETS Lundgren	93148	1101	200–2000 MHz	20 Mar 2013
Attenuator	Pasternack	PE7024-10	-	DC-26.5 GHz	Cal on use
DC Power Supply	Tenma	72-7295	490300270	1 – 40 Vdc	Cal on use
Spectrum Analyzer	Rohde & Schwarz	ESU40	100037	20 Hz – 40 GHz	19 Mar 2013
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	6 Aug 2013
RF Amplifier	AH System	PAM-0118	225	20 MHz – 18 GHz	16 Mar 2013
High Pass Filter	K&L	11SH10- 1500/T8000	2	Cut off 900 MHz	Cal on use
Horn Antenna	Emco	3155	6570	1 – 18 GHz	2 Apr 2013
Biconi-Log Antenna	ETS Lundgren	3142B	1575	26 – 3000 MHz	4 May 2013
Dipole Antenna	EMCO	3121-DB4	434	400-1000 MHz	6 Jan 2014
Band Reject Filter	Micro-Tronics	BRC50722	001	Cut off 902-928 MHz	Cal on use

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: DIGI-068F15C247 September 10, 2012

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (150 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.57	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.14	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{k=1}^{m} u_k^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt[M]{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt[m]{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 3.75	Under consideration