

Test Report

Prepared for: G-Wave Incorporated

Model: BDA-LTE/LABC-33/33-90-AB

Description: Commercial/Industrial Booster LTE Unit (700 MHz)

Serial Number: 18091002

FCC ID: Q8KLABC3390AB

To

FCC Part 1.1310

Date of Issue: April 30, 2019

On the behalf of the applicant:

G-Way Incorporated
38 Leuning St.
South Hackensack, NJ 07606

Attention of:

Greg David, VP of Engineering
Ph: (201)343-6388
E-Mail: tech-support@gwaverf.com

Prepared By
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax
www.compliancetesting.com
Project No: p1940019

Greg Corbin
Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing
All results contained herein relate only to the sample tested

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	April 28, 2019	Greg Corbin	Original Document

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009)

The tests results contained within this test report all fall within our scope of accreditation, unless below

Please refer to <http://www.compliancetesting.com/labscope.html> for current scope of accreditation.

Testing Certificate Number: **2152.01**

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

EUT Description

Model: BDA-LTE/LABC-33/33-90-AB

Description: Commercial/Industrial Booster LTE Unit (700 MHz unit)

Serial Number: 18091002

Additional Information:

The EUT is a CRMS Part 27 industrial signal booster that operates in the frequency band listed in Table 1.

Table 1 - Antennas specified for the EUT:

Port	Frequency Range (MHz)	Antenna Model	Gain (dBi)	Gain (unitless)
Uplink	698 - 716	TDJ-700/2500YG	7.5	5.62
Downlink	728 – 746	TQI-4FC-5	2.0	1.58

EUT Operation during Tests

Uplink MPE calculations were performed at the manufacturer's rated output of +33 dBm using an antenna with 7.5 dBi gain.

Downlink MPE calculations were performed at the manufacturer's rated output of +33 dBm using an antenna with 2 dBi gain.

The lowest frequency in each band was used to compute the "worst case" limit.

Minimum Safe Distance Evaluation - Limits

This is a Fixed device used in Uncontrolled Exposure environment.

Limits Uncontrolled Exposure
47 CFR 1.1310
Table 1, (B)

0.3-1.234 MHz:	Limit [mW/cm ²] = 100
1.34-30 MHz:	Limit [mW/cm ²] = (180/f ²)
30-300 MHz:	Limit [mW/cm ²] = 0.2
300-1500 MHz:	Limit [mW/cm ²] = f/1500
1500-100,000 MHz	Limit [mW/cm ²] = 1.0

Test Data - Uplink

Test Frequency, MHz	698
Power, Conducted, mW (P)	2000
Antenna Gain Isotropic	7.5 dBi
Antenna Gain Numeric (G)	5.62
Distance (R)	20 cm

$S = \frac{P * G}{4\pi r^2}$
Power Density (S) mw/cm ²

Power Density (S) = 2.236 mw/cm ²
Limit = (from above table) = 0.465 mw/cm ²

With the output power set to **manufacturer rated output power (+33 dBm)** using a 7.5 dBi antenna, the EUT does not meet the power density requirements at 20 cm, so the minimum safe distance was calculated below.

Minimum Safe Distance Evaluation

Test Data - Uplink

Test Frequency, MHz	698
Power, Conducted, mW (P)	2000
Antenna Gain Isotropic	7.5 dBi
Antenna Gain Numeric (G)	5.62
Limit (L)	0.465 mw/cm ²

R=√(PG/4πL)			
Distance (R) cm	Power mW (P)	Numeric Gain (G)	Limit (L)
43.8	2000	5.62	0.465

With the output power set to the manufacturer's (Mfr) rated output power (+33 dBm) using an antenna with 7.5 dBi gain, the minimum safe distance is 43.8 cm.

Test Data - Downlink

Test Frequency, MHz	728
Power, Conducted, mW (P)	2000
Antenna Gain Isotropic	2.0 dBi
Antenna Gain Numeric (G)	1.58
Distance (R)	20 cm

$S = \frac{P * G}{4\pi r^2}$
Power Density (S) mw/cm ²

Power Density (S) = 0.629 mw/cm ²
Limit = (from above table) = 0.485 mw/cm ²

With the output power set to **manufacturer rated output power (+33 dBm)** using a 2.0 dBi antenna, the EUT does not meet the power density requirements at 20 cm, so the minimum safe distance was calculated below.

Minimum Safe Distance Evaluation

Test Data - Downlink

Test Frequency, MHz	728
Power, Conducted, mW (P)	2000
Antenna Gain Isotropic	2.0 dBi
Antenna Gain Numeric (G)	1.58
Limit (L)	0.485 mw/cm ²

R=√(PG/4πL)				
Distance (R) cm	Power mW (P)	Numeric Gain (G)	Limit (L)	
22.8	2000	1.58	0.485	

With the output power set to the manufacturer's (Mfr) rated output power (+33 dBm) using an antenna with 2.0 dBi gain, the minimum safe distance is 22.8 cm.

END OF TEST REPORT