

10 FCC §2.1091 – RF Exposure Information

10.1 Applicable Standard

According to FCC §2.1091 (Mobile Devices) RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

Note: f = frequency in MHz

* = Plane-wave equivalent power density

10.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

700 MHz Upper C Band, Downlink:

Maximum peak output power at antenna input terminal (dBm): 32.99

Maximum peak output power at antenna input terminal (mW): 1990.67

Prediction distance (cm): 20

Prediction frequency (MHz): 756

Antenna Gain, typical (dBi): 2.0

Cable Loss (dB): 1.0

Power density at predication frequency and distance (mW/cm²): 0.499

MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.504

700 MHz Upper C Band, Uplink:Maximum peak output power at antenna input terminal (dBm): 32.99Maximum peak output power at antenna input terminal (mW): 1990.67Prediction distance (cm): 60Prediction frequency (MHz): 782Antenna Gain, typical (dBi): 10Cable Loss (dB): 1.0Power density at predication frequency and distance (mW/cm²): 0.35MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.521

Note: Based on the manufacturer's declaration, the outdoor antenna (Yagi type or similar directional antenna if off air donor signal used) must be installed so as to provide a minimum separation distance of 0.3 meters (60 cm) between the antenna and persons within the area. (This assumes a typical antenna with gain of [10.1 dBi, VSWR \leq 1.5:1, Zo= 50 ohms, and a cable attenuation between 1-10 dB). The indoor antenna (Omni directional or leaky cable) must be installed so as to provide a minimum separation distance of at least 8 inches (20 cm) between the indoor antenna connected to the RF booster and the human user's body within the area. (This assumes a typical wide-beam type antenna with gain of 0-2 dBi, VSWR \leq 2:1, Zo= 50 ohms, and a cable attenuation of between 1-10 dB).

Results

For Uplink, the highest power density level at 60 cm is below the MPE uncontrolled exposure limit. For Downlink; the highest power density level at 20 cm is below the MPE uncontrolled exposure limit.